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Abstract

This paper presents a unified theoretical framework for the corotational (CR) formulation of finite elements in geo-

metrically nonlinear structural analysis. The key assumptions behind CR are: (i) strains from a corotated configuration

are small while (ii) the magnitude of rotations from a base configuration is not restricted. Following a historical outline

the basic steps of the element independent CR formulation are presented. The element internal force and consistent

tangent stiffness matrix are derived by taking variations of the internal energy with respect to nodal freedoms. It is

shown that this framework permits the derivation of a set of CR variants through selective simplifications. This set

includes some previously used by other investigators. The different variants are compared with respect to a set of desir-

able qualities, including self-equilibrium in the deformed configuration, tangent stiffness consistency, invariance, sym-

metrizability, and element independence. We discuss the main benefits of the CR formulation as well as its modeling

limitations.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Three Lagrangian kinematic descriptions are in present use for finite element analysis of geometrically

nonlinear structures: (1) total Lagrangian (TL), (2) updated Lagrangian (UL), and (3) corotational
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(CR). The CR description is the most recent of the three and the least developed one. Unlike the others, its

domain of application is limited by a priori kinematic assumptions:
Fig. 1

visibili
Displacements and rotations may be arbitrarily large; but deformations must be small: ð1Þ

Because of this restriction, CR has not penetrated the major general-purpose FEM codes that cater to

nonlinear analysis. A historical sketch of its development is provided in Section 2.

As typical of Lagrangian kinematics, all descriptions: TL, UL and CR, follow the body (or element) as it

moves. The deformed configuration is any one taken during the analysis process and need not be in equi-

librium. It is also known as the current, strained or spatial configuration in the literature, and is denoted

here by CD. The new ingredient in the CR description is the ‘‘splitting’’ or decomposition of the motion

tracking into two components, as illustrated in Fig. 1.

1. The base configuration C0 serves as the origin of displacements. If this happens to be one actually taken

by the body at the start of the analysis, it is also called initial or undeformed. The name material config-

uration is used primarily in the continuum mechanics literature.

2. The corotated configuration CR varies from element to element (and also from node to node in some CR

variants). For each individual element, its CR configuration is obtained through a rigid body motion of

the element base configuration. The associated coordinate system is Cartesian and follows the element

like a ‘‘shadow’’ or ‘‘ghost’’, prompting names such as shadow and phantom in the Scandinavian litera-

ture. Element deformations are measured with respect to the corotated configuration.

In static problems the base configuration usually remains fixed throughout the analysis. In dynamic

analysis the base and corotated configurations are sometimes called the inertial and dynamic reference con-

figurations, respectively. In this case the base configuration may move at uniform velocity (a Galilean iner-

tial system) following the mean trajectory of an airplane or satellite.

From a mathematical standpoint the explicit presence of a corotated configuration as intermediary be-

tween base and current is unnecessary. The motion split may be exhibited in principle as a multiplicative

decomposition of the displacement field. The device is nonetheless useful to teach not only the physical
meaning but to visualize the strengths and limitations of the CR description.
Rigid body motion

Deformational 
motion

Global
frame

Deformed  (current,
spatial)       D

Base (initial, undeformed,
material) configuration 0

Motion splits into
deformational and rigid 

Corotated R

. The CR kinematic description. Deformation from corotated to deformed (current) configuration grossly exaggerated for

ty.
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2. The emergence of CR

The CR formulation represents a confluence of developments in continuum mechanics, treatment of fi-

nite rotations, nonlinear finite element analysis and body-shadowing methods.

2.1. Continuum mechanics sources

In continuum mechanics the term ‘‘corotational’’ (often spelled ‘‘co-rotational’’) appears to be first men-

tioned in Truesdell and Toupin�s influential exposition of field theories [81, Section 148]. It is used there to

identify Jaumann�s stress flux rate, introduced in 1903 by Zaremba. By 1955 this rate had been incorporated
in hypoelasticity [82] along with other invariant flux measures. Analogous differential forms have been used

to model endochronic plasticity [85]. Models labeled ‘‘co-rotational’’ have been used in rheology of non-

Newtonian fluids; cf. [17,78]. These continuum models place no major restrictions on strain magnitude.
Constraints of that form, however, have been essential to make the idea practical in nonlinear structural

FEA, as discussed below.

The problem of handling three-dimensional finite rotations in continuum mechanics is important in all

Lagrangian kinematic descriptions. The challenge has spawned numerous publications, for example

[1,4,5,34,42–44,62,71,72]. For use of finite rotations in mathematical models, particularly shells, see

[60,70,77]. There has been an Euromech Colloquium devoted entirely to that topic [61].

The term ‘‘corotational’’ in an FEM paper title was apparently first used by Belytschko and Glaum [8].

The survey paper by Belytschko [9] discusses the concept from the standpoint of continuum mechanics.

2.2. FEM sources

In the introduction of a key contribution, Nour-Omid and Rankin [54] attribute the original concept of

corotational procedures in FEM to Wempner [86] and Belytschko and Hsieh [7].

The idea of a CR frame attached to individual elements was introduced by Horrigmoe and Bergan

[10,39,40]. This activity continued briskly under Bergan at NTH-Trondheim with contributions by

Kråkeland [46], Nygård [15,56,57], Mathisen [48,49], Levold [47] and Bjærum [18]. It was summarized
in a 1989 review paper [56]. Throughout this work the CR configuration is labeled as either ‘‘shadow

element’’ or ‘‘ghost-reference.’’ As previously noted the device is not mathematically necessary but pro-

vides a convenient visualization tool to explain CR. The shadow element functions as intermediary that

separates rigid and deformational motions, the latter being used to determine the element energy and

internal force. However the variation of the forces in a rotating frame was not directly used in the for-

mation of the tangent stiffness, leading to a loss of consistency. Crisfield [22–24] developed the concept

of ‘‘consistent CR formulation’’ where the stiffness matrix appears as the true variation of the internal

force. An approach blending the TL, UL and CR descriptions was investigated in the mid-1980s at
Chalmers [50–52].

In 1986 Rankin and Brogan [63] at Lockheed introduced the concept of ‘‘element independent CR

formulation’’ or EICR, which is further discussed below. The formulation relies heavily on the use of

projection operators, without explicit use of ‘‘shadow’’ configurations. It was further refined by Rankin,

Nour-Omid and coworkers [54,64–67], and became essential part of the nonlinear shell analysis program

STAGS [68].

The thesis of Haugen on nonlinear thin shell analysis [37] resulted in the development of the formulation

discussed in this paper. This framework is able to generate a set of hierarchical CR formulations. The work
combines tools from the EICR (projectors and spins) with the shadow element concept and assumed strain

element formulations. Spins (instead of rotations) are used as incremental nodal freedoms. This simplifies

the EICR ‘‘front end’’ and facilitates attaining consistency.
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Battini and Pacoste at KTH-Stockholm [2,3,58] have recently used the CR approach, focusing on sta-

bility applications. The work by Teigen [79] should be cited for the careful use of offset nodes linked to ele-

ment nodes by eccentricity vectors in the CR modeling of prestressed reinforced-concrete members.

2.3. Shadows of the past

The CR approach has also roots on an old idea that preceeds FEM by over a century: the separation

of rigid body and purely deformational motions in continuum mechanics. The topic arose in theories of

small strains superposed on large rigid motions. Truesdell [80, Section 55] traces the subject back to

Cauchy in 1827. In the late 1930s Biot advocated the use of incremental deformations on an initially

stressed body by using a truncated polar decomposition. However, this work, collected in a 1965 mono-

graph [16], was largely ignored as it was written in an episodic manner, using long-hand notation by

then out of fashion. A rigurous outline of the subject is given in [83, Section 68] but without application
examples.

Technological applications of this idea surged after WWII from a different quarter: the aerospace indus-

try. The rigid-plus-deformational decomposition idea for an entire structure was originally used by aero-

space designers in the 1950s and 1960s in the context of dynamics and control of orbiting spacecraft as

well as aircraft structures. The primary motivation was to trace the mean motion.

The approach was systematized by Fraeijs de Veubeke [25], in a paper that essentially closed the subject

as regards handling of a complete structure. The motivation was clearly stated in the Introduction of that

article, which appeared shortly before the author�s untimely death:
Fig. 2

config

coincid
The formulation of the motion of a flexible body as a continuum through inertial space is unsatisfac-
tory from several viewpoints. One is usually not interested in the details of this motion but in its main
characteristics such as the motion of the center of mass and, under the assumptions that the deforma-
tions remain small, the history of the average orientation of the body. The last information is of
course essential to pilots, real and artificial, in order to implement guidance corrections. We therefore
try to define a set of Cartesian mean axes accompanying the body, or dynamic reference frame, with
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respect to which the relative displacements, velocities or accelerations of material points due to the
deformations are minimum in some global sense. If the body does not deform, any set of axes fixed
into the body is of course a natural dynamic reference frame.
Clearly the focus of this paper was on a whole structure, as illustrated in Fig. 2 for an airplane. This will

be called the shadowing problem. A body moves to another position in space: find its mean rigid body mo-

tion and use this information to locate and orient a corotated Cartesian frame.

Posing the shadowing problem in three dimensions requires fairly advanced mathematics. Using two

‘‘best fit’’ criteria Fraeijs de Veubeke showed that the origin of the dynamic frame must remain at the center

of mass of the displaced structure: CR in Fig. 2. However, the orientation of this frame leads to an eigen-
value problem that may exhibit multiple solutions due to symmetries, leading to non uniqueness. (This is

obvious by thinking of the polar and singular-value decompositions, which were not used in that article.)

That this is not a rare occurrence is demonstrated by considering rockets, satellites or antennas, which often

have axisymmetric shape.

Remark 1. Only CD (shown in darker shade in Fig. 2) is an actual configuration taken by the pictured

aircraft structure. Both reference configurations C0 and CR are virtual in the sense that they are not

generally occupied by the body at any instance. This is in contrast to the FEM version of this idea.
2.4. Linking FEM and CR

The practical extension of Fraeijs de Veubeke�s idea to geometrically nonlinear structural analysis by

FEM relies on two modifications:

1. Multiple frames. Instead of one CR frame for the whole structure, there is one per element. This is

renamed the CR element frame.
2. Geometric-based RBM separation. The rigid body motion is separated directly from the total element

motion using elementary geometric methods. For example in a 2-node bar or beam one axis is defined

by the displaced nodes, while for a 3-node triangle two axes are defined by the plane passing through the

three corners. See Fig. 3.

The first modification is essential to success. It helps to fulfill assumption (1): the element deformational

displacements and rotations remain small with respect to the CR frame. If this assumption is violated for a

coarse discretization, break it into more elements. Small deformations are the key to element reuse in the
EICR discussed below. If intrinsically large strains occur, however, the breakdown prescription fails. In

that case CR offers no advantages over TL or UL.
Fig. 3. Geometric tracking of CR frame: (a) bar or beam element in 2D and (b) membrane or shell element in 3D.
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The second modification is inessential. Its purpose is to speed up the implementation of geometrically

simple elements. The CR frame determination may be refined later, using more advanced tools such as

polar decomposition and best-fit criteria, if warranted.

Remark 2. CR is occassionally confused with the convected-coordinate description of motion, which is used

in branches of fluid mechanics and rheology. Both may be subsumed within the class of moving coordinate

kinematic descriptions. The CR description, however, maintains orthogonality of the moving frame(s) thus

achieving an exact decomposition of rigid-body and deformational motions. This property enhances

computational efficiency, since transformation inverses become transposes. On the other hand, convected

coordinates form a curvilinear system that ‘‘fits’’ the change of metric as the body deforms. The difference
tends to disappear as the discretization becomes progressively finer, but the fact remains that the convected

metric must encompass deformations. Such deformations are more important in solid than in fluid

mechanics (because classical fluid models ‘‘forget’’ displacements). The idea finds more use in UL

descriptions, in which the individual element metric is updated as the motion progresses.
2.5. Element independent CR

As previously noted, one of the sources of the present work is the element-independent corotational

(EICR) description developed by Rankin and coworkers [54,63–67]. Here is a summary description taken

from the Introduction to [54]:
Fig. 4.

interfa
In the co-rotation approach, the deformational part of the displacement is extracted by purging the
rigid body components before any element computation is performed. This pre-processing of the dis-
placements may be performed outside the standard element routines and thus is independent of ele-
ment type (except for slight distinctions between beams, triangular and quadrilateral elements).
Why is the EICR worth study? The question fits in a wider topic: why CR? That is, what can CR do that

TL or UL cannot? The topic is elaborated in the Conclusions section, but we advance a practical reason:

reuse of small-strain elements, including possibly materially nonlinear elements.

The qualifier element independent does not imply that the CR equations are independent of the FEM

discretization. Rather it emphasizes that the key operations of adding and removing rigid body motions

can be visualized as a front end filter that lies between the assembler/solver and the element library, as
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The EICR as a modular interface to a linear FEM library. The flowchart is mainly conceptual. For computational efficiency the

ce logic may be embedded with each element through inlining techniques.
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sketched in Fig. 4. The filter is purely geometric. For example, suppose that a program has four different

triangular shell elements with the same node and degree-of-freedom configuration. Then the front end oper-

ations are identical for all four. Adding a fifth small-strain element of this type incurs relatively little extra

work to ‘‘make it geometrically nonlinear.’’

This modular organization is of interest because it implies that the element library of an existing FEM
program being converted to the CR description need not be drastically modified, as long as the analysis is

confined to small deformations. Since that library is typically the most voluminous and expensive part of a

production FEM code, element reuse is a key advantage because it protects a significant investment. For a

large-scale commercial code, the investment may be thousands of man-years.

Of course modularity and computational efficiency can be conflicting attributes. Thus in practice the

front end logic may be embedded with each element through techniques such as code inlining. If so the

flowchart of Fig. 4 should be interpreted as conceptual.
3. Corotational kinematics

This section outlines CR kinematics of finite elements, collecting the most important relations. Mathe-

matical derivations pertaining to finite rotations are consigned to Appendix A. The presentation assumes

static analysis, with deviations for dynamics briefly noted where appropriate.

3.1. Configurations

To describe Lagrangian kinematics it is convenient to introduce a rich nomenclature for configurations.

For the reader�s convenience those used in geometrically nonlinear static analysis using the TL, UL or CR

descriptions are collected in Table 1. Three: base, corotated and deformed, have already been introduced.

Two more: iterated and target, are connected to the incremental-iterative solution process covered in Part II

[38]. The generic configuration is used as placeholder for any kinematically admissible one. The perturbed

configuration is used in variational derivations of FEM equations.

Two remain: reference and globally-aligned. The reference configuration is that to which element compu-
tations are referred. This depends on the description chosen. For Total Lagrangian (TL) the reference is the

base configuration. For Updated Lagrangian (UL) it is the converged or accepted solution of the previous

increment. For corotational (CR) the reference splits into CR and base configurations.

The globally-aligned configuration is a special corotated configuration: a rigid motion of the base that

makes the body or element align with the global axes introduced below. This is used as a ‘‘connector’’ de-

vice to teach the CR description, and does not imply the body ever occupies that configuration.

The separation of rigid and deformational components of motion is done at the element level. As noted

previously, techniques for doing this have varied according to the taste and background of the investigators
that developed those formulations. The approach covered here uses shadowing and projectors.

3.2. Coordinate systems

A typical finite element, undergoing 2D motion to help visualization, is shown in Fig. 5. This diagram as

well as that of Fig. 6 introduces kinematic quantities. For the most part the notation follows that used by

Haugen [37], with subscripting changes.

Configurations taken by the element during the response analysis are linked by a Cartesian global frame,
to which all computations are ultimately referred. There are actually two such frames: the material global

frame with axes {Xi} and position vector X, and the spatial global frame with axes {xi} and position vector

x. The material frame tracks the base configuration whereas the spatial frame tracks the CR and deformed



Table 1

Configurations in nonlinear static analysis by incremental-iterative methods

Name Alias Explanation Equilibrium required? Identification

Generic Admissible A kinematically admissible configuration No C

Perturbed Kinematically admissible variation of a generic configuration No Cþ dC

Deformed Current Actual configuration taken during the analysis process No CD

Spatial Contains others as special cases

Basea Initial The configuration defined as the Yes C0

Undeformed origin of displacements

Material

Reference Configuration to which computations are referred TL,UL: Yes. TL: C0, UL: Cn�1,
CR: CR no, C0 yes CR: CR and C0

Iteratedb Configuration taken at the kth iteration of the nth increment step No Cn
k

Targetb Equilibrium configuration accepted Yes Cn at the nth increment step

Corotatedc Shadow Body or element-attached configuration No CR

Ghost obtained from C0 through a rigid body motion (CR description only)

Globally-aligned Connector Corotated configuration forced to align No CG

With the global axes. Used as ‘‘connector’’ in explaining the

CR description

a C0 is often the same as the natural state in which body (or element) is undeformed and stress-free.
b Used only in Part II [38] in the description of solution procedures.
c In dynamic analysis C0 and CR are called the inertial and dynamic-reference configurations, respectively, when they apply to the entire structure.

