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NOTATION AND MAIN VARIABLES

In all the work we use Einstein’s notation (index summation convention).
The vectorial or tensorial continuous fields are denoted by boldface characters,
otherwise, their components are denoted in normal characters. The main variables
and other mathematical conventions are listed below.

o: Stress tensor

p: Pressure, defined as p = :'3“1

7: Deviatoric stress tensor defined as 7 = o + pl
I: Identity tensor

u: Velocity vector
s: Displacement vector

€: Material strain tensor

€: Strain rate tensor

(a,b): L? internal product defined as Jaa-bdQ

Lz(ﬂ): Space of square integrable functions over domain

H™(R): Sobolev space of functions whose distributional derivates of order up to
m belong to L2(Q)

H{"(Q): Space of functions belonging to H ™(Q) with zero trace on the boundary
oN

F},: Discrete element finite space associated to the continuous space F', such that

Fp, ={f € F|, flge € Pn(Q°)}

2°: Finite element partition of



P (9°): Set of complete polynomials of degree m in Q¢
V: Gradient operator
€: Simmetric gradient operator defined as: e() = %(V() + (V)

The rest of the notation is explained in the text.



1. INTRODUCTION

The numerical simulation of hot rolling forming processes is very important
for the metallurgic industry. This is an eficient and economic tool to simulate the
rolling process and to predict the evolution of some parameters like the velocity
field, temperatures, strains, stresses and rolling forces. In this way, computer
simulations are becoming a necessary tool in the design and optimization of hot
rolling processes (2,3,4,5,21,25,26,27].

In this publication an incompresible flow based formulation to simulate hot
rolling processes is presented. First, some theorical aspects about the process are
shown as well as numerical solution using the finite element method. Finally, some
numerical examples are presented.

2. THEORICAL ASPECTS ABOUT THE HOT ROLLING PROCESS

In this section the continuous thermomechanical equations that describe the
roll process are presented. Some important aspects like the treatment of free
surface and friction effects are discussed in more detail.

2.1 Thermomechanical coupled problem

The hot rolling process is a non-linear complex problem, in the sense that the
equilibrium and energy equations are coupled through the constitutive law as it
will be described below. Also, it will be shown the analogy with incompresible
fluid flow which arises from the constitutive law.

2.1.1 Equilibrium equation

Let @ be open and bounded domain of IR™® (nd =2 or 3) occupied
by a continuous medium. The differential equation describing the dynamical
equilibrium of the continuoum is [1]:

V-O'-{—pb:p:ii—l:inﬂx(O,tf) (1a)



with boundary and initial conditions:

u=T1uon 'y x (0,%f)
n-o=0con s x(0,tf) (1d)
u(x,0) = u’(x) in Q x {0}

In above (0,%f) is a time interval; T'y = {x € 8Qu(x,t) = u(x,t) Vi € (0,%)},
where T(x,t) is a given function; T'e = {x € 0|(n - o) = T(x,t) Vt € (0,tf)}
@(x,1) is a given function; I'y JTu = 90 and Ty (\Tw = 0; u®(x) is the given
initial velocity field; p is the density; u the velocity field; o the stress field; b the

volumetric forces; n is the unit exterior normal to §2 and OX) its contours.

2.1.2 Constitutive law for metals at high temperatures

The physical properties of metals at high temperatures depend basically of
the strain, strain rate and temperature fields [2,3]. The strain of metals can be

descomposed in two parts, one elastic € and one viscoplastic €? as follows:
e=¢e°+¢"P (2)

In rolling processes, the elastic strain is much smaller than the viscoplastic or
creep strain and it can be neglected [4,5]. The viscoplastic strains are given by a
constitutive law which defines the strain rate as follows [4,5,6] :

Y 9Q
=1 3)

where F is the yield function for the material, @ the plastic potential, ¢ a certain
function that defines the model and () is the Macauley bracket, defined by N=f
if f>0and (f) =0if f <0. The constant v is the fluidity parameter (y = 0
describes ideal plasticity, see Figure 1 below). The function ¢ can be chosen to be
of power type without lost of generality [4,5,6].

For the yield surface description we take the Von Mises criterium and assume
associate plasticity, i.e.

F=Q=06—-0y=V3/Ja—0y (4)
where Jj is the second invariant of the deviatoric stress tensor defined as:

1

Jy = ETijTij (5)



The yield stress oy is a function of the material temperature, strain and strain rate.
For high temperature conditions, the following expressions have been implemented

in this work [2,3,6]:

e Hajduk model

oy =Ky K7 K¢ K; (6)
where

K = Ay exp(—mT)

Ke = Ay (+759)™

K;=A38 "
parameters Ay, Aj, A3 and mj, my, m3 are common for a particular group

of metals while K¢ varies according to the material composition [2]. T is the
temperature in Kelvin degrees, € is the equivalent strain defined as:

_ 2
€= §E"J'€ii @)

and gg has the physical meaning of an initial equivalent strain which gives minimum
value of oy for the case € = 0. € is the equivalent strain rate defined as:

- /2. .
€= §€ij€ij (8)

Values of the Ky, Aj, m1, Ay, mgy, A3, m3 for some materials can be found in

(2.
o Sellars-Tegart model

Sellars and Tegart proposed for the interpolation of high temperature data:

Z = exp sinh(aoy)]" (9)

(z7) = ¢l

where Z is the Zener-Hollomon parameter, @ is an activation energy usually
independent of temperature and in many case also independent of strain. From
(9) oy is obtained as:

1 2
1 Z\n Z\n



'This equation is strain independent, therefore it is valid only for high strain rate.
Values of a, n and C for different materials can be found in [2,5,7].

e Sellars- Tegart modified model

This model is obtained taking (9) as [3]:
Z=%¢ exp(i = C exp(aoy) - (11)
RT Y

then,
oy =D log(Z)— B 12
Y

D, B and Q are strain dependent and some values can be found in reference (3]-
This equation is valid for 0.5 < £ < 650 s,

Combining equations (3), (4) and (5), the constitutive law can be rewritten

5 =7 <WBVT e > ;s (19

Taking in account that 7;; are the deviatoric stress tensor components, the

volumetric strain rate is zero:

€i; =10 (14)

Finally, from the deviatoric stress definition (7;; = 0y; + p §;;) and after some
mathematical manipulations, the constitutive equation can be rewritten as:

2/Jy .
e = i) B .. 15
O35 P 1J+'7<(\/-§\/T—0'y)n>\/§€u (15)

2.1.3 Incompressible flow analogy

The constitutive law of a Newtonian fluid is [1,8]:
oij = —p 8ij + Néii + 2péi; (16)
in addition, if we impose fluid incompressibility:
Ez=V-u=0 (17)

(16) is rewritten as:
oij = —p b + 2pé; (18)



Comparing (15) with (18), the constitutive law of an incompressible fluid is equal
to the constitutive law of a viscoplastic material taking for the fluid the following
non-Newtonian viscosity (from (5), (15), (18), replacing 7;; = 2p€;; and assuming
that (v/31/J5 — ay)™ > 0):
_ oyt /37 (i)
3e
the assumption (v/3/J — oy)™ > 0 implies that the material is always over the
yield surface and 0;; < oo, which is realistic in hot rolling processes. In addition,
the incompressibility condition is imposed in both problems (equations (14) and
(17)). In conclusion, the constitutive behaviour of incompressible non-Newtonian
fluids and viscoplastic materials is analogous.

g u(oy + ye™)
(Bingham)

g v=0

Oy

{

I’
|

Figure 1 Relationship among strain rate, stress and viscosity for viscoplastic
materials [20]

As a final remark, (19) is only valid for high strain rates (material over the
yield surface). Figure 1 shows graphically the constitutive behaviour for this type
of materials.

2.1.4 Incompressible flow or Stokes equations

Replacing the constitutive law for an incompresible flow (18) (or for a
viscoplastic material) into the equilibrium equation (1a) and assuming that the
inertial forces can be neglected (i.e. viscous dominated flow which is obvious in
hot rolling problems) the equilibrium equation for a viscoplastic material can be
rewritten as (in an Eulerian system):

—+Vp-V. (2;1, 8(u)) = pbin O x (0,y) (20)



with the boundary and initial conditions given in equation (1b).

This equation together with the incompressibility constraint should to be
solved to find the velocity field of hot rolled material, and then, by means of
the constitutive law (equations (18) and (19)), the stress field can be obtained.
However, the viscosity of the material depends not only on the velocity field, but
also on the temperature and displacement fields (see equations (6), (10), (12) and
(19)). Therefore, the velocity field must be solved coupled with the temperature
and displacement fields. This type of problems with non-linear viscosities can only
be solved numerically [6].

2.1.5 Energy or temperature equation

The equation describing the energy conservation of a continuous medium is

[1,8]:
de 3 :
Et-za'.e—V-q—i-perx(O,tf) (21)

where © and (0,1¢) are defined in section 2.1.1. For hot rolling problems, this
can be rewritten in terms of the temperature T' taking into account the material
incompressibility, assuming the thermal expansion coefficient equal zero, and
replacing Fourier laws (q = —kVT') and the constitutive equation (18), i.e.

pcp(%“ + (u- V)T) —-V- (kVT) =2u€:é€+pr=Qin Q X (O,tf) (22a,)
with _
T=TonTIyx (O,tf)
n-VT =qonTy X (O,tf) (220)
T(x,0) = To(x) in Q x {0}

where 'y = {x € 99|T(x,t) = T(x,t) Vi € (0,%f)} and T(x,1) is a given function;
Ty = {x € 89|(n - VT)(x,t) = q(x,t) Vt € (0,%5)}, with q(x,t) being a given
function; T'p ULy = 09 and I'r(1Tq = 0; cp is the specific heat at constant
pressure and k the thermal diffusivity coefficient.

2.1.6 Treatment of the free surface. Computation of displacements and
strains calculation

The displacement field must be solved to calculate the equivalent strain. Also,
we need to compute the domain occupied by the material at each time step to



solve the equilibrium and temperature equations. In this section, two different
approachs for these computations will be presented.

e Bulerian approach

This is the so called pseudo-concentration method. The basic idea is to
define a scalar function ¥(z) over the computational domain Q@=a,UQ £
QN Qf = 0, Qm: part of the domain occupied by the material, {3y = part of the
domain occupied by air or “fictitious material”), in such a manner that its value in
certain point indicates the presence or absence of fluid (or viscoplastic material).
The position of the fluid front is defined by the isovalue contour ¥(x) = v¢. The
conservation of the pseudo-concentration in any control volume V; C € which is
moving with the divergence free velocity field u, can be written as:

oY :
§+u-V'¢=0mQx(0,tf) (230,)
with _
"l’(xrt) = ¢(x1t) xel; x (O’tf)
$(x,0) = $o(x) x € 0 (235)
I; = {x€09| u(x,t)-n <0}