2
2
9
2

C
.A
.
F
elip

p
a
,
B
.
H
a
u
g
en

/
C
o
m
p
u
t.
M
eth

o
d
s
A
p
p
l.
M
ech

.
E
n
g
rg
.
1
9
4
(
2
0
0
5
)
2
2
8
5
–
2
3
3
5



Base 
(initial,
undeformed)

Deformed (current)

Corotated

xPC
0

_
x1

x1
~

x2
~

//x1
~

_
x2

~//x2

P
uP

udP

C0

P0

rigid body
rotation

global frame
(with material &
spatial coalesced)

element
base frame

element
CR frame

RC     C

X1, x1

X ,x2 2

C is element centroid in statics,
but center of mass in dynamics.

O

PR

xP

a b

uP
R

xPC
R

xP
R

xP
0

c

Fig. 5. CR element kinematics, focusing on the motion of generic point P. Two-dimensional kinematics pictured for visualization

convenience.
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Fig. 6. CR element kinematics, focusing on rotational transformation between frames.
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(current) configurations. The distinction agrees with the usual conventions of dual-tensor continuum

mechanics [81, Section 13]. Here both frames are taken to be identical, since for small strains nothing is

gained by separating them (as is the case, for example, in the TL description). Thus only one set of global

axes, with dual labels, is drawn in Figs. 5 and 6.

Lower case coordinate symbols such as x are used throughout most of the paper. Occasionally it is con-

venient for clarity to use upper case coordinates for the base configuration, as in Appendix C.

The global frame is the same for all elements. By contrast, each element e is assigned two local Cartesian

frames, one fixed and one moving:
f~xig. The element base frame (blue in Fig. 5). It is oriented by three unit base vectors i0i , which are rows of

a 3 · 3 orthogonal rotation matrix (rotator) T0, or equivalently columns of TT
0 .

f�xig. The element corotated or CR frame (red in Fig. 5). It is oriented by three unit base vectors iRi , which

are rows of a 3 · 3 orthogonal rotation matrix (rotator) TR, or equivalently columns of TT
R .

Note that the element index e has been suppressed to reduced clutter. That convention will be followed

throughout unless identification with elements is important. In that case e is placed as superscript.

The base frame f~xig is chosen according to usual FEM practices. For example, in a 2-node spatial beam

element, ~x1 is defined by the two end nodes whereas ~x2 and ~x3 lie along principal inertia directions. An
important convention, however, is that the origin is always placed at the element centroid C0. For each de-

formed (current) element configuration, a fitting of the base element defines its CR configuration, also

known as the element ‘‘shadow’’. Centroids CR and C � CD coincide. The CR frame f�xig originates at

CR. Its orientation results from matching a rigid motion of the base frame, as discussed later. When the
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current element configuration reduces to the base at the start of the analysis, the base and CR frames coa-

lesce: f~xi � �xig. At that moment there are only two different frames: global and local, which agrees with

linear FEM analysis.

Notational conventions: use of G, 0, R and D as superscripts or subscripts indicate pertinence to the

globally-aligned, base, corotated and deformed configurations, respectively. Symbols with a overtilde or
overbar are measured to the base frame f~xig or the CR frame f�xig, respectively. Vectors without a super-
posed symbol are referred to global coordinates {xi � xi}. Examples: x

R denote global coordinates of a

point in CR whereas ~xG denote base coordinates of a point in CG. Symbols a, b and c = b � a are abbrevi-

ations for the centroidal translations depicted in Fig. 5, and more clearly in Fig. 7(b). A generic, coordinate-

free vector is denoted by a superposed arrow, for example ~u, but such entities rarely appear in this work.

The rotators T0 and TR are the well known local-to-global displacement transformations of FEM ana-

lysis. Given a global displacement u, ~u ¼ T0u and �u ¼ TRu.

3.3. Coordinate transformations

Figs. 5 and 6, although purposedly restricted to 2D, are still too busy. Fig. 7, which pictures the 2D mo-

tion of a bar in three frames, displays essentials better. The (fictitious) globally-aligned configuration CG is

explicitly shown. This helps to follow the ensuing sequence of geometric relations.

Begin with a generic point xG in CG. This point is mapped to global coordinates x0 and xR in the base

and corotated configurations C0 and CR, respectively, through
Fig. 7.

corota

corota
x0 ¼ TT
0x

G þ a; xR ¼ TT
Rx

G þ b; ð2Þ
in which rotators T0 and TR were introduced in the previous subsection. To facilitate code checking, for the

2D motion pictured in Fig. 7(b) the global rotators are
T0 ¼
c0 s0 0

�s0 c0 0

0 0 1

264
375; TR ¼

cR sR 0

�sR cR 0

0 0 1

264
375; c0 ¼ cosu0; s0 ¼ sinu0; etc: ð3Þ
When (2) are transformed to the base and corotated frames, the position vector xG must repeat: ~x0 ¼ xG

and �xR ¼ xG, because the motion pictured in Fig. 7(a) is rigid. This condition requires
~x0 ¼ T0ðx0 � aÞ; �xR ¼ TRðxR � bÞ: ð4Þ

These may be checked by inserting x0 and xR from (2) and noting that xG repeats.
(a) (c)(b)

_
x1

x2

x 1
~

~

_
x2

X1, x1

X2, x2
a

c

b

ϕ0

ϕR

Further distillation to essentials of Fig. 5. A bar moving in 2D is shown: (a) Rigid motion from globally-aligned to base and

ted configurations; (b) key geometric quantities that define rigid motions in 2D; (c) as in (a) but followed by a stretch from

ted to deformed. The globally-aligned configuration is fictitious: only a convenient link up device.
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3.4. Rigid displacements

The rigid displacement is a vector joining corresponding points in C0 and CR. This may be referred to the

global, base or corotated frames. For convenience call the C0 ! CR rotator R0 ¼ TT
RT0. Also introduce

~c ¼ TT
0 c and �c ¼ TT

Rc. Some useful expressions are
ur ¼ xR � x0 ¼ ðTT
R � TT

0 ÞxG þ c ¼ ðR0 � IÞTT
0x

G þ c ¼ ðR0 � IÞTT
0 ~x

0 þ c

¼ ðR0 � IÞTT
0 �x

R þ c ¼ ðR0 � IÞðx0 � aÞ þ c ¼ ðI� RT
0 ÞðxR � bÞ þ c;

~ur ¼ T0ur ¼ T0ðR0 � IÞTT
0 ~x

0 þ ~c ¼ ðeR0 � IÞ~x0 þ ~c;

�ur ¼ TRur ¼ TRðI� RT
0 ÞTT

R�x
R þ �c ¼ ðI� R

T

0 Þ�xR þ �c:

ð5Þ
Here I is the 3 · 3 identity matrix, whereas eR0 ¼ T0R0T
T
0 and R0 ¼ TRR0T

T
R denote the C0 ! CR rotator

referred to the base and corotated frames, respectively.

3.5. Rotator formulas

Traversing the links pictured in Fig. 8 shows that any rotator can be expressed in terms of the other two
T0 ¼ TRR0;TR ¼ T0R
T
0 ; R0 ¼ TT

RT0; R
T
0 ¼ TT

0TR: ð6Þ

In the CR frame: R0 ¼ TRR0T

T
R , whence
R0 ¼ T0T
T
R ; R

T

0 ¼ TRT
T
0 : ð7Þ
Notice that T0 is fixed since CG and C0 are fixed throughout the analysis, whereas TR and R0 change. The

variations of these rotators are subjected to the following constraints:
dT0 ¼ dTT
0 ¼ 0; dTR ¼ T0dR

T
0 ; dTT

R ¼ dR0T
T
0 ; dR0 ¼ dTT

RT0;

dRT
0 ¼ TT

0 dTR; TT
RdTR þ dTT

RTR ¼ 0; RT
0 dR0 þ dRT

0R0 ¼ 0:
ð8Þ
The last two become the orthogonality conditions TT
RTR ¼ I and RT

0R0 ¼ I, respectively, and provide

dR0 ¼ �R0dR
T
0R0; dRT

0 ¼ �RT
0 dR0R

T
0 , etc.
global

frame

X, x

element

base frame

X
~

element

CR frame

x
_

T

T

T

R 0

0

T0

R
0

T

T

T
R

R

Fig. 8. Rotator frame links.
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We denote by x and �x the axial vectors of R0 and R0, respectively, using the exponential map form of

the rotator described in Section A.10. The variations dx and d�x are used to form the skew-symmetric spin

matrices SpinðdxÞ ¼ dR0R
T
0 ¼ �SpinðdxÞT and Spinðd�xÞ ¼ dR0R

T

0 ¼ �Spinðd�xÞT. These matrices are

connected by congruential transformations:
Table

Degre

Notati

v̂ ¼ ½ v̂

dv ¼ ½

d�ve ¼

�ved ¼ ½

N = nu
SpinðdxÞ ¼ TT
0 Spinðd�xÞT0; Spinðd�xÞ ¼ T0SpinðdxÞTT

0 : ð9Þ

Using these relations the following catalog of rotator variation formulas can be assembled:
dTR ¼ T0dR
T
0 ¼ �TRdR0R

T
0 ¼ �TRSpinðdxÞ ¼ �RT

0 Spinðd�xÞT0;

dTT
R ¼ dR0T

T
0 ¼ �R0dR

T
0T

T
R ¼ SpinðdxÞTT

R ¼ TT
0 Spinðd�xÞR0:

dR0 ¼ dTT
RT0 ¼ �R0dR

T
0R0 ¼ SpinðdxÞR0 ¼ TT

0 Spinðd�xÞR0T0;

dRT
0 ¼ TT

0 dTR ¼ �RT
0 dR0R

T
0 ¼ �RT

0 SpinðdxÞ ¼ �TT
0R

T

0 Spinðd�xÞT0;

dR0 ¼ T0dR0T
T
0 ¼ �T0R0dR

T
0T

T
R ¼ T0SpinðdxÞTT

R ¼ Spinðd�xÞR0;

dR
T

0 ¼ T0dR
T
0T

T
0 ¼ �TRdR0R

T
0T

T
0 ¼ �TRSpinðdxÞTT

0 ¼ �RT

0 Spinðd�xÞ:

ð10Þ
3.6. Degrees of freedom

For simplicity it will be assumed that an Ne-node CR element has six degrees of freedom (DOF) per node:

three translations and three rotations. This assumption covers the shell and beam elements evaluated in

Part II [38]. The geometry of the element is defined by the Ne coordinates x0a, a = 1, . . . , Ne in the base (ini-

tial) configuration, where a is a node index.

The notation used for DOFs at the structure and element level is collected in Table 2. If the structure has

N nodes, the set {ua,Ra} for a = 1, . . . , N collectively defines the structure node displacement vector v. Note,

however, that v is not a vector in the usual sense because the rotators Ra do not transform as vectors when

finite rotations are considered. The interpretation as an array of numbers that defines the deformed config-
uration of the structure is more appropriate.

The element total node displacements ve are taken from v in the usual manner. Given ve, the key CR

operation is to extract the deformational components of the translations and rotations for each node. That

sequence of operations is collected in Table 3. Note that the computation of the centroid is done by simply
2

e of Freedom and Conjugate Force Notation

on Frame Level Description

1 � � � v̂N �T with v̂a ¼
ua
Ra

� 	
Global Structure Total displacements and rotations at structure nodes

Translations: ua, rotations: Ra, for a = 1, . . . ,N

dv1 � � � dvN �T with dva ¼
dua
dxa

� 	
Global Structure Incremental displacements and spins at structure nodes used

in incremental-iterative solution procedure

Translations: dua, spins: dxa; conjugate forces: na and ma,

respectively, for a = 1, . . . , N

½ d�ve1 � � � d�veNe �T with d�vea ¼
d�uea
d�xe

a

� 	
Local CR Element Localization of above to element e in CR frame

Translations: d�uea, spins: d�xe
a; conjugate forces: �n

e
a and �me

a,

respectively, for a = 1, . . . , Ne

�vrved1 � � � �vedNe �T with �veda ¼
�ueda
�h
e
da

" #
Local CR Element Deformational displacements and rotations at element nodes

Translations: �ueda, rotations:
�h
e
da; conjugate forces: �na and �ma,

respectively, for a = 1, . . . , Ne

mber of nodes in structure; Ne = number of nodes in element e; a, b: node indices.



Table 3

Forming the deformational displacement vector

Step Operation for each element e and node a = 1, . . . , a

1. From the initial global nodal coordinates xea compute centroid position ae ¼ xeC0 ¼ ð1=NeÞ
PNe

a¼1x
e
a.

Form rotator Te
0 as per element type convention Compute node coordinates in the element base frame: ~xea ¼ Te

0ðxea � aeÞ
2. Compute node coordinates in deformed (current) configuration: xea ¼ xea þ uea and the centroid position vector

be ¼ xeC ¼ ð1=NeÞ
PNe

a¼1x
e
a. Establish the deformed local CR system Te by a best-fit procedure, and Re

0 ¼ TeðTe
0Þ

T.

Form local-CR node coordinates of CR configuration: �xeRa ¼ Teðxea � beÞ
3. Compute the deformational translations �uda ¼ �xea � �xeRa.

eRd ¼ TnRaT
T
0 Compute the deformational rotator R

e
da ¼ TeRe

aðTe
0Þ

T
.

Extract the deformational angles �h
e
da from the axial vector of R

e
da
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averaging the coordinates of the element nodes. For 2-node beams and 3-node triangles this is appropriate.

For 4-node quadrilaterals this average does not generally coincides with the centroid, but this has made

little difference in actual computations.

3.7. EICR matrices

Before studying element deformations, it is convenient to introduce several auxiliary matrices:

P = Pu � Px, S, G, H and L, which appear in expressions of the EICR front-end. As noted, elements trea-
ted here possess Ne nodes and six degrees of freedom (DOF) per node. The notation and arrangement used

for DOFs at different levels is defined in Table 2. Subscripts a and b denote node indices that run from 1 to

Ne. All EICR matrices are built node-by-node from node-level blocks. Fig. 9(a) illustrates the concept of

perturbed configuration CD þ dC, whereas Fig. 9(b) is used for examples. The CR and deformed configu-

ration are ‘‘frozen’’; the latter being varied in the sense of variational calculus.

The translational projector matrix Pu or simply T-projector is dimensioned 6Ne · 6Ne. It is built from

3 · 3 numerical submatrices Uab = (dab � 1/Ne)I, in which I is the 3 · 3 identity matrix and dab the

Kronecker delta. Collecting blocks for all Ne nodes and completing with 3 · 3 zero and identity blocks
Fig. 9. Concept of perturbed configuration to illustrate derivation of EICR matrices: (a) facet triangular shell element moving in 3D

space; (b) 2-node bar element also in 3D but depicted in the f�x1;�x2g plane of its CR frame. Deformations grossly exaggerated for

visualization convenience; strains and local rotations are in fact infinitesimal.
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as placeholders for the spins and rotations gives a 6Ne · 6Ne matrix Pu. Its configuration is illustrated below

for Ne = 2 (e.g., bar, beam, spar and shaft elements) and Ne = 3 (e.g., triangular shell elements)
Ne ¼ 2 : Pu ¼

1
2
I 0 � 1

2
I 0

0 I 0 0

� 1
2
I 0 1

2
I 0

0 0 0 I

26664
37775; Ne ¼ 3 : Pu ¼

2
3
I 0 � 1

3
I 0 � 1

3
I 0

0 I 0 0 0 0

� 1
3
I 0 2

3
I 0 � 1

3
I 0

0 0 0 I 0 0

� 1
3
I 0 � 1

3
I 0 2

3
I 0

0 0 0 0 0 I

2666666664

3777777775
: ð11Þ
For any Ne P 1 it is easy to verify that P2
u ¼ Pu, with 6N

e � 3 unit eigenvalues and 3 zero eigenvalues. Thus

Pu is an orthogonal projector [41, Section 1.3]. Physically, it extracts the deformational part from the total

translational displacements.

Matrix S is called the spin-lever or moment-arm or matrix. It is dimensioned 3Ne · 3 and has the config-

uration (written in transposed form to save space):
S ¼ �ST1 I �ST2 I � � � �STNe I
 �T ð12Þ
in which I is the 3 · 3 identity matrix and Sa are node spin-lever 3 · 3 submatrices. Let xa ¼ ½ x1a x2a x3a �T
generically denote the 3-vector of coordinates of node a referred to the element centroid. Then Sa = Spin(xa).
The coordinates, however, may be those of three different configurations: C0; CR and CD, referred to two

frame types: global or local. Accordingly superscripts and overbars (or tildes) are used to identify one of six

combinations. For example
S0a ¼
0 �x03a � a3 x02a � a2

x03a � a3 0 �x01a � a1
�x02a � a2 x01a � a1 0

264
375; S

R

a ¼
0 ��xR3a �xR2a
�xR3a 0 ��xR1a
��xR2a �xR1a 0

264
375;

S
D

a ¼
0 ��xD3a �xD2a
�xD3a 0 ��xD1a
��xD2a �xD1a 0

264
375 ð13Þ
are node spin-lever matrices for base-in-global-frame, CR-in-local-frame and deformed-in-local-frame,
respectively. The element matrix (12) inherits the notation; in this case S0, S

R
and S

D
, respectively. For in-

stance, S matrices for the 2-node space i � j bar element pictured in Fig. 9(b) are 12 · 3. If the length of the
bar in CD is L, the deformed bar spin-lever matrix referred to the local CR frame is
S
D ¼ 1

2
L

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 �1 0 0 0

0 �1 0 0 0 0 0 1 0 0 0 0

264
375
T

: ð14Þ
The first column is identically zero since the torque about the bar axis �x1 vanishes in straight bar

models.

Matrix G, introduced by Haugen [37], is dimensioned 3 · 6Ne, and will be called the spin-fitter matrix. It

links variations in the element spin (instantaneous rotations) at the centroid of the deformed configuration in

response to variations in the nodal DOFs. See Fig. 9(a). G comes in two flavors, global and local
dx ¼defGdve ¼
X
a

Gadv
e
a; d�x ¼defGd�ve ¼

X
a

Gad�v
e
a; with

X
a

�
XNe

a¼1
: ð15Þ
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Here the spin axial vector variation dxe denotes the instantaneous rotation at the centroid, measured in the

global frame, when the deformed configuration is varied by the 6Ne components of dve. When referred to

the local CR frame, these become d�xe and d�ve, respectively. For construction, both G and G may be split

into node-by-node contributions using the 3 · 6 submatrices Ga and Ga shown above. As an example, G

matrices for the space bar element shown in Fig. 9(b) is 3 · 12. The spin-lever matrix in CD referred to
the local CR frame is
G
D ¼ 1

L

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 �1 0 0 0

0 �1 0 0 0 0 0 1 0 0 0 0

264
375: ð16Þ
The first row is conventionally set to zero as the spin about the bar axis �x1 is not defined by the nodal free-

doms. This ‘‘torsion spin’’ is defined, however, in 3D beam models by the end torsional rotations.

Unlike S, the entries of G depend not only on the element geometry, but on a developer�s decision: how
the CR configuration CR is fitted to CD. For the triangular shell element this matrix is given in Appendix B.
For quadrilateral shells and space beam elements it is given in Part II [38].

Matrices S
D
and G

D
satisfy the biorthogonality property
GS ¼ D; ð17Þ
where D is a 3 · 3 diagonal matrix of zeros and ones. A diagonal entry of D is zero if a spin component is

undefined by the element freedoms. For instance in the case of the space bar, the product G
D
S
D
of (14) and

(16) is diag(0,1,1). Aside from these special elements (e.g., bar, spars, shaft elements), D = I. This property
results from the fact that the three columns of S are simply the displacement vectors associated with the

rigid body rotations d�xi ¼ 1. When premultiplied by G one merely recovers the amplitudes of those three

modes.

The rotational projector or simply R-projector is generically defined as Px = SG. Unlike the T-projector

Pu such as those in (11), the R-projector depends on configuration and frame of reference. Those are iden-

tified in the usual manner; e.g., P
R
x ¼ S

R

xG
R

x. This 6N
e · 6Ne matrix is an orthogonal projector of rank equal

to that of D = GS. If GS = I, Px has rank 3. The complete projector matrix of the element is defined as
P ¼ Pu � Px: ð18Þ

This is shown to be a projector, that is P2 = P, in Section 4.2.

Two additional 6Ne · 6Ne matrices, denoted by H and L, appear in the EICR. H is a block diagonal

matrix built of 2Ne 3 · 3 blocks
H ¼ diag I H1 I H2 � � � I HNe½ �; Ha ¼ HðhaÞ; HðhÞ ¼ oh=ox: ð19Þ
Here Ha denotes the Jacobian derivative of the rotational axial vector with respect to the spin axial vector
evaluated at node a. An explicit expression of H(h) is given in (101) of Appendix A. The local version in the

CR frame is
�H ¼ diag I Hd1 I Hd2 � � � I HdNe

 �
; Hda ¼ Hð�hdaÞ; Hð�hdÞ ¼ o�hd=o�xd: ð20Þ
L is a block diagonal matrix built of 2Ne 3 · 3 blocks
L ¼ diag 0 L1 0 L2 � � � 0 LNe½ �; La ¼ Lðha;maÞ; ð21Þ
where ma is the three-vector of moments (conjugate to dxa) at node a. The expression of L(h,m) is provided

in (102) of Appendix A. The local form L has the same block organization with La replaced by

La ¼ Lð�hda; �maÞ.
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3.8. Deformational translations

Consider a generic point P0 of the base element of Fig. 5, with global position vector x0P . P
0 rigidly moves

to PR in CR with position vector xRP ¼ x0P þ uRP ¼ x0P þ cþ xRPC. Next the element deforms to occupy CD. PR

displaces to P, with global position vector xP ¼ x0P þ uP ¼ x0P þ cþ xRPC þ udP .
The global vector from C0 to P0 is x0P � a, which in the base frame becomes ~x0P ¼ T0ðx0P � aÞ. The global

vector from CR � C to PR is x
R
P � b, which in the element CR frame becomes �xRP ¼ TRðxRPC � bÞ. But ~x0P ¼ �xRP

since the C0 ! CR motion is rigid. The global vector from PR to P is udP ¼ xP � xRP , which represents a

deformational displacement. In the CR frame this becomes �udP ¼ TRðxP � xRP Þ.
The total displacement vector is the sum of rigid and deformational parts: uP = urP + udP. The rigid dis-

placement is given by expressions collected in (5), of which urP ¼ ðR0 � IÞðx0P � aÞ þ c is the most useful.

The deformational part is extracted as udP ¼ uP � urP ¼ uP � cþ ðI� R0Þðx0P � aÞ. Dropping P to reduce

clutter this becomes
ud ¼ u� cþ ðI� R0Þðx0 � aÞ: ð22Þ

The element centroid position is calculated by averaging its node coordinates. Consequently
c ¼ ð1=NeÞ
X
b

ub; ua � c ¼
X
b

Uabub with
X
b

�
XNe

b¼1
ð23Þ
in which Uab = (dab � 1/Ne)I is a building block of the T-projector introduced in the foregoing section. Eval-

uate (22) at node a, insert (23), take variations using (10) to handle dR0, use (2) to map R0(x
0 � a) = xR � b,

and employ the cross-product skew-symmetric property (56) to extract dx
duda ¼ dðua � cÞ � dR0ðx0a � aÞ ¼
X
b

Uabdub � SpinðdxÞR0ðx0a � aÞ

¼
X
b

Uabdub � SpinðdxÞðxRa � bÞ ¼
X
b

Uabdub þ SpinðxRa � bÞdx

¼
X
b

Uabdub þ
X
b

SR
aGbdvb:

ð24Þ
Here matrices S and G have been introduced in (12)–(15). The deformational displacement in the element
CR frame is �ud ¼ TRud. From the last of (5) we get �ud ¼ �u� �c� ðI� R

T

0 Þ�xR, where R0 ¼ TRR0T
T
R . Proceed-

ing as above one gets
d�uda ¼
X
b

Uabd�ub þ
X
b

S
D

aGbd�vb: ð25Þ
The node lever matrix SR
a of (24) changes in (25) to S

D

a , which uses the node coordinates of the deformed

element configuration.
3.9. Deformational rotations

Denote by RP the rotator associated with the motion of the material particle originally at P0; see Fig. 6.

Proceeding as in the translational analysis this is decomposed into the rigid rotation R0 and a deformational

rotation: RP = RdPR0. The sequence matters because RdPR0 5 R0RdP. The order RdPR0: rigid rotation fol-

lowed by deformation, is consistent with those used by Rankin, Bergan and coworkers; e.g. [54,56]. (From

the standpoint of continuum mechanics based on the polar decomposition theorem [81, Section 37] the left

stretch measure is used.) Thus RdP ¼ RPR
T
0 , which can be mapped to the local CR system as Rd ¼ TRRdT

T
R .

Dropping the label P for brevity we get
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Rd ¼ RRT
0 ¼ RTT

0TR; Rd ¼ TRRdT
T
R ¼ TRRT

T
0 : ð26Þ
The deformational rotation (26) is taken to be small but finite. Thus a procedure to extract a rotation axial

vector hd from a given rotator is needed. Formally this is �hd ¼ axial½LogeðRdÞ�, but this can be prone to

numerical instabilities. A robust procedure is presented in Section A.11. The axial vector is evaluated at
the nodes and identified with the rotational DOF.

Evaluating (26) at a node a, taking variations and going through an analysis similar to that carried out in

the foregoing section yields
dhda ¼
ohda

oxda

X
b

oxda

oxb
dxb ¼ Ha

X
b

ðdab½ 0 I � �GbÞdvb;

d�hda ¼
o�hda
o�xda

X
b

o�xda

o�xb
d�xb ¼ Ha

X
b

dab½ 0 I � �Gb

� �
d�vb;

ð27Þ
where Gb is defined in (15) and Ha in (19).
4. Internal forces

The element internal force vector �pe and tangent stiffness matrix K
e
are computed in the CR configura-

tion based on small deformational displacements and rotations. Variations of the element DOF, collected

in ved as indicated in Table 2, must be linked to variations in the global frame to flesh out the EICR interface

of Fig. 4. This section develops the necessary relations.

4.1. Force transformations

Consider an individual element e with Ne nodes with six DOF (three translations and three rotations) at

each. Assume the element to be linearly elastic, undergoing only small deformations. Its internal energy is

assumed to be a function of the deformational displacements: Ue ¼ Ueð�vedÞ with array �ved organized as

shown in Table 2. Ue is a frame independent scalar. The element internal force vector �pe in the CR frame

is given by �pe ¼ oUe=o�ved. For each node a = 1, . . . , Ne
�pea ¼
oUe

o�veda
or

�peua
�peha

� 	
¼

oUe

o�uda
oUe

o�hda

2664
3775; ð28Þ
where the second form separates the translational and rotational (moment) forces. To refer these to the glo-

bal frame we need to relate local-to-global kinematic variations:
d�ueda
d�h

e
da

� 	
¼

XNe

b¼1
Jab

duea
dxe

a

� 	
; Jab ¼

o�uedb
ouea

o�uedb
oxe

a

o�h
e
db

ouea

o�h
e
db

oxe
a

26664
37775: ð29Þ
From virtual work invariance, ð�peuÞ
Td�ued þ ð�pehÞ

Td�h
e
d ¼ ðpeuÞ

Tdue þ ðpehÞ
Tdxe, whence
peua

peha

� 	
¼

XNe

b¼1
JTab

�peua
�peha

� 	
; a ¼ 1; . . . ;Ne: ð30Þ
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It is convenient to split the Jacobian in (29) as Jab ¼ HbPabTa and J
T
ab ¼ TT

aP
T

abH
T

b . These matrices are pro-

vided from three transformation stages, flowcharted in Fig. 10:
d�uedb
d�h

e
db

� 	
¼

I 0

0 Hdb

� 	
d�ueb
d�xe

b

� 	
; with Hdb ¼

o�h
e
db

o�xe
db

� 	
;

d�ueb
d�xe

b

� 	
¼ Pab

d�uea
d�xe

a

� 	
with Pab ¼

o�uedb
o�uea

o�uedb
o�xe

a

o�xe
db

o�uea

o�xe
db

o�xe
a

2664
3775;

d�uea
d�xe

a

� 	
¼ Ta

duea
dxe

a

� 	
¼

TR 0

0 TR

� 	
duea
dxe

a

� 	
;

ð31Þ
The 3 · 3 matrix L is the Jacobian derivative already encountered in (21). An explicit expression in terms of
h is given in (101) of Appendix A. To express compactly the transformations for the entire element it is

convenient to assemble the 6Ne · 6Ne matrices
P ¼

P11 P12 � � � P1Ne

P21 P22 � � � P2Ne

� � � � � � � � � � � �
PNe1 PNe2 � � � PNeNe

26664
37775;

T ¼ diag TR TR � � � TR½ �

ð32Þ
and H is defined in (20). Then the element transformations can be written
dved ¼ HPTdve; pe ¼ TTP
T
H

T
�pe: ð33Þ
The 6 · 6 matrix Pab in (31) extracts the deformational part of the displacement at node b in terms of the

total displacement at node a, both referred to the CR frame. At the element level, d�ved ¼ Pd�ve extracts the
deformational part by ‘‘projecting out’’ the rigid body modes. For this reason P is called a projector. As

noted in Section 3.5, Pmay be decomposed into a translational projector or T-projector Pu and a rotational

projector or R-projector Px, so that P ¼ Pu � Px. The projector has a rank deficiency of 6. The T-projector

is a purely numeric matrix exemplified by (11). The R-projector can be expressed as Px ¼ SG, where S is
defined in (12) and G in (15). Additional properties are studied below.
CR deformational

displacement & rotations

δu  , δθ

CR deformational

displacement & spins

δu  , δω

CR total

displacement & spins

δu, δω

global total

displacement & spins

δu, δω
_

_ _ __

_

H

P = P  + P 

T

ωu

H P T

rotation-to-
spin Jacobian

Projector

global-to-CR
 frame rotator

d

d d

d

_

_ _ _

_ _

Fig. 10. Staged transformation sequence from deformed to global DOFs.



C.A. Felippa, B. Haugen / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2285–2335 2303
Remark 3. Rankin and coworkers [54,63–67] use an internal force transformation in which the incremental

nodal rotations are used instead of the spins. This results in an extra matrix, H
�1

appearing in the sequence

(33). The projector derived in those papers differs from the one constructed here in two ways: (1) only the

R-projector is considered, and (2) the origin of the CR frame is not placed at the element centroid but at an

element node defined by local node numbering. Omitting the T-projection is inconsequential if the element
is ‘‘clean’’ with respect to translational rigid body motions [30, Section 5].
4.2. Projector properties

In this section the bar over P, etc. is omitted for brevity, since the properties described below are frame

independent. In Section 3.5 it was stated without proof that (18) verifies the orthogonal projector property

P2 = P. Since P2 ¼ ðPu � PxÞ2 ¼ P2
u � 2PuPx þ P2

x, satisfaction requires P2
u ¼ Pu, P

2
x ¼ Px, and PuPx = 0.

Verification of P2
u ¼ Pu is trivial. Recalling that Px = SG we get
P2
x ¼ SðGSÞG ¼ SIG ¼ SG ¼ Px: ð34Þ
This assumes D = I in (17); verification for non-identity D is immediate upon removal of zero rows and

columns. The orthogonality property PuPx = Pu SG = 0 follows by observing that Spin(xC) = 0, where

xC are the coordinates of the element centroid in any frame with origin at C.