% is a given function; %0(x) should define the initial position of the fluid front and
n is the external unit vector normal to . More details about this method can
be found in [6,9,10,11,12,13]. The equation below defines the material front, but
does not provide information about the displacement and strain fields. To obtain
the equivalent strain field (this is necessary for the constitutive law), some authors
propose to solve the following equation [9,10]:

e =
a-}—u-Ve:emQx(O,tf) (24a)

with
&(x,t) = &(x,t) x € T; x (0,1/)

g(x,0) =gp(x) x € Q (240)
[; :={x € 0Qlu-n < 0}
where € is a known function and gy defines an initial equivalent strain field.

e Lagrangian approach
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~ The displacement s of a material particle m is given by:
s™(t) = x™(t) — X™ t € [0,1f] (25)

where x™(t) are the spatial coordinates of the particle m at time ¢, and X™ the
material coordinates (X™ = x™(0)). The particle velocity can be computed as:

m ‘
% =u™ for t € (0,%f) (26)
then,
14
x™(t) = / u™(t') df' + X™ for ¢ € [0, 4] (27)
0

Then, the material strain tensor for each particle can be computed using the
following expression [1] (Supresing the super-index m):

€= %(Vs +sV +Vs:sV) (28)

or in indicial notation:

N 1 Bs,- 631 Bsk 8sk
&ij = 2(8Xj * 0X; * 0X; 3Xj) (29)

Then, basically the velocity field is integrated along the particle trajectories to
obtain the displacement and strain field. Finally, if spatial coordinates of each
material particle for each time ¢ € [0,1 7l are known, then we obviously also know
the domain accupied by the fluid at that time.

2.2 Physical aspects of friction

In this section we shall present two models. The first is based the Coulombs
law and Avitzur micromechanical model [2]. The second, simulates the presence
of a lubricant between the contact surfaces.

2.2.1 Friction model based on Avitzur’s micromechanical model and
Coulomb’s law

The Avitzur’s micromechanical model basically states that the friction force
F between the contact surfaces raises directly proportional to the vertical force P
until a constant force F' is reached [2,4,5] (See Figure 2a). Analogous to plasticity
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theory, the Coulomb’s law states an slip criterion that can be represented in
the space of normal and tangencial stresses as shown in Figure 2b. The stress
states which lie within the slip surface produce only reversible motion, while the
stress states on the slip surface produce irreversible relative motion (2,4,5]. In our
problem we assume that the stresses are always on the slip surface, and a friction
rule that combines Avitzur’s model and Coulomb law is adopted. This is presented
graphically in Figure 2c.

F
A i

7

n
|
l
[
|
l
l
[
[
1
R

'\;._) P o ot :
h:o = o o

{
{ T2
A P 4 .
Figure 2 a)P normal vs F friction. b)Coulomb’s law. c)Slipping criterium
Mathematically, the friction law can be written as:
Eon, if op < oy
= . - 30
n {may/\/g, if op > oy (30)

where 75, is the shear stress between the contact surfaces, o, the normal stress, ¢
the Coulomb coefficient, m < 1.0 the friction factor to take in account the surface
slip, and 0y /+/3 denotes the maximum shear stress that the material can withstand
according to the Von Mises yield criterion.

2.2.2 Flow friction - Lubricant approach

This approach assumes the presence of a lubricant between the contact
surfaces. The lubricant viscosity is smaller than the viscosity of the hot rolling
material, and this generates flow velocity profiles similar to those produced by
the friction between a fluid an a solid surface. The velocity gradient is very high
in the lubricant region, thus simulating a jump between the velocity at the roll
and material surfaces (one surface slips over the other). The shear stress between
the two surfaces is obtained from the constitutive law for an incompressible fluid
(equation (18)) using the lubricant viscosity.
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HOo =
20

Figure 3 Flow friction - Lubricant approach

In this model, the shear stress is directly proportional to the strain rate
and a cut-off value for high strain rate values must be defined. This is given
automatically if we impose that the lubricant viscosity be always small than the
viscosity computed using (19). This friction law is graphically represented in
Figure 3. Sl

3. NUMERICAL SOLUTION USING THE FLOW APPROACH

In this section the numerical solution of the non-linear thermomechanical
problem sketched above will be presented.

3.1 Stokes and continuity equations

Let Q4 be the domain occupied by the hot material (metal). Let Qf be
the domain occupied by a circundant fictitious fluid. The flow domain {2 where
the equilibrium and energy equations will be solved is defined as: @ = Qm |J Q¢
and Qm, (12 = 0. The variational form, “weak” form, of the stationary Stokes
problem (equations (17) and (20)) consist in finding u € U and p € Q/Z such that

a(u,v)-b(p,v)=Il(v) VveV

Hgu)=0  VgeQ (1)
with
U={ue H(Q)|u=don Iy}
V={veH(Q)v=0o0nTy} (315)

Q ={qe L*(Q)}
Z ={q€Qlb(g,v) =0Vv eV}
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The multilinear forms are:
a(u,v) = / ou €(u) : £(v) d9
Q
b(q,Vv) :/ V-vdQ (32)
Q

I(v) :/Qpb-vdn

3.1.1 Incompresibility treatment - Iterative penalty method

This method is used to eliminate the pressure in the problem, thus obtaining
a considerable reduction in computing time and memory (See [14]). Penalization
methods also avoid the use of partial pivoting to solve the system of equations
resulting from (31) and reduce the number of equation.