In the derivation of the consistent tangent stiffness, the variation of PT contracted with a force vector f,

where f is not varied, is required. The variation of the projector can be expressed as
dP ¼ dPu � dPx ¼ �dPx ¼ �dSG� SdG: ð35Þ
For the tangent stiffness one needs dPTf. This vector can be decomposed into a balanced (self-equilibrated)

force fb = Pf and an unbalanced (out of equilibrium) force fu = (I � P)f. Then
dPT f ¼ �ðGT dST þ dGTSTÞ ðfb þ fuÞ ¼ �GT dSTPT f � ðGT dST þ dGTSTÞ fu
¼ �GT dSTPT f þ dPT fu; ð36Þ
where STfb = 0 was used. This comes from the fact that the columns of S are the three rotational rigid body
motions, which do not produce work on an self-equilibrated force vector.

The term dPTfu will be small if element configurations C
R and CD are close because in this case fu will

approach zero. If G has the factorizable form shown below, however, we can show that dPTfu = 0 identi-
cally, regardless of how close CR and CD are, as long as f is in translational equilibrium. Assume that G can

be factored as
G ¼ NC with dG ¼ dNC; ð37Þ

where N is a coordinate dependent invertible 3 · 3 matrix, and Cis a constant 3 · 6Ne matrix. Since GS = I

as per (17), N�1 = CS, and dGS + GdS = dNCS + GdS = 0, whence dN = � GdSN. Then
dPT fu ¼ �ðGT dST þ CT dNTSTÞ fu ¼ �ðGT dST � CTNT dST;GTSTÞ fu
¼ �ðGT dST �GT dSTPT

xÞ fu ¼ �ðGT dSTðI� PT
xÞÞ fu

¼ �GT dSTðI� PT
xÞ fu ¼ �GT dSTðI� PT

xÞðI� PTÞ f ¼ 0;

ð38Þ
if f is in translational equilibrium: f ¼ PT
x f. This is always satisfied for any element that represents rigid

body translations correctly [30, Section 5].
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5. Tangent stiffness

We consider here only the stiffness derived from the internal energy. The load stiffness due to noncon-

servative forces, such as aerodynamic pressures, has to be treated separately.

5.1. Definition

The consistent tangent stiffness matrix Ke of element e is defined as the variation of the internal forces

with respect to element global freedoms:
dpe ¼def Ke dve; whence Ke ¼ ope

ove
: ð39Þ
Taking the variation of pe in (33) gives rise to four terms
dpe ¼ dTTP
T
H

T
�pe þ TT dP

T
H

T
�pe þ TTP

T
dHT �pe þ TTP

T
H

T
d�pe

¼ ðKe
GR þ Ke

GP þ Ke
GM þ Ke

MÞdve: ð40Þ
The four terms identified in (40) receive the following names. KM is the material stiffness, KGM the moment-

correction geometric stiffness, KGP the equilibrium projection geometric stiffness, and KGR the rotational geo-

metric stiffness. If nodal eccentricities treated by rigid links are considered, one more term appears, called

the eccentricity geometric stiffness. This term is studied in [37].

5.2. Material stiffness

The material stiffness is generated by the variation of the element internal forces pe
Ke
M dve ¼ TT

R P
T
H

T
d�pe: ð41Þ
The linear stiffness matrix in terms of the deformational freedoms in �ved is defined as the Hessian of the inter-
nal energy
K
e ¼ o

2 �Ue

o�vedo�v
e
d

¼ o�pe

o�ved
: ð42Þ
Using the transformation of d�ve in (33) gives
Ke
M ¼ TTP

T
H

T
K

e
HPT: ð43Þ
Thus the material stiffness is given by a congruential transformation of the local stiffness K
e
to the global

frame. This is formally the same as in linear analysis but here the transformation terms depend on the state.

The expression (43) is valid only if K
e
is independent of the deformational �ved freedoms.

5.3. Geometric stiffness

To express compactly the geometric stiffness components it is convenient to introduce the arrays
�peP ¼ P
T
H

T
�pe ¼

�ne1
�me
1

..

.

�neNe

�me
Ne

2666664

3777775; Fn ¼

Spinð�ne1Þ
0

..

.

Spinð�neNeÞ
0

266664
377775; Fmn ¼

Spinð�ne1Þ
Spinð�me

1Þ
..
.

Spinð�neNeÞ
Spinð�me

NeÞ

2666664

3777775: ð44Þ
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These are filled with the projection node forces �peP . Only the final form of the geometric stiffness components

is given below, omitting the detailed derivations of [37]. The rotational geometric stiffness is generated by

the variation of T: Ke
GR dve ¼ dTTP

T
H

T
�pe and can be expressed as
KGR ¼ �TTFnmGT; ð45Þ

Ke

GR is the gradient of the internal force vector with respect to the rigid rotation of the element. This inter-

pretation is physically intuitive because a rigid rotation of a stressed element necessarily reorients the stress

vectors by that amount. Consequently the internal element forces must rigidly rotate to preserve

equilibrium.

The moment-correction geometric stiffness is generated by the variation of the Jacobian H:

Ke
RGdve ¼ TT

R P
T
dH

T
�pe. It is given by
Ke
GM ¼ TTP

T
LPT; ð46Þ
where L is defined in Section 3.5.

The equilibrium projection geometric stiffness arises from the variation of the projector P with respect to

the deformed element geometry: Ke
GPdv

e ¼ TT
R dPTHT �pe. As in Section 4.2, decompose �pe into a balanced

(self-equilibrated) force �peb ¼ P
T
�pe and an unbalanced force �peu ¼ �pe � �peb. If dP

T
�peu is either identically zero

or may be neglected as discussed in Section 4.2, Ke
GP is given by
KGP ¼ �TTG
T
FnPT; ð47Þ
in which the balanced force �peb is used in (44) to get Fn.

If TT dP
T
�peu cannot be neglected, as may happen in highly warped shell elements in a coarse mesh, the

following correction term may be added to Ke
GP:
DKGP ¼ �TT G
T
FnuPþ oG

ov
S�peu

� �
T; ð48Þ
where Fnu is Fn of (44) when �peu is inserted instead of �pe. In the computations reported in Part II [38] this

term was not included.

Ke
GP expresses the variation of the projection of the internal force vector �pe as the element geometry

changes. This can be interpreted mathematically as follows: In the vector space of element force vectors

the subspace of self-equilibrium force vectors changes as the element geometry changes. The projected force

vector thus has a gradient with respect to the changing self-equilibrium subspace, even though the element

force �f
e
does not change.

The complete form of the element tangent stiffness, excluding correction terms (48) for highly warped

elements, is
Ke ¼ TTðPT
H

T
K

e
HPþ P

T
LP� FnmG�G

T
F
T

n PÞT ¼ TTK
e
RT; ð49Þ
in which K
e
R, which is the local tangent stiffness matrix (the tangent stiffness matrix in the local CR frame of

the element) is given by the parenthesized expression.

5.4. Consistency verification

The local tangent stiffness matrix K
e
R given in (49) has some properties that may be exploited to verify the

computer implementation [37,54]:
K
e
RS ¼ �Fnm; S

T
K

e
R ¼ �fTn ; KMS ¼ 0; KGRS ¼ �Fnm;

KGPS ¼ 0; S
T
KM ¼ 0; S

T ðKGR þ KGPÞ ¼ �FTn :
ð50Þ
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In addition, rigid-body-mode tests on the linear stiffness matrix K
e
using linearized projectors are discussed

in [30]. The set (50) tests the programming of the nonlinear projector P since it checks the null space of P. It

also indicates whether the projector matrix is used correctly in the stiffness formulation. However, satisfac-

tion does not fully guarantee consistency between the internal force and the tangent stiffness because H and

L are left unchecked. Full verification of consistency can be numerically done through finite difference
techniques.
6. Three consistent CR formulations

From the foregoing unified forms of the internal force and tangent stiffness, three CR consistent formu-

lations can be obtained by making simplifying assumptions at the internal force level. These satisfy self-

equilibrium and symmetry to varying degree. The following subsections describe the three versions in order
of increasing complexity. For all formulations one can take into account DOFs at eccentric nodes as de-

scribed in [37].

6.1. Consistent CR formulation (C)

This variant is that developed by Bergan and coworkers in the 1980s at Trondheim and summarized in

the review article [56]. The internal force (33) is simplified by taking H ¼ I and P ¼ I, while retaining

d�ved ¼ HPd�ve for recovery of deformational DOFs. Since dP ¼ dH ¼ 0, the expression for the tangent stiff-
ness of (40) simplifies to the material and rotational geometric stiffness terms:
pe ¼ TTK
e
�ved; Ke ¼ TTðKe

HP� FnmGÞT: ð51Þ

Here Fnm is computed according to (44) with �pe ¼ K

e
�vd. The internal force is in equilibrium with respect to

the CR configuration CR. For a shell structure, the material stiffness approaches symmetry as the element

mesh is refined if the membrane strains are small. As the mesh is refined, the deformational rotation axial

vectors �hda become smaller and approach vector properties that in turn makeH(hda) get close to the identity
matrix. With small membrane strains K

e
is indifferent with respect to post-multiplication with P because the

CR and C configurations will be close and K
e
P! K

e
. The consistent geometric stiffness is always unsym-

metric, even at equilibrium. Because of this fact one cannot expect quadratic convergence for this formu-

lation if a symmetric solver is used.

This formulation may be unsatisfactory for warped quadrilateral shell elements since the CR and CD ref-

erence configurations may be far apart. Only in the limit of a highly refined element mesh will the CR and

CD references in general be close, and satisfactory equilibrium ensured.

6.2. Consistent equilibrated CR formulation (CE)

The internal force (33) is simplified by taking H ¼ I so dH = 0, but the projector P is retained. This gives
pe ¼ TTP
T
K

e
�ved; Ke ¼ TTðPT

K
e
HP� FmnG�G

T
F
T

n PÞT: ð52Þ

where Fnm and Fn are computed according to (44) with �pe ¼ P

T
K

e
�ved.

Due to the presence of P on both sides, the material stiffness of the CE formulation approaches

symmetry as the mesh is refined regardless of strain magnitude. The geometric stiffness at the element level

is non-symmetric, but the assembled global geometric stiffness will become symmetric as global equilibrium

is approached, provided that there are no applied nodal moments and that displacement boundary condi-

tions are conserving. A symmetrized global tangent stiffness maintains quadratic convergence for refined
element meshes with this formulation.
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6.3. Consistent symmetrizable equilibrated CR formulation (CSE)

All terms in (33) are retained, giving
pe ¼ TTP
T
H

T
K

e
�ved; Ke ¼ TTðPT

H
T
K

e
HPþ P

T
LP� FnmG�G

T
F
T

n PÞT: ð53Þ
where Fnm and Fn are computed according to (44) with �f ¼ P
T
HK

e
�ved. The assembled global geometric stiff-

ness for this formulation becomes symmetric as global equilibrium is approached, as in the CE case, as long

as there are no applied nodal moments and the loads as well as boundary conditions are conserving. Since
the material stiffness is always symmetric, quadratic convergence with a symmetrized tangent stiffness can

be expected without the refined-mesh-limit assumption of the CE formulation.

Remark 4. The relative importance of including the H matrix, which is neglected by most authors, and the
physical significance of this Jacobian term are discussed in Part II [38].
6.4. Formulation requirements

It is convenient to set forward a set of requirements for geometrically nonlinear analysis with respect

to which different CR formulations can be evaluated. They are listed below in order of decreasing

importance.

Equilibrium. By this requirement is meant: to what extent the finite element internal force vector p is in

self-equilibrium with respect to the deformed configuration CD? This is a fundamental requirement for trac-

ing the correct equilibrium path in an incremental-iterative solution procedure.

Consistency. A formulation is called consistent if the tangent stiffness is the gradient of the internal forces

with respect to the global DOF. This requirement determines the convergence rate of an incremental-iter-
ative solution procedure. An inconsistent tangent stiffness may give poor convergence, but does not alter

the equilibrium path since this is entirely prescribed by the foregoing equilibrium requirement. However,

lack of consistency may affect the location of bifurcation (buckling) points and the branch switching mech-

anism for post-buckling analysis. In other words, an inconsistent tangent stiffness matrix may detect (‘‘see’’)

a bifurcation where equilibrium is not satisfied from the residual equation. Subsequent traversal by branch-

switching will then be difficult because the corrector iterations need to jump to the secondary path as seen

by the residual equation.

Invariance. This requirement refers to whether the solution is insensitive to internal choices that may de-
pend on node numbering. For example, does a local element-node reordering give an altered equilibrium

path or change the convergence characteristics for the analysis for an otherwise identical mesh? The main

contributor to lack of invariance is the way the deformational displacement vector is extracted from the

total displacements, should the extraction be affected by the choice of the local CR frame. If lack of invari-

ance is observed, it may be usually traced to the matrix G, which links the variation of the rigid body rota-

tion to that of the nodal DOF.

Symmetrizability. This means that a symmetrized K can be used without loss of quadratic convergence

rate in a true Newton solver even when the consistent tangent stiffness away from equilibrium is not sym-
metric. In the examples studied in Part II [38] this requirement was met when the material stiffness of the

formulation was rendered symmetric.

Element independence. This is used in the sense of the EICR discussed in Section 2.5. It means that the

matrix and vector operations that account for geometrically nonlinear effects are the same for all elements

that possess the same node and DOF configuration.

Attributes of the C, CE and CSE formulations in light of the foregoing requirements are summarized in

Table 4.



Table 4

Attributes of corotated formulations C, CE and CSE

Formulation Self-equil. (1) Consistent (2) Invariant (3) Symmetriz. (4) Elem.Indep. (5)

C
p p p

CE
p p p p

CSE
p p p p p

(1) Checked if element is in self-equilibrium in deformed configuration CD

(2) Checked if tangent stiffness is the v gradient of the element internal force

(3) Checked if the formulation is insensitive to choice of node numbering

(4) Checked if formulation maintains quadratic convergence of a true Newton solver with a symmetrized tangent stiffness matrix

(5) Checked if the matrix and vector operations that account for geometrically nonlinear effects are the same for all elements with the

same node and DOF configuration
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6.5. Limitations of the EICR formulation

The present CR framework, whether used in the C, CE or CSE formulation variants, is element indepen-

dent in the EICR sense discussed in Section 2.5 since it does not contain gradients of intrinsically element

dependent quantities such as the strain–displacement relationship. This treatment is appropriate for ele-

ments where the restriction to small strains automatically implies that the CR and deformed element con-

figurations are close. This holds automatically for low order models such as two-node straight bars and

beams, and three-node facet shell elements.
The main reason for limiting element independence to low-order elements is the softening effect of the

nonlinear projector P. The use of P to restore the correct rigid body motions, and hence equilibrium with

respect to the deformed element geometry, effectively reduces the eigenvalues of the material stiffness rela-

tive to the CR material stiffness K
e
before projection. This softening effect becomes significant if the CR and

CD geometries are far apart.

Such softening effects are noticeable in four-node initially-warped shell elements. Assume that the ele-

ment is initially endowed with ‘‘positive’’ warping, and consider only the effect of P. The element material

stiffness of this initial positive warping is then Kþ ¼ PT
þK

e
Pþ ¼ Ke. Apply displacements that switch this

warping to the opposite of the initial one; that is, a ‘‘negative’’ warping. The new element material stiffness

then becomes K� ¼ PT
�K

e
P� 6¼ Kþ. One will intuitively want the two element configurations to have the

same rigidity in the sense of the dominant nonzero eigenvalues of the tangent stiffness matrix. But it can

be shown that the eigenvalues of the projected material stiffness matrix K� can be significantly lower than

those of the initial stiffness matrix K+. If the element stiffness Ke is referred to the flat element projection,

one can restore symmetry of K+ and K� with respect to dominant nonzero eigenvalues, but it is not possible

to remove the softening effect.

This argument also carries over to higher order bar, arch and shell elements that are curved in the initial
reference configuration. It follows that the EICR is primarily useful for low-order elements of simple

geometry.
7. Conclusions

This paper presents a unified formulation for geometrically nonlinear analysis using the CR kinematic

description, assuming small deformations. Although linear elastic material behavior has been assumed
for brevity, extension to materially nonlinear behavior such as elastoplasticity and fracture within the con-

fines of small deformations, is feasible as further discussed below. All terms in the internal force and tan-

gent stiffness expressions are accounted for. It is shown how dropping selected terms in the former produces

simpler CR versions used by previous investigators.
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These versions have been tested on thin shell and flexible-mechanism structures, as reported in Part II

[38]. Shells are modeled by triangle and quadrilateral elements. The linear stiffness of these elements is ob-

tained with the ANDES (Assumed Natural DEviatoric Strains) formulation of high performance elements

[27–32,53]. Test problems include benchmarks in buckling, nonlinear bifurcation and collapse.

Does the unified formulation close the book on CR? Hardly. Several topics either deserve further devel-
opment or have been barely addressed:

(A) Relaxing the small-strain assumption to allow moderate deformations.

(B) Robust handling of extremely large rotations involving multiple revolutions.

(C) Integrating CR elements with rigid links and joint elements for flexible multibody dynamics.

(D) Using substructuring concepts for CR modeling of structural members with continuum elements.

(E) Achieving a unified form for CR dynamics, including nonconservative effects and multiphysics.

Topic (A) means the use of CR for problems where strains may locally reach moderate levels, say 1–10%, as

in elastoplasticity and fracture, using appropriate strain and stress measures in the local frame. The chal-

lenge is that change of metric of the CR configuration should be accounted for, even if it means dropping

the EICR property. Can CR compete against the more established TL and UL descriptions? It seems unrea-

sonable to expect that CR can be of use in overall large strain problems such as metal forming, in which UL

reigns supreme. But it may be competitive in localized failure problems, where most of the structure remain

elastic although undergoing finite rotations.

Some data points are available: previous large-deformation work presented in [46,47,50,51,57]. More re-
cently Skallerud et al. reported [75] that a submerged-pipeline failure shell code using the ANDES CR

quadrilateral of [37] plus elastoplasticity [74] and fracture mechanics [21] was able to beat a well known

commercial TL-based code by a factor of 600 in CPU time. This speedup is of obvious interest for stream

lining design cycles and deployment planning.

Topic (B) is important in applications where a floating (free-free) structure undergoes several revolu-

tions, as in combat airplane maneuvers, payload separation or orbital structure deployment. The technical

difficulty is that expressions presented in the Appendix cannot handle finite rotations beyond ±2p, and thus
require occasional resetting of the base configuration. While this can be handled via restarts for structures
such as full airplanes, it can be more difficult when the relative rotation between components exceeds ±2p,
as in separation, fragmentation or deployment problems.

Topics (C) and (D) have been addressed in the FEDEM program developed by SINTEF at Trondheim,

Norway. This program combines the CR shell and beam elements of [37], grouped into substructures, with

kinematic objects typical of rigid-body dynamics: eccentric links and joints. Basic tools used in FEDEM for

combining joint models with flexible continuum elements are described in a recent book [73].

Finally, topic (E) is fertile ground for research. The handling of model components such as mass, damping

and nonconservative effects in fluid-structure interaction and aeroelasticity is an active ongoing research topic.
For example a recent paper [26] describes flight maneuver simulations of a complete F-16 fighter using CR ele-

ments to model the aircraft. As in statics, a key motivation for CR in dynamics is reuse of linear FEM force–

stiffness libraries. Can that reuse extend to mass and damping libraries? And how do standard time integration

methods perform when confronted with unsymmetric matrices? These topics have barely been addressed.
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Appendix A. The mathematics of finite rotations

This Appendix collects formulas and results for the mathematical treatment of finite rotations in 3D

space. Emphasis is placed on representations useful in the CR description of FEM. Several of the results

are either new or simplifications of published results. Some statements in the literature concerning the expo-
nential and Cayley maps are shown to be erroneous.

One difficulty for investigators and students learning the CR description is that different normalizations

have been used by different authors. This topic is reviewed in some detail, and summary help provided in

the form of Table 5.

A.1. Spatial rotations

Plane rotations are easy. A rotation in, say, the {x1,x2} plane, is defined by just a scalar: the rotation
angle h about x3. Plane rotations commute: h1 + h2 = h2 + h1, because the hs are numbers.

The study of spatial (3D) rotations is more difficult. The subject is dominated by a fundamental theorem

of Euler:
Table

Rotato

Param

None

Unit a

Rodrig

Fraeijs

Expon
The general displacement of a rigid body with one point fixed is a rotation about some axis

which passes through that point: ð54Þ
Thus spatial rotations have both magnitude: the angle of rotation, and direction: the axis of rotation. These

are nominally the same two attributes that categorize vectors. Not coincidentally, rotations are sometimes

pictured as vectors but with a double arrow in Mechanics books. Finite 3D rotations, however, do not obey

the laws of vector calculus, although infinitesimal rotations do. Most striking is commutation failure:

switching two successive rotations does not yield the same answer unless the rotation axis is kept fixed.

Within the framework of matrix algebra, finite rotations can be represented in two ways:

(a) As 3 · 3 real orthogonal matrices R called rotators. (An abbreviation for rotation tensor.)
(b) As 3 · 3 real skew-symmetric matrices X called spinors. (An abbreviation for spin tensor.)

The spinor representation is important in theory and modeling because the matrix entries are closely re-

lated to the ingredients of Euler�s theorem (54).

The rotator representation is convenient for numerical work, as well as being naturally related to the

polar factorization of a transformation matrix. The two representations are connected as illustrated in

Fig. 11, which also includes the axial vector introduced below. Of the X ! R links, the Rodrigues–Cayley

version is historically the first, as discussed in [20], although not the most important one.
5

r forms for several spinor normalizations

etrization c a b Spinor Rotator R

(unscaled) 1 sin h
x

2sin2 1
2
h

x2

X
Iþ sin h

x
X þ

2sin2 1
2
h

x2
X2

xial-vector
1

x
sin h 2sin2

1

2
h N = cX Iþ sin hNþ 2sin2

1

2
hN2,

ues–Cayley
tan 1

2
h

x
2cos2

1

2
h 2cos2

1

2
h R = cX Iþ 2cos2

1

2
hðR þ R2Þ ¼ ðIþ RÞðI� RÞ�1

de Veubeke
sin 1

2
h

x
2 cos

1

2
h 2 Xp = cX Iþ 2 cos

1

2
hXp þ 2X2

p

ential map
h
x

sin h
h

sin2 1
2
h

h2
H = cX Iþ sin h

h
H þ

2sin2 1
2
h

h2
H2 ¼ eH ¼ ehN



Rotator
R

Skew(R)

Not unique: adjustable 
by a scale factor γ

Unique

Axial vector or
pseudovector

ω
Spinor

Ω

Spin(ω)

axial(Ω)

Rot(Ω)

Fig. 11. Representations of finite spatial rotations. Note: Some authors write eX and Loge(R) for Rot(X) and Skew(R), respectively.

This is correct for a particular scale factor c; cf. Table 5.
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A 3 · 3 skew-symmetric matrix such as X is defined by three scalar parameters. These three numbers can

be arranged as components of an axial vector x. Although x looks like a 3-vector, it violates certain prop-

erties of classical vectors such as the composition rule. Therefore the term pseudovector is sometimes used

for x.

In the EICR formulation presented here, axial vectors of rotations and spins function as incremental
quantities directly connected to variations. Rotator matrices are used to record the global structure mo-

tions. See Table 2.

This Appendix intends to convey that finite 3D rotations can appear in alternative mathematical repre-

sentations, as diagramed in Fig. 11. The following exposition expands on this topic, and studies the links

shown there.

A.2. Spinors

Fig. 12(a) depicts a 3D rotation in space {x1,x2,x3} by an angle h about an axis of rotation ~x. For
convenience the origin of coordinates O is placed on ~x. The rotation axis is defined by three directors:

x1, x2, x3, at least one of which must be nonzero. These components may be scaled by an nonzero factor

c through which the vector may be normalized in various ways discussed later. The rotation takes an arbi-

trary point P(x), located by its position vector x, into Q(x,h), located by its position vector xh. The center of

rotation C is defined by projecting P on the rotation axis. The plane of rotation CPQ is normal to that axis

at C.

The radius of rotation is vector r of magnitude r from C to P. As illustrated in Fig. 12(b) the distance
between P and Q is 2r sin 1

2
h.
x3

x2x1

x

r

P(x)

P(x)

C

C
O

Q(x,θ)

Q(x,θ)

θ/2

θ/2
r

2r sin θ/2

2r cos θ/2

(a)

(b)

xθ

Rotation axis defined  
by axial vector
Can be normalized
in various ways

+θ

n,

Fig. 12. The rotation angle h is positive as shown, obeying the right-hand screw rule about the rotation axis.
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The positive sense of h obeys the RHS screw rule: positive counterclockwise if observed from the tip of

the rotation axis. The angle shown in Fig. 12 is positive.
A.3. Spin tensor and axial vector

Given the three directors x1, x2, and x3 of the axis x, we can associate with it a 3 · 3 skew-symmetric

matrix X, called a spin tensor, spin matrix or briefly spinor, by the rule
X ¼ SpinðxÞ ¼
0 �x3 x2

x3 0 �x1

�x2 x3 0

264
375 ¼ �XT: ð55Þ
The space of all X�s form the Lie algebra SO(3). Premultiplication of an arbitrary 3-vector v by X is equiv-

alent to the cross product of x and v:
x � v ¼ Xv ¼ SpinðxÞv ¼ �SpinðvÞx ¼ �v� x: ð56Þ
In particular Xx = 0, and vTXv = 0, as may be directly verified. The operation converse to (55) extracts the

3-vector x, called axial vector or pseudovector, from a given spin tensor:
x ¼ axialðXÞ ¼
x1

x2

x3

264
375: ð57Þ
The length of this vector is denoted by x
x ¼j x j¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
: ð58Þ
As general notational rule, we will use corresponding upper and lower case symbols for the spinor and its

axial vector, respectively, if possible. For example, N and n, H and h, V and v. Exceptions are made in case

of notational conflicts; for example the spinor built from the quaternion vector pi is not denoted as P be-

cause that symbol is reserved for projectors.

A.4. Spinor normalizations

As noted, x and X can be multiplied by a nonzero scalar factor c to obtain various normalizations. In

general c has the form g(h)/x, where g(Æ) is a function of the rotation angle h. The goal of normalization is to
simplify the connections Rot(Æ) and Skew(Æ) to the rotator, to avoid singularities for special angles, and to

connect the components x1, x2 and x3 closely to the rotation amplitude. This section overviews some nor-

malizations that have practical or historical importance.

Choosing c = 1/x we obtain the unit axial-vector and unit spinor, which are denoted by n and N,

respectively:
n ¼
n1
n2
n3

264
375 ¼

x1=x

x2=x

x3=x

264
375 ¼ x

x
; N ¼ SpinðnÞ ¼ X

x
¼

0 �n3 n2
n3 0 �n1
�n2 n3 0

264
375: ð59Þ
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Taking c ¼ tan 1
2
h=x is equivalent to multiplying the ni by tan 1

2
h. We thus obtain the parameters

bi ¼ ni tan 1
2
h, i = 1,2,3 attributed to Rodrigues [69] by Cheng and Gupta [20]. These are collected in the

Rodrigues axial-vector b with associated spinor R:
b ¼ tan 1
2
hn ¼ tan 1

2
h=x

� �
x; R ¼ SpinðbÞ ¼ tan 1

2
hN ¼ tan 1

2
h=x

� �
X: ð60Þ
This representation permits an elegant formulation of the rotator via the Cayley transform studied later.

However, it collapses as h nears ±180� since tan 1
2
h ! �1. One way to circumvent the singularity is

through the use of the four Euler–Rodrigues parameters, also called quaternion coefficients:
p0 ¼ cos 1
2
h; pi ¼ ni sin 1

2
h ¼ xi=x sin 1

2
h; i ¼ 1; 2; 3: ð61Þ
under the constraint p20 þ p21 þ p22 þ p23 ¼ 1. This set is often used in multibody dynamics, robotics and con-

trol. It comes at the cost of carrying along an extra parameter and an additional constraint.

A related singularity-free normalization introduced by Fraeijs de Veubeke [25] takes c ¼ sin 1
2
h=x and is

equivalent to using only the last three parameters of (61):
p ¼ sin 1
2
hn ¼ ðsin 1

2
h=xÞ x; Xp ¼ SpinðpÞ ¼ sin 1

2
hN ¼ ðsin 1

2
h=xÞX: ð62Þ
Fraeijs de Veubeke calls this representation ‘‘Rodrigues-Hamilton’’ without explanatory references.

Finally, an important normalization that preserves three parameters while avoiding singularities is that

associated with the exponential map. Introduce a rotation vector h defined as
h ¼ hn ¼ ðh=xÞx; H ¼ SpinðhÞ ¼ hN ¼ ðh=xÞX: ð63Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

For this normalization the angle is the length of the rotation vector: h ¼j h j¼ h21 þ h22 þ h23. The selection
of the sign of h is a matter of convention.

A.5. Spectral properties

The study of the spinor eigensystem Xzi = kizi is of interest for various developments. Begin by forming

the characteristic equation
detðX � kIÞ ¼ �k3 � x2k ¼ 0; ð64Þ

where I denotes the identity matrix of order 3. It follows that the eigenvalues of X are k1 = 0, k2,3 = ±xi.
Consequently X is singular with rank 2 if x 5 0, whereas if x = 0, X is null.

The eigenvalues are collected in the diagonal matrix K = diag(0,xi, � xi) and the corresponding right

eigenvectors zi in columns of Z = [z1 z2 z3], so that XZ = ZK. A cyclic-symmetric expression of Z, obtained

through Mathematica, is
Z ¼
x1 x1s� x2 þ iðx2 � x3Þx x1s� x2 � iðx2 � x3Þx
x2 x2s� x2 þ iðx3 � x1Þx x2s� x2 � iðx3 � x1Þx
x3 x3s� x2 þ iðx1 � x2Þx x3s� x2 � iðx1 � x2Þx

264
375; ð65Þ
where s = x1 + x2 + x3. Its inverse is
Z�1 ¼ 1

x2

x1 � 1

2

x2
2 þ x2

3

x1s� x2 � iðx2 � x3Þx
� 1

2

x2
2 þ x2

3

x1s� x2 þ iðx2 � x3Þx

x2 � 1

2

x2
3 þ x2

1

x2s� x2 � iðx3 � x1Þx
� 1

2

x2
3 þ x2

1

x2s� x2 þ iðx3 � x1Þx

x3 � 1

2

x2
1 þ x2

2

x3s� x2 � iðx1 � x2Þx
� 1

2

x2
1 þ x2

2

x3s� x2 þ iðx1 � x2Þx

266666664

377777775
ð66Þ
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The real and imaginary part of the eigenvectors z2 and z3 are orthogonal. This is a general property of skew-

symmetric matrices; cf. Bellman [6, p. 64]. Because the eigenvalues of X are distinct if x 5 0, an arbitrary

matrix function F(X) can be explicitly obtained as
FðXÞ ¼ Z

f ð0Þ 0 0

0 f ðxiÞ 0

0 0 f ð�xiÞ

264
375Z�1; ð67Þ
where f(Æ) denotes the scalar version of F(Æ). One important application of (67) is the matrix exponential, for
which f(Æ)! e(Æ).

The square of X, computed through direct multiplication, is
X2 ¼ �
x2
2 þ x2

3 �x1x2 �x1x3

�x1x2 x2
3 þ x2

1 �x2x3

�x1x3 �x2x3 x2
1 þ x2

2

264
375 ¼ xxT � x2I ¼ x2ðnnT � IÞ: ð68Þ
This is a symmetric matrix of trace � 2x2 whose eigenvalues are 0,�x2 and �x2. By the Cayley–Hamilton

theorem, X satisfies its own characteristic equation (64)
X3 ¼ �x2X; X4 ¼ �x2X2; � � � and generally Xn ¼ �x2Xn�2; n P 3: ð69Þ

Hence if n = 3,5, . . . the odd powers Xn are skew-symmetric with distinct purely imaginary eigenvalues,

whereas if n = 4,6, . . ., the even powers Xn are symmetric with repeated real eigenvalues.

The eigenvalues of I + cX and I � cX, are (1,1±cx i) and (�1,1±cx i), respectively. Hence those two

matrices are guaranteed to be nonsingular. This has implications in the Cayley transform (82).