The classical penalty method consist in perturbing the continuity equation
with a small term containing the pressure:

ep+V-u=0in Q (33)

with € > 0 being a small number. The classical penalization presents some
problems for non-Newtonian fluids [6,15]. If the penalization parameter ¢ is too
large the incompressibility condition is not satisfied, while for too small values the
resulting system is ill-conditioned [6,7,15]. To avoid this problem, we will use an
iterative penalty method proposed in [6,15], which can be written as:

ep' —p" )+ V-u=0in 0 (34)

where index 7 indicates the iteration number. In this manner, the incompressibility
constraint is satisfied iteratively, and the penalty parameter can be larger
than in the classical approach. In addition, since the solution of the coupled
non-Newtonian flow problem requires an iterative algorithm, then the iterative
penalization only introduces a small additional effort and it does not involve
additional iterations to satisfy the incompresibility constraint.

The weak form of Stokes problem with iterative penalization is written as:
Given p? € Q, for i = 1,2, ... find (u*,p*) € V x Qg such that
a(u,v)—b(p,v) = I(v) VveV

e(pia Q)+b(q, 11) = e(pi_l,q) Vge Q (350,)
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with |
Qo ={g€Q| /qdﬂ:O} (35b)
Q

where (+,-) is the inner product in L2. The system of equations (35) was obtained
by penalizing in the weak form (“weak penalization”). If the penalization 1is
introduced first in the continuous problem and then the weak form is obtained
(“strong penalization”) the method would present serious problems (see [14,15] for
details). Other penalization procedure is the so called “artificial compressibility”
method, which is phisically grounded. This assumes a small compressibility in the

fluid, then the continuity equation can be written as:

1 0p
S ¥V u=10 (36)

where ¢ is the sound velocity. If ¢ — oo the incompressibility is reached. From
1

(36), the incompressibility constraint is satisfied if V-u = .
In this work the iterative penalization approach has been adopted. The

magnitude order for the penalization parameter was found heuristically as
10~% — 10~ 8.

Now, let Q¢ be a regular finite element partition of the domain 2, with index
e ranging from 1 to the number of elements Ne;. If the test functions are chosen in
the conforming finite element spaces associated to the partition Q¢, V} C V and
Qp, C Q, and the space of trial solutions in the conforming finite element spaces
associated to the partition Q¢, Uy C U and Qg p C Qo, the following system of
equations (including the temporal term in the weak formulation) is obtained:
Y ke (+H*'M3;'H + K)up = F
v ot R " _ (37)
Mppl, + THun = Mppiy, !

where 7 = 1/6? Un = (ul,uz,---,un)t and Pm = (Pl,Pz,---,Pm)t (TL = number of

mesh velocity nodes and m = number of mesh pressure nodes).

The different elemental matrices for the two dimensional case can be seen in
Box I, where N; and N; are the basis interpolation functions for the velocity and
pressure spaces respectively. To solve the temporal derivate in (37), the trapezoidal
rule is used (see section 3.4)

As defined in 3.1, the domain of solution includes a fictitious material. Values
for fictitious material properties should to be chosen so that they do not produce
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BOX I: Elemental matrices for equation (37)

e _ . NiNj 0 .aqe N,
Mvgj—/cp[ 0 N'LN] 7Mp,‘j_ Qe [NtNJ ]
Hj; = /ﬂe [N:dy N; N; 8;N;] ;Ff =./nep[Nib1 N;by T

e = / L [281Ni O1N;j + 02 N; 9, N; 0, N; 01 N;
1] Qe O1N; azNJ 209 N; azNJ + 01 N; alN]

ill-conditioning and do not influence the metal flow. Recommended values are
[6,11,12,13]:
-6
Kfic = 107 prear

-3
(Pcp)fic =10 (pcp)rea,l (38)
kfic = 10_3kreal
Finally, the finite element used to interpolate the velocity and pressure fields must

satisfy the LBB condition (div-stable elements). In this work the Qy/P; element
has been used [6,14,18].

3.2 Temperature equation

The weak formulation of the temperature equation (22) can be written as:
Given T'(x,0) = T for x € Q, find T' € T such that

pep(s 20) + pep(v, (u - V)T) + (V0,k9T) = (5,Q) Vo €V (3%)
with
V={ve Q)| vlpy =0}

2 1 - (390)
T = {T € L3(0,t5 H\(®))| Tlp, =T, t € (0,2/)} |
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BOX II: Elemental matrix terms for equation (42)

M;; = /Q pep [ WiN; ] L3 = /ne pep [ N; ug, ;. N;]

Kfj == ‘/;Fk[akN,; BkNJ-] ;Rf :Le _k[Ni a}%kNj]

Qs = /9 [(Ni(opén + pr)]

3.2.1 Convection difusion treatment - SUPG method

To avoid oscillations in case of convection dominated flow (Peclet number
greater than 1 Pe = pcpU/k > 1.0), the SUPG method (Streamline Upwinding
Petrov-Galerkin) is used, here the traditional Galerkin test functions N; are
modified in the flow direction as:

. ~ ofh

Ni=Ni+Ni=Ni+mu'VNi (40)
where ae is a function of the elemental Peclet number and h® is a typical
element dimension. More details about this method can be found in references

[6,15,16,17,18,19,20]. The weak formulation using SUPG is rewritten as:
Ny

oT
pep(, o) + peyl(s, (u- VIT) + (Vo, kVT) = 3 (5, V - (kVT)) = (3,@) Vo € V
e=1
(41)
afht
v=v+v=v+ u-Vo
2(|u]|