Example. Consider the pseudo-vector x = [6 2 3]T, for which x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 22 þ 32

p
¼ 7. The associated spin

matrix and its square are
X ¼
0 �3 2

3 0 �6
�2 6 0

264
375; X2 ¼ �

13 �12 �18
�12 45 �6
�18 �6 40

264
375; X3 ¼ �49X; . . . ð70Þ
The eigenvalues of X are (0,7i,�7i) while those of X2 are (0,�7,�7).
A.6. From spinors to rotators

Referring to Fig. 12, a rotator is a linear operator that maps a generic point P(x) to Q(xh) given the rota-

tion axis ~x and the angle h. We consider only rotator representations in the form of 3 · 3 rotation matrices

R, defined by
xh ¼ Rx; x ¼ RTxh: ð71Þ

The rotation matrix is proper orthogonal, that is, RTR = I and det(R) = +1. It must reduce to I if the rota-

tion vanishes. The space of all Rs form the rotation group SO(3).

Remark 5. The definition (71) is taken to agree with the convention for positive rotation angle h illustrated
in Fig. 12 and the definition of Spin(x) given in (55). Several books, e.g. Goldstein [35], define as spin

matrix X the transpose of ours. The definition used here agrees with that of the historical review paper by

Cheng and Gupta [20]. Readers consulting the literature or implementing finite rotation analysis are

advised to check sign conventions carefully. A recommended verification is to work out the 2D case by

hand, since the specialization to plane rotation should produce well known coordinate transformations.



C.A. Felippa, B. Haugen / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2285–2335 2315
A.7. Rotator parametrizations

A key attribute of R is the trace property
traceðRÞ ¼ 1þ 2 cos h; ð72Þ

proofs of which may be found for example in Goldstein [35, p. 123] or Hammermesh [36, p. 326]. (It follows

from the fact that the eigenvalues of R are 1, ehi and e�hi and their sum is (72).) The problem considered

here is the construction of R from rotation data. The inverse problem: given R, extract spin and/or rotation

angles, is treated later. Now if R is assumed to be analytic in X it must have the Taylor expansion

R = I + c1X + c2X
2 + c3X

3 + � � �, where all ci must vanish if h = 0. But because of the Cayley–Hamilton the-

orem (69), all powers of order 3 or higher may be eliminated. Thus R must be a linear function of I, X and

X2. For convenience this will be written
R ¼ Iþ aðcXÞ þ bðcXÞ2: ð73Þ

Here c is the spinor normalization factor whereas a and b are scalar functions of h and of invariants of X or

x. Since the only invariant of the latter is x we may anticipate that a = a(h,x) and b = b(h,x), both van-
ishing if h = 0. Two techniques to determine those coefficients for c = 1 are discussed in the next subsec-

tions. Table 5 collects several representations of a rotator in terms of the scaled X, used by different

authors.

A.7.1. Rotator from algebra

It is possible to find a and b for c = 1 (the unscaled spinor) directly from algebraic conditions. Taking the

trace of (73) for c = 1 and applying the property (72) requires
3� 2bx2 ¼ 1þ 2 cos h whence b ¼ 1� cos h
x2

¼
2sin2 1

2
h

x2
: ð74Þ
The orthogonality condition I = RTR = (I � aX + bX2)(I + aX + bX2) = I + (2b � a2)X2 + b2X4 =

I + (2b � a2 � b2x2)X2 leads to
2b � a2 � b2x2 ¼ 0 whence a ¼ sin h
x

: ð75Þ
Therefore
R ¼ Iþ sin h
x

X þ 1� cos h
x2

X2 ¼ Iþ sin h
x

X þ
2sin2 1

2
h

x2
X2: ð76Þ
From a numerical standpoint the sine-squared form should be preferred to avoid the cancellation in com-

puting 1� cos h for small h. Replacing the components of X and X2 gives the explicit rotator form
R ¼ 1

x2

x2
1 þ ðx2

2 þ x2
3Þ cos h 2x1x2sin

2 1
2
h � x3x sin h 2x1x3sin

2 1
2
h þ x2x sin h

2x1x2sin
2 1
2
h þ x3x sin h x2

2 þ ðx2
3 þ x2

1Þ cos h 2x2x3sin
2 1
2
h � x1x sin h

2x1x3sin
2 1
2
h � x2x sin h 2x2x3sin

2 1
2
h þ x1x sin h x2

3 þ ðx2
1 þ x2

2Þ cos h

2664
3775: ð77Þ
If c 5 1 but nonzero, the answers are a ¼ sin h=ðcxÞ and b ¼ ð1� cos hÞ=ðc2x2Þ. It follows that (76) and
(77) are independent of c, as was to be expected.

A.7.2. Rotator from geometry

The vector representation of the rigid motion depicted in Fig. 12 is
~xh ¼~x cos h þ ð~n�~xÞ sin h þ~nð~n �~xÞð1� cos hÞ ¼~xþ ð~n�~xÞ sin h þ ~n� ð~n�~xÞ½ �ð1� cos hÞ; ð78Þ
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where ~n is ~x normalized to unit length as per (63). This can be recast in matrix form by substituting
~n�~x! Nx ¼ Xx=x and xh = Rx. On cancelling x we get back (76).

A.8. Rotators for all seasons

If x is unit-length-normalized to n as per (59), c = 1/x and R ¼ Iþ sin hNþ ð1� cos hÞN2. This is the

matrix form of (78). Because N2 = nnT � I, an occassionally useful variant is
R ¼ R� þ ð1� cos hÞnnT; R� ¼ cos hIþ sin hN: ð79Þ

In terms of the three Rodrigues–Cayley parameters bi introduced in (60), a ¼ b ¼ 2cos2 1

2
h and

R ¼ Iþ 2cos2 1
2
h ðR þ R2Þ. This can be explicitly worked out to be
R ¼ 1

1þ b21 þ b22 þ b23

1þ b21 � b22 � b23 2ðb1b2 � b3Þ 2ðb1b3 þ b2Þ
2ðb1b2 þ b3Þ 1� b21 þ b22 � b23 2ðb2b3 � b1Þ
2ðb1b3 � b2Þ 2ðb2b3 þ b1Þ 1� b21 � b22 þ b23

264
375: ð80Þ
This form was first derived by Rodrigues [69] and used by Cayley [19, p. 332–336] to study rigid body mo-

tions. It has the advantage of being obtainable through an algebraic matrix expression: the Cayley trans-

form, presented below. It becomes indeterminate, however, as h ! 180�, since all terms approach 0/0. This

indeterminacy is avoided by using the four Euler–Rodrigues parameters, which are also the quaternion

coefficients, defined in (61). In terms of these we get
R ¼ 2

p20 þ p21 � 1
2

p1p2 � p0p3 p1p3 þ p0p2
p1p2 þ p0p3 p20 þ p22 � 1

2
p2p3 � p0p1

p1p3 � p0p2 p2p3 þ p0p1 p20 þ p23 � 1
2

264
375: ð81Þ
This expression cannot become singular. This is paid, however, at the cost of carrying along an extra

parameter in addition to the constraint p20 þ p21 þ p22 þ p23 ¼ 1.

The normalization of Fraeijs de Veubeke [25] introduced in (62): pi ¼ ðxi=xÞ sin 1
2
h, leads to a ¼ 2 cos 1

2
h

and b = 2. Hence R ¼ Iþ 2 cos 1
2
hXp þ 2X2

p, with Xp ¼ ðsin 1
2
h=xÞX.

A.9. The Cayley transform

Given any skew-symmetric real matrix R = � RT, we can apply the transformation
Q ¼ ðIþ RÞðI� RÞ�1: ð82Þ
[Note: this mapping can be written in many different ways; some authors use (I � R)(I + R)�1, some switch
I and R, while others prefer the involutory form (I + R)�1(I � R).] Q is a proper orthogonal matrix, that is

QTQ = I and detQ = + 1. This is stated in several texts, e.g., Gantmacher [33, p. 288] and Turnbull [84, p.

156] but none gives a proof for general order. Here is the orthogonality proof: QTQ = (I + R)�1(I �
R)(I + R)(I � R)�1 = (I + R)�1 (I + R)(I � R)(I � R)�1 = I2 = I because I + R and I � R commute. The

property detQ = + 1 can be shown to hold from the spectral properties of skew-symmetric matrices. The

inverse transformation
R ¼ ðQþ IÞ�1ðQ� IÞ; ð83Þ

produces skew-symmetric matrices from a source proper-orthogonal matrix Q. Eqs. (82) and (83) are called

the Cayley transforms after Cayley [20]. These formulas are sometimes useful in the construction of approx-

imations for moderate rotations.
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An interesting question is: given X and h, can (82) be used to produce the exact R? The answer is: yes, if

X is scaled by a specific c = c(h,x). We thus investigate whether R = (I + cX)(I � cX)�1 exactly for some c.
Premultiplying both sides by I � cX and representing R by (73) we require
ðI� cXÞðIþ acX þ bc2X2Þ ¼ Iþ cða � c þ cbx2ÞX þ c2ðb � aÞX2 ¼ Iþ cX ð84Þ
Identifying coefficients and assuming c50 we get the conditions b = a and a � 1 + bx2c2 = 1, from which

a = b = 2/(1 + c2x2). Equating to b ¼ 2sin2 1
2
h=ðc2x2Þ and solving for cx gives as only solutions

c ¼ � tan 1
2
h=x. Adopting the + sign, this becomes the normalization (60). Consequently
R ¼ ðIþ RÞðI� RÞ�1; R ¼
tan 1

2
h

x
X: ð85Þ
The explicit calculation of R in terms of the bi leads to (80).

A.10. Exponential map

This is a final representation of R that has theoretical and practical importance. Given a skew-symmetric

real matrix W, the matrix exponential
Q ¼ eW ¼ ExpðWÞ ð86Þ
is proper orthogonal. Here is the simple proof of Gantmacher [33, p 287]. First, QT = Exp(WT) =

Exp( �WT) = Q�1. Next, if the eigenvalues of W are ki,
P

iki ¼ traceðWÞ ¼ 0. The eigenvalues of Q are

li = exp(ki); thus detðQÞ ¼ Pili ¼ expð
P

ikiÞ ¼ expð0Þ ¼ þ1. The transformation (86) is called an exponen-

tial map. The converse is of course W = Loge(Q) with the principal value taken.

As in the case of the Cayley transform, one may pose the question of whether we can get the rotator
R = Exp(cX) exactly for some factor c = c(h,x). To study this question we need an explicit form of the

exponential. This can be obtained from the spectral form (67) in which the spin function is Exp so that

the diagonal matrix entries are 1 and expð�cxiÞ ¼ cos cx � i sin cx. The following approach is more

instructive and leads directly to the final result. Start from the definition of the matrix exponential
ExpðcXÞ ¼ Iþ cX þ c2

2!
X2 þ c3

3!
X3 þ � � � ð87Þ
and use the Cayley–Hamilton theorem (69) to eliminate all powers of order 3 or higher in X. Identify the

coefficient series of X and X2 with those of the sine and cosine, to obtain
ExpðcXÞ ¼ Iþ sinðcxÞ
cx

X þ 1� cosðcxÞ
c2x2

X2: ð88Þ
Comparing this to (76) requires cx = h, or c = h/x. Introducing hi = hxi/x and H = Spin(h) = hN = (h/x)X
as in (63), we find
R ¼ ExpðHÞ ¼ Iþ sin h
h

H þ 1� cos h

h2
H2 ¼ Iþ sin h

h
H þ

2sin2 1
2
h

h2
H2: ð89Þ
On substituting H = hN this recovers R ¼ Iþ sin hNþ ð1� cos hÞN2, as it should.

This representation has several advantages: it is singularity free, the parameters hi are exactly propor-

tional to the angle, and the differentiation of R is simplified. Because of these favorable attributes the expo-

nential map has become a favorite of implementations where very large rotations may occur, as in orbiting

structures and robotics.
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Remark 6. Some authors state that the exponential map is exact whereas the Cayley transform is a (1,1)

Padé approximation to it. The foregoing treatment shows that the statement is incorrect. Both are exact for

specific but different spinor normalizations, and inexact otherwise.
A.11. Skew-symmetric matrix relations

The following relations involving spinors are useful in some derivations. If v and w are two 3-vectors,

and V = Spin(v) and W = Spin(w) the associated spinors, VW �WV is skew-symmetric and
axialðVW�WVÞ ¼ Vw ¼ �Wv: ð90Þ
Let Q be an arbitrary nonsingular 3 · 3 matrix whereas W = Spin(w) is skew-symmetric. It can be easily

verified that QTWQ is skew-symmetric. Then
detðQÞQ�1w ¼ axialðQTWQÞ; detðQÞQ�Tw ¼ axialðQWQTÞ: ð91Þ
If Q is proper orthogonal, Q�1 = QT and det(Q) = 1, in which case
QTw ¼ axialðQTWQÞ; Qw ¼ axialðQWQTÞ: ð92Þ

The inverse of Q = I + aW + bW2, in which W = Spin(w) is skew-symmetric, is
Q�1 ¼ Iþ a

a2w2 þ ðbw2 � 1Þ2
Wþ a2 þ bðbw2 � 1Þ

a2w2 þ ðbw2 � 1Þ2
W2; with w2 ¼ kwk2 ¼ w2

1 þ w2
2 þ w2

3: ð93Þ
A.12. From rotators to spinors

If R(n,h) is given, the extraction of the rotation angle h and the unit pseudo-vector n = x/x is often re-

quired. The former is easy using the trace property (72)
cos h ¼ 1
2
ðtraceðRÞ � 1Þ ð94Þ
Recovery of n is straightforward from the unit-axial–vector form R ¼ Iþ sin hNþ ð1� cos hÞN2 since

R� RT ¼ 2 sin hN, whence
N ¼ R� RT

2 sin h
; n ¼

n1
n2
n3

264
375 ¼ axialðNÞ: ð95Þ
One issue is the sign of h since (94) is satisfied by ±h. If the sign is reversed, so is n. Thus it is possible to

select h P 0 if no constraints are placed on the direction of the rotation axis.

The foregoing formulas are prone to numerical instability for angles near 0�, ±180�, etc., because sin h
vanishes. A robust algorithm is that given by Spurrier [76] in the language of quaternions. Choose the alge-

braically largest of trace(R) and Rii, i = 1,2,3. If trace(R) is the largest, compute
p0 ¼ cos
1

2
h ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ traceðRÞ

p
; pi ¼ ni sin

1

2
h ¼ 1

4
ðRkj � RjkÞ=p0; i ¼ 1; 2; 3; ð96Þ
where j and k are the cyclic permutations of i. Otherwise let Rii be the algebraically largest diagonal entry,

and again denote by i, j,k its cyclic permutation. Then use
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pi ¼ ni sin
1

2
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Rii þ

1

4
ð1� traceðRÞÞ

r
; p0 ¼ cos

1

2
h ¼ 1

4
ðRkj � RjkÞ=pi;

pm ¼ 1

4
ðRm;i þ Ri;mÞ=pi; m ¼ j; k:

ð97Þ
From p0, p1, p2, p3 it is easy to pass to h, n1, n2, n3 once the sign of h is chosen as discussed above.

The theoretical formula for the logarithm of a 3 · 3 orthogonal matrix is
H ¼ LogeðRÞ ¼
arcsin s
2s

ðR� RTÞ; X ¼ x
h

H; N ¼ H
h
; ð98Þ
where s ¼ 1
2
kaxialðR� RTÞk2. The formula fails, however, outside the range [�p/2 6 h 6 p/2] and is numer-

ically unstable near h = 0.
A.13. Spinor and rotator transformations

Suppose X is a spinor and R = Rot(X) the associated rotator, referred to a Cartesian frame x = {xi}. It is

required to transform R to another Cartesian frame �x ¼ f�xig related by T ij ¼ o�xi=oxj, where Tij are entries

of a 3 · 3 orthogonal matrix T ¼ o�x=ox. Application of (71) yields
KR ¼ TRTT; R
T ¼ TRTTT; R ¼ TTRT; R ¼ TTR

T
T: ð99Þ
More details may be found in Chapter 4 of [35]. Pre and post-multiplying (95) by T and TT, respectively,

yields the transformed spinor N ¼ TNTT, which is also skew-symmetric because N
T ¼ TNTTT ¼ �N. Like-

wise for the other spinors listed in Table 5. Relations (92) with Q! T show how axial vectors transform.