Now, let Q€ be a regular finite element partition of the domain 2, with index e
ranging from 1 to the number of elements N;. If test and trial functions are chosen
in the conforming finite element space associated to the partition 2° V, C V and
T}, C T, the following system of equations is obtained:

o7, ~
Ma—t"+(L+K+K)Tn:Q (42)

where T, = (11,13, ..ty Tn)t, m = number of mesh nodes. In Box II the element

matrix terms are shown.
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In above formulation, the radiation boundary condition:

has not been considered. The heat conduction to air is simulated automatically
by chosing the flow and air domains. On the other hand, the conduction to the
roll is neglected. This is a good approximation for normal rolling speeds, where
the contact time is < 1 s [21]. The temporal derivates in (42) are solved using the
trapezoidal rule explained below.

3.3 Free surface and strain field computation

As we see in 2.1.6, two different approaches for this computation are proposed.
In this section we shall show their numerical solutions.

3.3.1 Eulerian computation - Pseudo-concentration method

The equation (23) is purely convective. Then the use of a method to avoid
convection dominated oscillations is mandatory. In this work the SUPG method,
described in 3.2.1, is used. Defining the test function ¥ = v + v with 7v being a
specific function of the element length, type and velocity (see [6,15,16,17,18,19,20]),
the weak form of (23) can be written as: Given %(x,0) =% x € Q, find ¢ € ¥
such that

(9, %/)) + (3, (u-V)¥p)=0Vv eV (44a)

V={oe HQ)| olr, =0}

, ) _ (44b)
¥ ={p € L°(0,t5; H'(Q))| $lr; =9 V€ (0,%5)}

Now, let Q€ be a regular finite element partition of domain {2, with index e ranging
from 1 to the number of elements N,;. If test and trial functions are chosen in
the conforming finite element space associated to the partition Q¢, V3, C V and
¥, C ¥, the following system of equations is obtained:

Y CALI YR (45)
ot
where ¥n = (¥1,%2,y%n)}, n = number of mesh nodes. The element matrix
terms are equal to the temperature matrix terms in equation (42), taking p =
¢p = 1.0 (see Box II). The temporal derivates are solved using the trapezoidal rule
as it will show in Section 3.4.
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3.3.2 Lagrangian computation

The idea is to work with two finite element meshes. The first is the spatial
mesh where the equilibrium and energy equation are solved (Finite element
discretization of flow domain ). The second is the lagrangian or material mesh.
This mesh discretizes the hot metal (domain §,,) and moves with it. Then, the
material particle trajectories coinciding with the nodal points of the material mesh
are computed and, therefore, the displacement field of the metal is obtained. The
procedure is as follow: Given a up (velocities on the spatial mesh, (see equation
(37)) do the following steps:

i)Obtain velocities of material mesh

The material mesh velocity vectors u™ (nodal point velocities) are computed
using the spatial interpolation functions (trial functions of the spatial finite element
discretization) as follows:

upt = (Nj(€™)¢ ugj), k=1,nd, j=1,nn (46)

where u}" is the k velocity component of the material nodal point m; e is the
spatial mesh element such that x™ € Q° (Q° C Q is the spatial domain of element
e); N; is the spatial interpolation function of nodal point j; (™) is the natural
coordinate vector of x™ in e; u} j is the k velocity component of spatial mesh nodal
point j; nd is the problem dimension (2 or 3) and nn the number of spatial mesh
nodes. To calculate (£™)¢ the non-linear system resulting from spatial coordinate

interpolation is solved, i.e.
1 ;

(") = (N;(€E™)° z;), k=1,nd, j=1,nn (47)
where 2} is the k component of the spatial position vector for particle m; j=i
is the n — 1 time step (¢ is the actual time step 0 < 1 < ts); and zy; is the
kth component of position vector of the jth spatial node. Then, for each material
node, we have to solve (47) for each spatial mesh element until (s™)¢ ranges into
the isoparametical space chosen for the spatial elements. To solve (47) we use the
Newton-Raphson method [20]. To save computer time, the spatial nodal position
x; closer to x™(t" 1) is obtained and (47) is solved only for the set of elements e

such that x; € Q°.
i1)Obtain the displacement field

The new spatial position for each material node is obtained by solving
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numerically (27) with a Runge-Kutta method. Then

tn
K(EP) = (1) + /tﬂ_l u™ () dt (48)

The displacement of each material node (nodal points of the material mesh) is
calculated as:

s™(t7) = x™({") — X™ (49)

111)Obtain the equivalent strain at spatial nodes
The spatial nodal point displacements can be interpolated from the material
nodal point displacements by using the trial functions of the lagrangian mesh:
§ == Mjsjn s 3=1,nm (50)

Then, the Green-Lagrange strain tensor on the spatial nodal points can be
calculated using (29) as:

f _3Mj(£f)_m+an(§f)M - (3Mj(£f)M m)(an(éf)M,m
BT Tox, ox; M ox, ul\T ax; 4

(51)

where €£l is the kl component of the strain tensor evaluated at spatial node f; M is
the material mesh element such that x/ € QM (¢?) (QM(¢") is the spatial domain
occupied by M at actual time step); M; is the material mesh interpolation function

}Z )M is the natural coordinate vector of the
spatial node f in M; and nm the number of material mesh nodes. To calculate
({f )M , the non-linear system resulting from the material coordinate interpolation

associated to the material node j; (¢

is solved as:

zf = M"Y o1;(t"), k=1,nd, j=1,nm (52)
f

where z7 is the kth component of the position vector for the spatial node f; and
21, ;(") is the spatial position vector of material node j at the actual time step.
Then, as (47), equation (52) has to be solved for each spatial node, and for each
material mesh element until (¢/)M ranges into the isoparametical space chosen for
the material elements. To solve (52) the Newton-Raphson method [20] is used. To
save computer time, the material nodal position x; closer to x/ (t"~1) is obtained
and (52) is solved only for the set of elements M such that x; € QM. With above
procedure, not only the strain and displacement fields are obtained, but also the set
of spatial nodes ¢ such that x; € ,, and, therefore, the free surface of the material
(hot metal). Finally, for continuous rolling processes, the material position at
0 < t™ < iy is obtained by superposing the position of the different Lagrangian
mesh positions from 0 to " ~1; this is Qm(t?) = Qm(0) U Um(t1) U - Qm (™).
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3.4 Temporal discretization

To solve the temporal derivate of equations (37), (42) and (45), the trapezoidal
rule is used (§ method). Then, the temporal derivate is replaced by a finite
difference, and the matrices have to be evaluated at time steps » and n + 1 (i-e.

solution at time n is known and we look for solution at n + 1), as follow:

wn+l _

n
= L ~@F™ 4 (1-6)F™ for 0.0<6<1.0 (53)

For § > 0.5 the method is inconditionally stable. for § < 0.5 the method is
conditionally stable, and it can be proved that for = 0.0 the critical time step is
of the penalty parameter order [6,7,14,15,20,24]. Furthermore, the approximation
order of the method is second for Crank-Nicolson § = 0.5, and linear for § = 0.0
(forward Euler) and 6 = 1.0 (backward Euler). Furthermore, the backward Euler
scheme is more dissipative, which is good to supress the oscillating harmonics
associated to the series expansion of the parabolic equation solutions [15]. In most

of the examples presented in Section 4., the backward Euler scheme was used.
More details about the trapezoidal rule can be found in references [14,15,20,24].

3.5 Friction computations

The frictional stress is simulated by inserting a narrow layer of elements
between the roll and metal contact surfaces (friction elements). The viscosity
in these elements is calculated in such a way that the shear stress that is given
by the constitutive law (7;; = 2p€;;) be equal to that given by the chosen friction
model.

3.5.1 Avitzur - Coulomb model

This model is obtained computing the viscosity and the yield stress at the
friction elements as:

£
oy =15 —tp (54)
Hf=3¢ 24/3¢7 (55)

where €, = /€;;€;; for i # j, and py is the viscosity at each friction element.
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3.5.2 Lubricant approach

This model is obtained calculating the viscosity at friction elements as:

pg = min(u, o) (56)

where (19 is a given “lubricant” viscosity, and i the metal viscosity calculated with
the constitutive law.

3.6 Stress field computation

The material stress field is calculated from the velocity and pressure fields
using the constitutive equation for incompressible fluids (18). The deviatoric stress
tensor at each elemental gauss points TZI is calculated from the velocity field, by
using the spatial interpolation functions as:

78 = p(8,N; ul + O N; ut) for i = liny kl=1,..ny 57
kl l k

where ny is the number of velocity nodes and ng the problem dimension (2 or 3).
Finally, the stress field is obtained at mesh nodal points by smoothing the stress
field at the gauss points. This is by solving the following equation system:

(Niy7i7) = (N5, 7)) Vi (58)

where N; are the spatial interpolation functions and 717 is the stress field at the
nodal points. Because of the type of elements used in this formulation, pressure
nodal points do not coincide with spatial mesh nodal points. Then, the pressure
field has to be smoothed too.

As a final remark, the smoothing can be performed by three different methods:
Diagonal matrix (Lumped), consistent matrix (Consistent) or using a closed
integration rule to solve (58) (Quadrature). In the numerical examples presented
in Section 4, diagonal matrix smoothing (Lumped) is used.

3.7 Roll force and torque computation

The normal 7,, and tangencial 7, deviatoric stress components at the roll
nodes are computed from the deviatoric stress field by:

Tan = (7" -0}) -0} and 7y = (' ni) - (59)
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where index i indicates the number of the roll node, nf. is the normal unitary
vector at roll node i and t% the tangencial unit vector. Each roll node has an
adjacent surface area a*, and the roll’s normal force F, roll’s tangencial force Fy

and roll’s torque M i at each contact node are calculated by:
Fi=(—p' +7in)e’s F =myas M'=Fr (60)

where p' is the pressure at node 7 and 7 the roll radius. Above computation is
performed only at roll nodes in contact with the hot metal.

Finally the roll force and torque are computed by adding the roll forces and
torques at each contact node and performing a rotation to the spatial reference

axis.
3.8 Microstructural changes

The microstructural changes that occur during rolling process influence the
product’s mechanical properties. The grain size of the ferrite phase, produced by
transformation during cooling, determines the material’s mechanical properties.
This ferritic grain size is determined by the residual strain and grain size of
austenite phase prior to transformation. Therefore, it is important to model the
structural changes occuring during austenitic phase [26]. In this section we present
a numerical strategy to compute the changes taking place within the austenitic
phase by using the finite element model described before.