A.14. Axial vector Jacobian

The Jacobian matrix H(h) = oh/ox of the rotational axial vector h with respect to the spin axial vector x,

and its inverse H(h)�1 = ox/oh, appear in the EICR. The latter was first derived by Simo [71] and Szwabo-

wicz [77], and rederived by Nour-Omid and Rankin [54, p. 377]:
HðhÞ�1 ¼ ox

oh
¼ sin h

h
Iþ 1� cos h

h2
H þ h � sin h

h3
hhT ¼ Iþ 1� cos h

h2
H þ h � sin h

h3
H2: ð100Þ
The last expression in (100), not given by the cited authors, is obtained on replacing hhT = h2I + H2. Use of

the inversion formula (93) gives
HðhÞ ¼ oh

ox
¼ I� 1

2
H þ gH2 with g ¼

1� 1
2
h cot 1

2
h

� �
h2

¼ 1

12
þ 1

720
h2 þ 1

30240
h4 þ 1

1209600
h6 þ � � � ð101Þ
The g given in (101) results by simplifying the value g ¼ ½sin h � hð1þ cos hÞ�=½h2 sin h� given by previous

investigators. Care must be taken on evaluating g for small angle h because it approaches 0/0; if jhj < 1/

20, say, the series given above may be used, with error <10�16 when 4 terms are retained. If h is a multiple

of 2p, g blows up since cotð1
2
hÞ ! 1, and a modulo-2p reduction is required.

In the formulation of the tangent stiffness matrix the spin derivative of H(h)T contracted with a nodal

moment vector m is required:
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Lðh;mÞ ¼ oHðhÞT

ox
: m ¼ o

oh
½HðhÞTm�HðhÞ

¼ g½ðhTmÞIþ hmT � 2mhT� þ lH2mhT � 1

2
SpinðmÞ

� �
HðhÞ: ð102Þ
in which
l ¼ dg=dh
h

¼ h2 þ 4 cos h þ h sin h � 4

4h4sin2 1
2
h

� � ¼ 1

360
þ 1

7560
h2 þ 1

201600
h4 þ 1

5987520
h6 þ � � � ð103Þ
This expression of l was obtained by simplifying results given in [54, p. 378].

A.15. Spinor and rotator differentiation

Derivatives, differentials and variations of axial vectors, spinors and rotators with respect to various

choices of independent variables appear in applications of finite rotations to mechanics. In this section

we present only expressions that are useful in the CR description. They are initially derived for dynamics
and then specialized to variations. Several of the formulas are new.

A.15.1. Angular velocities

We assume that the rotation angle h(t) = h(t)n(t) is a given function of time t, which is taken as the inde-

pendent variable. The time derivative of H(t) is _H ¼ axialð _hÞ. To express rotator differentials in a symmetric

manner we introduce an axial vector _/ and a spinor _U ¼ Spinð _/Þ, related to _H congruentially through the

rotator:
_H ¼ Spinð _hÞ ¼
0 � _h3 _h2
_h3 0 � _h1

� _h2 _h1 0

264
375 ¼ R _URT; _U ¼ Spinð _/Þ ¼

0 � _/3
_/2

_/3 0 � _/1

� _/2
_/1 0

264
375 ¼ RT _HR:

ð104Þ

From (92) it follows that the axial vectors are linked by
_/ ¼ RT _h; _h ¼ R _/: ð105Þ

Corresponding relation between variations or differentials, such as dH ¼ RdURT or dH ¼ RdURT are

incorrect as shown in below. In CR dynamics, _h is the vector of inertial angular velocities whereas _/ is
the vector of dynamic angular velocities.

Repeated temporal differentiation of R = Exp(H) gives the rotator time derivatives
_R ¼ _HR; €R ¼ ð €H þ _H
2ÞR; Rv ¼ ðHv þ 2 €H _H þ _H €H þ _H

3ÞR; . . . ð106Þ

_R ¼ R _U; €R ¼ Rð €U þ _U
2Þ; Rv ¼ RðUv þ 2€U _U þ _U€U þ _U

3Þ; . . . ð107Þ
The following four groupings appear often: R _R
T
; _RRT; RT _R and _R

T
R. From the identities RRT = I

and RTR = I it can be shown that they are skew-symmetric, and may be associated to axial vectors

with physical meaning. For example, taking time derivatives of RRT = I yields R _R
T þ _RRT ¼ 0,

whence R _R
T ¼ � _RRT ¼ �ðR _RÞT. Pre- and post-multiplication of _R in (106) and (107) by R and RT

furnishes
_RRT ¼ �R _R
T ¼ _H; RT _R ¼ � _R

T
R ¼ _U: ð108Þ
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Note that the general integral of _R ¼ _HR aside from a constant, is R = Exp(H), from which h(t) can be

extracted. On the other hand there is no integral relation defining /(t); only the differential equation
_R ¼ R _U.

A.15.2. Angular accelerations

Postmultiplying the second of (106) by RT yields
€RRT ¼ €H þ _H
2 ¼ _H þ _h _h

T � ð _hÞ2I ¼
0 �€h3 €h2
€h3 0 �€h1
�€h2 €h1 0

264
375þ

� _h
2

2 � _h
2

3
_h1 _h2 _h1 _h3

_h1 _h2 � _h
2

3 � _h
2

1
_h2 _h3

_h1 _h3 _h2 _h3 � _h
2

1 � _h
2

2

2664
3775;
ð109Þ
in which ð _hÞ2 ¼ _h
2

1 þ _h
2

2 þ _h
2

3. When applied to a vector r, ð €H þ _H _HÞr ¼ €h � rþ _h _h
T
r� ð _hÞ2r. This operator

appears in the expression of particle accelerations in a moving frame. The second and third term give rise to

the Coriolis and centrifugal forces, respectively. Premultiplying the second derivative in (107) by R yields

R€R ¼ €U þ _U _U, and so on.

A.15.3. Variations

Some of the foregoing expressions can be directly transformed to variational and differential forms while

others cannot. For example, varying R = Exp(H) gives
dR ¼ dHR; dRT ¼ �RTdH: ð110Þ

This matches _R ¼ _HR and RT ¼ �RT _H from (106) on replacing _ðÞ by d. On the other hand, the counter-
parts of (107): _R ¼ R _U and _R

T ¼ � _UR are not dR ¼ Rd _U and dRT ¼ �d _URT, a point that has tripped

authors unfamiliar with moving frame dynamics. Correct handling requires the introduction of a third axial

vector w:
dR ¼ RdW; dRT ¼ �dWR; in which dW ¼ SpinðdwÞ ¼
0 �dw3 dw2

dw3 0 �dw1

�dw2 dw1 0

264
375 ð111Þ
Axial vectors w and / can be linked as follows. Start from dR = RdWand _R ¼ R _U. Time differentiate the

former: d _R ¼ Rd _W þ _RdW, and vary the latter: d _R ¼ dR _U þ Rd _U, equate the two right-hand sides, premul-
tiply by RT, replace RT _R and RTdR by _U and dW, respectively, and rearrange to obtain
d _U ¼ d _W þ _UdW � dW _U; or d _/ ¼ d _w þ _Udw ¼ d _w � dW _/: ð112Þ

The last transformation is obtained by taking the axial vectors of both sides, and using (90). It is seen

that d _W and d _U match if and only if _U and dW commute.

Higher variations and differentials can be obtained through similar techniques. The general rule is: if

there is a rotator integral such as R = Exp(H), time derivatives can be directly converted to variations. If

no integral exists, utmost care must be exerted. Physically quantities such as / and w are related to a mov-
ing frame, which makes differential relations rheonomic.
Appendix B. CR Matrices for triangular shell element

The element types tested in Part II [38] are shown in Fig. 13. Each element has 6 degrees of freedom

(DOF) per node: three translations and three rotations. Shells include the drilling DOF. The linear internal



Fig. 13. Elements tested in Part II.
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force and stiffness matrix of the shell elements are constructed with the assumed natural deviatoric strain

(ANDES) formulation [27–32,53] in terms of the deformational displacements and rotations. ANDES is a

direct descendent of the assumed natural strain (ANS) formulation of Park and Stanley [59] and the Free

Formulation of Bergan and coworkers [11–14]. The derivation of the linear models is outlined in Part II

[38].

The matrices required to implement the EICR are T, P, S, G,H and L. None of these depend on how the
internal element force �pe and stiffness matrix K

e
of the small-strain linear element are formed. In terms of

implementation the EICR matrices can be classified into two groups:

(i) T, H and L, as well as the T-projector component Pu of P, are block diagonal matrices built up with

3 · 3 node blocks. These blocks can be formed by standard modules which are independent of the ele-

ment type, as long as the element has the standard 6 DOFs per node. The only difference is the number

of nodes.

(ii) The R-projector component of P, which is Px = SG, does depend on element type, geometry and
choice of CR frame through matrix G. These must be recoded for every change in those attributes.

In this Appendix we give the G and S matrices that appear in the ‘‘front end’’ of the EICR for the tri-

angular shell element, as that illustrates the effect of CR frame selection. Matrices for the beam and quad-

rilateral element are given in Part II.

In the following sections, element axes labels are changed from f�x1;�x2;�x3g to f�x; �y;�zg to unclutter nodal

subscripting. Likewise the displacement components f�u1; �u2; �u3g are relabeled f�ux; �uy ; �uzg.

B.1. Matrix S

This 18 · 3 lever matrix is given by (written in transposed form to save space)
S ¼ �Spinð�x1Þ I �Spinð�x2Þ I �Spinð�x3Þ IT
 �

; ð113Þ
where I is the 3 · 3 identity matrix, and �xa ¼ ½�xa; �ya;�za�
T
, the position vector of node a in the deformed (cur-

rent) configuration, measured in the element CR frame.

B.2. Matrix G

This 3 · 18 matrix connects the variation in rigid element spin to the incremental translations and spins
at the nodes, both with respect to the CR frame. G decomposes into three 3 · 6 submatrices, one for each
node:
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dxr ¼ Gd�v; G ¼ G1 G2 G3½ �; d�v ¼
d�v1

d�v2

d�v3

264
375; d�va ¼

d�ua

d�xa

" #
; a ¼ 1; 2; 3: ð114Þ
Submatrices Ga depend on how the element CR frame is chosen. The origin of the frame is always placed at

the element centroid. But various methods have been used to direct the axes f�xig. Three methods used in the
present research are described.

B.2.1. G by side alignment

This procedure is similar to that used by Rankin and coworkers [54,63–66]. They select side 1–3 for �x2
and node 1 as frame origin. The approach used here aligns �x1 with side 1–2 and picks the centroid as origin.
Then
G1 ¼
1

2A

0 0 �x32 0 0 0

0 0 �y32 0 0 0

0 �h3 0 0 0 0

264
375; G2 ¼

1

2A

0 0 �x13 0 0 0

0 0 �y13 0 0 0

0 h3 0 0 0 0

264
375;

G3 ¼
1

2A

0 0 �x32 0 0 0

0 0 �y32 0 0 0

0 0 0 0 0 0

264
375; ð115Þ
where h3 = 2A/L3 is the distance of corner 3 to the opposite side, A the triangle area, and L3 the length of

side 12. This choice satisfies the decomposition property (37) that guards against unbalanced force effects

while iterating for equilibrium. On the other hand it violates invariance: the choice of CR frame depends on
node numbering, and different results may be obtained if the mesh is renumbered.
B.2.2. G by least square angular fit

Nygård [57] and Bjærum [18] place CR in the plane of the deformed element with origin at node 1. The

inplane orientation of the CR element is determined by a least square fit of the side angular errors. Refer-

ring to Fig. 14. the squared error is d2 ¼ /2
1 þ /2

2 þ /2. Rotating by an additional angle v this becomes

d2(v) = (/1 + v)2 + (/2 + v)2 + (/ + v)2. Miniminization respect to v :od2/ov = 0 yields v = � (/1 + /2 +

/3)/3. Consequently the optimal in-plane position according to this criterion is given by the mean of the
side angular errors.
1

2

3

1

2

3φ1 φ +χ1

φ2 φ +χ2

φ3 φ +χ3

Fig. 14. Side angular error measure for triangular shell element.



2324 C.A. Felippa, B. Haugen / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2285–2335
This condition yields for the nodal submatrices
Gi ¼
1

2A

0 0 �xkj 0 0 0

0 0 �ykj 0 0 0

2A
3

� sjy
lj

þ sky
Lk

� �
2A
3

sjx
lj

� skx
Lk

� �
0 0 0 0

26664
37775; ð116Þ
where Li is the side length opposite corner i and {skx, sky} the projections of that side on the {x,y} axes. An

advantage of this fitting method is that it satisfies invariance with respect to node numbering. On the other

hand, the rotator gradient matrix cannot be decomposed as in (37) leading to an approximate projector

away from equilibrium. This disadvantage is not serious for a flat triangular element, however, since the

CR and deformed configurations remain close on the assumption of small membrane strains.

A more serious shortcoming is that the procedure reintroduces the problem of spurious normal-to-the-
plane rotations when an element with drilling freedoms is subjected to pure stretch. The difficulty is illus-

trated in Fig. 15, where a two triangle patch is subject to uniform stretch in the �y direction. Under this state
all rotations should vanish. The elements do rotate, however, because of the in-plane skewing of the diag-

onal. A deformational rotation is picked up since a predictor step gives no drilling rotations at the nodes,

whereas the deformational drilling rotation is the total minus the rigid body rotation: hd = h � hr.
The problem is analogous to that discussed by Irons and Ahmad [45, p. 289] when defining node drilling

freedoms as the mean of rotations of element sides meeting at that node; such elements grossly violate the

patch test. This difficulty was overcome by Bergan and Felippa [14] by defining the node drilling freedom as
the continuum mechanics rotation hz ¼ 1

2
ðo�uy=o�x� o�ux=o�yÞ at the node. It is seen that the problem of spu-

rious drilling rotations has been reintroduced for the nonlinear case by the choice of CR frame positioning.

In fact this problem becomes even more serious with the side alignment procedure described in the forego-

ing subsection.

B.2.3. Fit according to CST rotation

The infinitesimal drilling rotation of a plane stress CST element (Turner triangle, linear triangle), is given

by [27,32]
�h
lin

CST ¼ 1

2

o�uy
o�x

� o�ux
o�y

� �
¼ 1

4A
�x23�ux1 þ �x31�ux2 þ �x12�ux3 þ �y23uy1 þ �y31�uy2 þ �y12�uy3
� �

ð117Þ
in which �xij ¼ �xi � �xj; �yij ¼ �xi � �yj, etc. The extension of this result to finite rotations can be achieved

through a mean finite strain rotation introduced by Novozhilov [55, p. 31]; cf. also [81, Section 36]
tan �hCST ¼
�h
lin

CSTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ��xxÞð1þ ��yyÞ � 1

4
�c2xy

q ð118Þ
θ d 

θ d 

θ d 

θ d 

θ d 

θ r 

θ r 

θ d 

Undeformed (base)
configuration 

Deformed and
CR configurations 

x

y
_

_X

Y
~

~

Fig. 15. Finite stretch patch test for two triangle elements equipped with corner drilling freedoms.



C.A. Felippa, B. Haugen / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2285–2335 2325
in which �xx ¼ o�ux=o�x, ��yy ¼ o�uy=o�y and �cxy ¼ o�uy=o�xþ o�ux=o�y are the infinitesimal strains (constant over the
triangle) computed from the CST displacements. Novozhilov proves that this rotation measure is invariant

with respect to the choice of CR axes f�x; �yg since it is obtained as a rotational mean taken over a 2p sweep

about �z. If this result is applied to the finite stretch path test of Fig. 15 it is found that the CR frames of both

elements do not rotate, and the test is passed. The rotation gradient submatrices are
eGi ¼
1

2A

0 0 �xkj 0 0 0

0 0 �ykj 0 0 0

� 1
2
�xkj � 1

2
�ykj 0 0 0 0

264
375; ð119Þ
where j,k denote cyclic permutations of i = 1,2,3. The resulting G matrix satisfies the geometric separabilty

condition.
B.2.4. Best fit by minimum LS deformation

The best fit solution by least-squares minimization of relative displacements given in Appendix C as

equation (127) was obtained in 2000 [29]. Unlike the previous ones it has not been tested as part of a

CR shell program. The measure is invariant, but it is not presently known whether it passes the stretch

patch test, or if the associated G satisfies the geometric separability condition (37).
Appendix C. Best fit CR frame

To define the CR frame of an individual element e we must find c and R0 from the following information.

(In what follows the element index e is suppressed for brevity.)

(i) The geometry of the base element. This is defined through x, which is kept fixed.
(ii) The motion, as defined by the total displacement field v(x) recorded in the global frame as stated in

Table 2.