Plastic deformation of metal results in dislocations within the metal’s crystal
structure which increase the internal energy within the structure. If the dislocation
density reaches a critical level, and enough thermal energy is given, the deformed
metal grains nucleate and recristallize forming new dislocation-free (and generally
smaller) grains with lower energy states [26]. The critical dislocation density level
is reached if a critical plastic strain e, given by [2,26]:

Ec=a€Ep (61)

is exceded. In (61) @ is a material dependent constant between 0.67 and 0.86, and
gp is the strain for which the peak yield stress is reached (see Figure 4), given by:

ep=A df* z7 (62)

where A and n are material constants, dg is the initial grain size, and Z the
Zener-Hollomon parameter given by (9). With further deformation, the new
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crystal structure becomes distorted, accumulating dislocations, and recrystallizes
again [26]. This recrystallization occuring during deformation is termed dynamic
recrystallization. These microstructural changes leave the metal in a unstable
state and provide the driving force for static recrystallization and recovery to take
place after deformation pass. If the temperature is sufficiently high, grain growth
occurs after static recrystallization [26]. The whole recrystallization process can
be described by Sellers experimental model, as follows:

True
Stress

€crit €p . €s
True Strain

Figure 4 Stress/strain behaviour during steady state deformation at elevated
temperatures [26]

Dynamic recrystallization

It occurs during the deformation process. Dynamic recrystallization starts
when the strain € reaches the ¢. value of (61) (see Figure 4). If the strain increases,
the yield stress increases as the material work-hardens. The flow stress reaches a
maximum at € = €, and a steady state flow stress is reached, at £ = €s, When
softening due to recrystalization balances work-hardening.

Then the dynamic recrystallization occurs during deformation and e; < ¢ < ¢,
where ¢, is given by:

€s R 2¢p (63)

The volume fraction recrystallized Xy follows Avrami’s equation:

Xy =1 - exp(~2.996(——)) (64)

C

E—Ec
Eg —
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The dynamic recrystallized grain size is given by:

ex = D d8'67 e ! for e <e€*

65
dpez = D* Z7% for e > ¢€* (65)

where D and u are constants, D* = 3.6 - 103D and &* is given by:
e* =057d0 ¢ (66)

the value for e* is greater than e (dg = 300 pm). The average grain size, is then
given by:
dave = XV drez "l‘ (1 - XV) do (67)

Static recrystallization

This occurs after deformation. The volume fraction staticaly recrystallized
Xy is given by Avrami’s equation:

Xy =1 — exp(log(1 — F)(t/t£)") (68)
where 1 is the time for some specific fraction F' of recrystallization and k is a
constant given by:
_J2 ife<ec
k—{l ,if € > ec (69)
The time for fifty percent of recrystallization, ¢g 5, for C-Mn steels is given by:
to5 = Be—mngqexp(%;;f) for € <ec
to.5 = B'Zrexp(%;—;i) for € > ec (70)

where B, B', p, ¢ and r are constants, and Qrez is the reactivation energy for
recrystallization.

The recrystallization grain size drez and average grain size dgye are also
given by (65) and (67) respectively. The static recrystallization is assumed to
be complete for Xy > 0.95, followed by grain growth.

Grain Growth

When static recrystallization is complete (Xy > 0.95), the grain size raises as
a function of time ¢ and temperature, as follow [2,26]:

Dog )35 (11)

d= (digz + At exp( —RT

where A' and Qg4 are constants.
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3.8.1 Implementation of microstructural changes

For hot rolling problems, there is not need to compute the dynamic
recrystallization parameters (grain size, recrystallization fraction, etc.) [2,26,27].
This is due to the independece of the final grain size after the rolling pass (grain size
for static recrystallization and grain growth) with the dynamic recrystallization
parameters. The only important thing is to determinate the temperature and
residual strain after the deformation state to start the static recrystallization
computation [26].

BOX III. Microstructural Changes Algorithm

e Obtain T, € and € from the finite element model (see BOX IV)
e Compute Z with (9)
e Compute ec and ep with (61) and (62)
e Compute k and ¢y 5 with (69) and (70)
e Compute Xy with (68)
e Compute ¢* with (66)
e Compute dre; with (65)
e IF Xy < 0.95 THEN
e Compute grain size with (67)
e ELSE (Recrystalization has finished)
e Compute grain size with (71)
e END IF

In Box III the general algorithm to calculate the recrystalization and grain
growth is presented.

3.9 Coupled solution - Block iterative strategy

Box IV shows the iterative algorithm used for the solution of hot rolling process
including the computation of static recrystallization changes.
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BOX IV. General Algorithm

e Set the initial condition un?, T and initial metal spatial position (:cO c
Qm or "r/’g)
et:=0
o WHILE ¢ < t; DO:
et —t+ At
e1:=0
e WHILE (not converged) DO:
e —1+41
e Obtain u}, and p?, by solving the time discretized form of (37)
o Actualize properties (i, cp, k) whith the new velocity field u},
o Obtain the displacement field s* with Lagrangian method (Section
3.3.2), and the equivalent strain field gt
e Actualize properties (u,cp, k) whith the new equivalent strain and
strain rate fields &
e Obtain T by solving the time discretized form of (42)
e Actualize properties (u, cp, k) whith the new temperature field T
o IF [lué, — wir 1 12 < TOL[u| 2 and [T — T5 ;2 < TOL| T 2
THEN (converged)
e END WHILE (not converged)
[} uﬁl S e u:l
o Tt T2
e Obtain 9!, if necessary, by solving the time discretized form of (45)
e Compute microstructural changes (grain size, BOX III)
e Compute roll force and torque
e END WHILE ¢ < i¢
e END

4. TEST VALIDATION AND NUMERICAL EXAMPLES

In this section we present a test validation and two numerical examples.