In dynamic analysis there is a third source of data:

(iii) Mass distribution. Associated with each x in C0 there is a volume element dV and a mass density q
giving a mass element dm = qdV. This mass may include nonstructural components. The case of

time-varying mass because of fuel consumption or store drop is not excluded.

Finding c and R0 as functions of x and v, plus the mass distribution in case of dynamics, is the shadowing
problem introduced previously. What criterion should be used to determine c and R0? Clearly some nonneg-

ative functional of the motion (but not the motion history) should be minimized. Desirable properties of the

functional are:

Versatility. It must work for statics, dynamics, rigid bodies and nonstructural bodies (e.g., a fuel tank).

These requirements immediately rule out any criterion that involves the strain energy, because it cannot be

used for a nonstructural or rigid body.

Invariance. Should be insensitive to element node numbering. It would be disconcerting for a user to get

different answers depending on how mesh nodes are numbered.
Rigid bodies. For a rigid body, it should give the same results as a body-attached frame. This simplifies

the coupling of FEM-CR and multibody dynamics codes.

Finite stretch patch test satisfaction. If a group of elements is subjected to a uniform stretch, no spurious

deformational rotations should appear. This test is particularly useful when considering shell elements with

drilling freedoms, as discussed in Section B.2 for the triangle.
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Fraeijs de Veubeke [25] proposed two criteria applicable to flexible and rigid bodies: minimum kinetic

energy of relative motion, and minimum Euclidean norm of the deformational displacement field. As both

lead to similar results for dynamics and the first one is not applicable to statics, the second criterion is used

here.

An open research question is whether a universal best fit criterion based on the polar decomposition of
the element motion could be developed.
C.1. Minimization conditions

In statics the density q may be set to unity and mass integrals become volume integrals. These are taken

over the base configuration, whence �, . . . ,dV means
R
C0 ; . . . ; dV . Furthermore the element global frame is

made to coincide with the base frame to simplify notation. x � ~x, u � ~u and a = 0. Coordinates x0 and xR of
the base are relabeled X and x = X + u, respectively, to avoid superscripts clashing with transpose signs.
Because C0 is by definition at the base element centroid
Z

XdV ¼ 0; ð120Þ
The centroid C of CD is located by the condition �xdV = �(X + u)dV = �udV = cV, where V = �dV is the ele-

ment volume. From (22) with a = 0 and x0 ! X, the best-fit functional is
J ½c;R0� ¼
1

2

Z
uTduddV ¼ 1

2

Z
½u� cþ ðI� R0ÞX�T½u� cþ ðI� R0ÞX�dV ð121Þ
Minimizing �uTd�ud leads to the same result, since ud and �ud only differ by a rotator.

C.2. Best origin

Denote by Dc the distance between CR and C. Taking the variation of J with respect to c yields
oJ
oc

dc ¼ �
Z

ðdcÞTuddV ¼ �dcT
Z

½u� cþ ðI� R0ÞX�dV ¼ �dcT
Z

ðu� cÞdV ¼ 0;

) c

Z
dV ¼ cV ¼

Z
udV ¼ ðcþ DcÞV ; ð122Þ
where (120) has been used. Consequently Dc = 0. That is, the centroids of CR and C must coincide: CR � C.

C.3. Best rotator

The variation with respect to R0 gives the condition
oJ
oR0

dR0 ¼
Z
XTdR0½u� cþ ðI� R0ÞX�dV ¼ 0: ð123Þ
Replacing dR0 = dHR0 and noting that XTdHX = 0 and �XTdHR0cdV = 0 yields
Z
XTdHR0ðXþ uÞdV ¼

Z
XTðdh � RðXþ uÞÞdV ¼ 0: ð124Þ
Applying (124) to each angular variation: dh1, dh2 and dh3 of dH in turn, provides three nonlinear scalar

equations to determine the three parameters that define R0. For the two-dimensional case, in which only

dh3 is varied and R0 depends only on h = h3, the following equation is obtained:
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Z
½ðX 1 þ u1Þðx2 cos h3 � X 1 sin h3Þ � ðX 2 þ u2Þðx1 cos h3 þ X 2 sin h3Þ�dV ¼ 0; ð125Þ
whence
tan h3 ¼
R
ðX 2u1 � X 1u2ÞdVR

½X 1ðX 1 þ u1Þ þ X 2ðX 2 þ u2Þ�dV
¼

R
ðX 2u1 � X 1u2ÞdVR
ðX 1x1 þ Y 2x2ÞdV

: ð126Þ
For the three-dimensional case a closed form solution is not available. This is an open research topic. Fra-
eijs de Veubeke [25] reduces (124) to an eigenvalue problem in the axial vector of R0, with a subsidiary con-

dition handled by a Lagrange multiplier. Rankin [67] derives a system equivalent to (124) for an individual

finite element by lumping the mass equally at the nodes whereupon the integral over the body is reduced to

a sum over nodes. The nonlinear system is solved by Newton–Raphson iteration.
C.4. Linear triangle best fit

Consider a constant thickness three-node linear plane stress triangle (also known as Turner triangle and
CST), displacing in two dimensions as illustrated in Fig. 16. To facilitate node subscripting, rename

X1 ! X, X2 ! Y, x1 ! x, x2 ! y, u1 ! ux, u2 ! uy. Using triangular coordinates {f1,f2,f3}, the position
coordinates and displacements are interpolated linearly: X = X1f1 + X2f2 + X3f3, Y = Y1f1 + Y2f2 + Y3f3,
x = x1f1 + x2f2 + x3f3, y = y1f1 + y2f2 + y3f3, ux ¼ uy1f1 þ ux2f2 þ ux3f3 and uy ¼ uy1f1 þ uy2f2 þ uy3f3, in

which numerical subscripts now denote node numbers. Insert into (126) and introduce side conditions

X1 + X2 + X3 = 0, Y1 + Y2 + Y3 = 0, ux1 þ ux2 þ ux3 ¼ x1 þ x2 þ x3 and uy1 þ uy2 þ uy3 ¼ y1 þ y2 þ y3 for cen-
troid positioning. Mathematica found for the best fit angle
tan h3 ¼
x1Y 1 þ x2Y 2 þ x3Y 3 � y1X 1 � y2X 2 � y3X 3

x1X 1 þ x2X 2 þ x3X 3 þ y1Y 1 þ y2Y 2 þ y3Y 3

; ð127Þ
where xa = Xa + uxa, ya = ya + uya, a = 1,2,3. The same result can be obtained with any three-point integra-

tion rule where the Gauss points are placed on the medians. In particular, Rankin�s idea of using the three
corners as integration points [67] gives the same answer.

This solution is interesting in that it can be used as an approximation for any three-node triangle under-

going three dimensional motion (for example, a thin shell facet element) as long as axis �x3 is preset normal
to the plane passing through the three deformed corners. The assumption is that the best fit is done only for
the in-plane displacements.
~

~

y

C

global frame =
element base frame
for convenience

element
CR frame

X, x, x

Y, y, y

C0

1 (X  ,Y  )11

1 (x  ,y )11

2 (x  ,y )22

3 (x  ,y )33

2 (X  ,Y  )22

3 (X  ,Y  )33

θ3

_
x
_

u2

u

3u

1

Fig. 16. Best CR frame fit to 3-node linear triangle in 2D. Axes relabeled as explained in the text.
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C.5. Rigid body motion verification

Suppose the element motion u = ur is rigid (ud = 0) with rotator Rr. If so ur = c � (I � Rr)X. Inserting

into (121) yields
J ¼ 1

2

Z
XTðRr � R0ÞTðRr � R0ÞXdV : ð128Þ
in which X = xG � a. This is clearly minimized by R0 = Rr, so the body attached frame is a best fit CR
frame. (There may be additional solutions if (Rr � R0)X � 0 for some R0 5 Rr, for example by relabeling

axes.) This check verifies that the functional (121) also works as expected for rigid body components of a

structural or non-structural model.
Appendix D. Nomenclature

The notation used by different investigators working in CR formulations has not coalesced, since the
topic is in flux. This Appendix identifies the symbols used here. The general scheme of notation is

Non-bold letters: scalars. Uppercase bold letters (roman and greek): matrices and tensors. Lowercase

bold letters (roman and greek): column vectors, but there are occasional exceptions such as X and Y.

a As subscript: generic nodal index

b As subscript: generic nodal index

bi Components of Rodrigues–Cayley axial vector

ci Generic coefficients. Components of vector c
d As subscript: deformational

e Base of natural logarithms. As superscript: element index

eij Strains

fi Components of force vector f

hi Triangle heights

i As subscript: generic index. Imaginary unit in complex numbers

j As subscript: generic index

k As superscript: iteration count
l As subscript: generic index

m As subscript: generic index

n As subscript: incremental step number

ni Components of vector n

pi Quaternion components

r As subscript: rigid

skx, sky Projections of triangle side Lk on {x,y} axes

t Time
u Displacement magnitude

ui, ~ui, �ui Displacement components in xi, ~xi; �xi axes, respectively
udi, ~udi; �udi Deformational displacement components in xi, ~xi; �xi axes, respectively
uri, ~uri; �uri Rigid displacement components in xi, ~xi; �xi axes, respectively
x x1-axis when using {x,y,z} notation

xi Components of global-frame position vector x
~xi Components of element base-frame position vector �x
�xi Components of element CR-frame position vector �x
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y x2 axis when using {x,y,z} notation

z x3 axis when using {x,y,z} notation

A Area

C Generic centroid of body or element in statics. Center of mass in dynamics

C0,CR,C Body or element centroid in base, CR and deformed configurations, respectively
L Length of 2-node element. Generic length

Lk Length of triangle side opposite node k

N Number of structure nodes

Ne Number of nodes of element e

O Origin of global frame

T Kinetic energy

U Internal energy, strain energy

W External work
X x1 axis when using {X,Y,Z} notation

Xi Material global Cartesian axes

Y x2 axis when using {X,Y,Z} notation

Z x3 axis when using {X,Y,Z} notation

a Position vector of C0 from origin of global frame. Generic vector

b Position vector of CR � C from origin of global frame. Generic vector

c Displacement of base element centroid C0 to CR � C

d Deformational displacement. Array of nodal DOF, collecting translations and rotations
�d Array of nodal deformational DOF, collecting translations and rotations

e Strains arranged as vector

f Generic force vector. External force vector
�f External force vector in element CR frame

fb Balance (self-equilibrated) force vector

fu Unbalanced (out of equilibrium) force vector

i Base unit vector

m Generic nodal moment vector
ma Nodal moment components at node a

n Unit normal. Direction of rotation vector in 3D

na Translational force components at node a

0 Null matrix or vector

p Internal force vector of structure

pe Element internal force vector in global frame
�pe Element internal force vector in CR frame

r Force residual vector
u Displacement vector. Also generic vector: meaning from context

v Denotes vector collecting nodal displacements and rotations, displacements and spins, or displace-

ments and rotators. See Table 2

Also generic vector: meaning from context

w Generic vector: meaning from context

v̂ Global DOF vector for complete structure

x Global-frame spatial position vector
~x Element base-frame position vector
�x Element CR-frame position vector
~x Frame independent position vector

y Alternative notation for position vector. Generic vector
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~y Frame independent position vector

zi Spinor eigenvector

A Generic matrix

Bd Matrix relating strains to deformational displacements. Generic matrix

C Strain–stress (compliance) matrix
D Diagonal matrix of zeros and ones. Generic diagonal matrix, size from context

E Stress–strain (elasticity) matrix

F Generic matrix function

Fn, Fnm Auxiliary matrices in tangent stiffness derivations

G Element spin-fitter matrix linking dxe
r to dve

Ga Component of G associated with node a

H Block diagonal matrix built with Ha and I blocks

Ha Evaluation of H(h) at node a

H(h) Jacobian of h with respect to x

I Identity matrix, size from context

J Jacobian matrix in general

Jab Jacobian matrix relating quantities at nodes a and b

K Tangent stiffness matrix of structure

Ke Element tangent stiffness matrix in global frame

K
e

Linear element stiffness matrix in local CR frame

K
e
R Element tangent stiffness matrix in local CR frame

KGM Moment correction geometric stiffness matrix

KGP Equilibrium projection geometric stiffness matrix

KGR Rotational geometric stiffness matrix

KM Material stiffness matrix

L Block diagonal built with La and 0 blocks

La Evaluation of L(h,m) at node a

L(h,m) Contraction of oH(h)T/oxwith vector m

M Mass matrix
N Spinor for vector n

P Projector matrix

Pu Translational projector matrix, a.k.a. T-projector

Px Rotational projector matrix, a.k.a. R-projector

Q Generic orthogonal matrix

R Orthogonal rotation matrix: the matrix representation of a rotator

R0 Transformation rotator between element base frame and CR frameeR0; R0 Rotator R0 referred to element base and CR frames, respectively
S Spin-lever (a.k.a. moment-arm) matrix built up of Sa blocks. Generic skew-symmetric matrix

Sa Spin-lever matrix for node a

T Element CR-to-global transformation matrix built from TR blocks

T0 Transformation rotator from element base frame to global frame

TR Transformation rotator from element CR frame to global frame

Uab Building block of translational projector Pu

V Generic skew-symmetric matrix

W Generic skew-symmetric matrix
X Global position vector with Xi as components
~X Coordinate free material position vectoreX Element base position vector with ~xi as components
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X Element CR position vector with �xi as components
Y Position vector collecting yi as components

Z Matrix of right eigenvectors of spinor

a Coefficient in parametrized rotator representation

b Coefficient in parametrized rotator representation
c Spinor normalization factor

d Variation symbol

dab Kronecker delta

� Small scalar

fi Triangular coordinates

g Coefficient in H(h)

h Rotation angle in general. Magnitude of rotation vector h

j Curvature
k Lagrange multiplier

l Coefficient in L(h,m)

m Poisson�s ratio
q Mass density

rij Stresses

s Coefficient in Loge(R) formula

v,/,u,w Generic angle symbols

w Generic angle
x Magnitude of spin vector xP

Summation symbolP
a,
P

b Abbreviations for
PNe

a¼1 and
PNe

b¼1
h Rotation axial vector (a.k.a. rotation pseudovector)

/ Axial vector built from /i angles

w Axial vector built from wi angles

r Stresses arranged as vector

r0 Initial stresses (in the base configuration) arranged as vector
x Spin axial vector (a.k.a. spin pseudovector)

C Auxiliary matrix used in the decomposition of G

H Spinor built from rotation axial vector

K Diagonal matrix of eigenvalues of X
N Auxiliary matrix used in the decomposition of G

/ Spinor built from axial vector /

w Spinor built from axial vector w

R Spinor built from the Rodrigues–Cayley parameters bi
X Spinor built from spin axial vector x

Xp Spinor build from quaternion parameters pi.

C Configuration: see Table 1 for further identification by superscripts

CR Abbreviation for corotational (a.k.a. corotated) kinematic description

DOF Abbreviation for degree of freedom

EICR Abbreviation for element independent corotational formulation

Rotator Abbreviation for rotation tensor (or 3 · 3 rotation matrix)

Spinor Abbreviation for spin tensor (or 3 · 3 spin matrix)
TL Abbreviation for total Lagrangian kinematic description

UL Abbreviation for updated Lagrangian kinematic description
_ð�Þ Abbreviation for d(Æ)/dt
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(Æ)0 or (Æ)0 (Æ) pertains to base (initial) configuration C0

(Æ)D or (Æ)D (Æ) pertains to deformed configuration CD

(Æ)G or (Æ)G (Æ) pertains to globally aligned configuration CG

(Æ)R or (Æ)R (Æ) pertains to corotated configuration CR

(Æ)d (Æ) is deformational
(Æ)e (Æ) pertains to element e

(Æ)r (Æ) is rigid
( )T Matrix or vector transposition

( )�1 Matrix inverse

axial(Æ) Extraction of axial vector from skew-symmetric matrix argument

e(Æ) Matrix exponential if (Æ) is a square matrix

Exp(Æ) Alternative form for matrix exponential

Loge(Æ) Matrix natural logarithm
Rot(Æ) Construction of rotator from spinor argument

Skew(Æ) Extraction of spinor from rotator argument

Spin(Æ) Construction of spinor from axial vector argument

trace(Æ) Sum of diagonal entries of matrix argument
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