The experimental data to compare with numerical results was provided by the
Institut Fur Werkstoffumformung (Technische Universitat Clausthal) [3]. The
visioplasticity method [2,25] was used to obtain the experimental data, and the

numerical results were obtained by the model described in this report.
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For all of the following examples, a plastic behaviour was adopted for the
material (y = 0 in (19)).

4.1 Example I: 2D hot rolling problem - Test validation

_ The hot rolling test chosen to perform the numerical simulation was named
PROBE 40. The main geometrical conditions can be seen in table A-1 (See
Appendix A). The geometry and boundary conditions for the numerical simulation
were extracted from the experimental conditions, and they are sketched in Figure
4.1a. The finite element mesh for the problem can be observed in Figure 4.1b, and
the deformed specimen used in the experiment is shown in Figure 4.1c.

4.1.1 Material properties

The Sellars-Tegart modified model (section 2.1.2) was used to interpolate the
material properties at high temperature. Most values of the physical properties
were taken from [3], and they are the following:

k=17.0+1.09%10"2x T (W/K.m)
a=480%10"°—-0.70+ 107 « T4 1.64 x 10712 x T2
k (72)
pxa
p =1.430 gr/cm3

Cp=

Also, the constant values for the constitutive model (see Section 2.1.2) are the
following: D = 40.79 N/mm?, C = —520.06 N/mm?, Q = 413.296 KJ/mol.
In addition, numerical simulations were also performed with D = 15.44 N/mm?2,
C = —85.04 N/mm?, Q = 311.818 KJ/mol to investigate the sensibility of the
model with respect to the material properties. All above values were taken from
[3], and they correspond with two different values of strain.

Moreover, two friction coeficients between the slab and the roll surface ¢ = 0.35
and ¢ = 0.04 were taken.

The main variables compared were the velocity field, the temperature of the
slab, the strain and strain rate invariant, the stress field and the rolling force and
torque.
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4.1.2 Velocity field

Figure 4.1.2a shows the normalized velocity distribution (v;/vg, v; =
vz, vy, |v]) along a line. In Figures 4.1.2b, 4.1.2¢ and 4.1.2d the same experimental
results are plotted. Taking into account the diferent scales between numerical and
experimental plots, and that the experimental measurements were taken along
a flow line and the numerical results along a straight line, we can observe that
both results are similar not only quantitatively but also qualitatively. The vg /vo
velocity component increases at the roll entrance, and slightly decreases at the exit
due to material expansion. The vy/vy component increases (in absolute value) at

the roll entrance, and it raises at the exit (due to material expansion).

Figures 4.1.2¢, 4.1.2f, 4.1.2g and 4.1.2h show the normalized velocity contours.
Taking into account that the numerical results are presented only for one half
of the slab, we can observe the coincidence between experimental and numerical

velocity contours.
4.1.3 Temperature

Figures 4.1.3a and 4.1.3b show the numerical and experimental temperature
results. Numerical results obtained with cp and k calculated according to equation
(72) (Figure 4.1.3a Top-Right), are close to experimental data (Figure 4.1.3b).
The experimental temperature along slab surface falls down at the roll entrance
due to the radiation between slab and roll. This phenomenon was not simulated
numerically.

4.1.4 Strain

In Figure 4.1.4a Top-Left, we can observe the computations for the Von Mises
strain distribution along a section (See Figure 4.1.2a Bottom-Right to identify
the section). These results can be compared with these of Figure 4.1.4b where
the experimental effective strain is plotted. Taking into account that the effective
strain is equal to 2/3 the Von Mises strain and the graphic scales, we can observe
that graphics are qualitatively and quantitatively similar.

In Figures 4.1.4c and 4.1.4d the numerical and experimental strain contours
are respectively shown. Bearing in mind that the Von Mises strain is not equal to
the effective strain (See above), and that the numerical contours are presented only
for one half of the slab, we can observe that the experimental and numerical strain
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contours are similar at the roll zone. However, the numerical contours present a
strain concentration zone at the right top corner of the slab, this can be due to

the differences in the friction coeficient or material properties.

4.1.5 Strain rate

In Figures 4.1.5a we show the numerical Von Mises strain rate along section A-
A’ (See Figure 3.1a to identify the section). This should be compared with results
of Figure 4.1.5b, which shows the experimental effective strain rate. N ormalizing
the numerical strain rate, and taking into account the different graphic scales
and the difference between Von Mises and effective strain rate (See 4.1.4), we
can observe that numerical and experimental graphics are qualitatively and
quantitatively similar.

In Figures 4.1.5¢c and 4.1.5d numerical and experimental strain rate contours
are respectively shown. Both present a concentration zone at the first contact
region between roll and slab. It can be observed that the numerical and
experimental contours are quite similar, taking into account that the numerical
results are presented only for one half of the slab.

4.1.6 Stresses

Figure 4.1.6a shows the stress variation along a section (See Figure 4.1.1a
Bottom-Right to identify the section). Experimental data is shown in Figures
4.1.6b, 4.1.6c and 4.1.6d. In general the stresses calculated numerically are of
the order of magnitude of those calculated by the visioplasticity method [3,25]
(Observe the difference in units). In addition, the general graphic tendencies
are similar (except for the experimental values of o or s11 stress for which we
believe the sign convention has been changed). In general, experimental stresses
are smoother than numerical ones, this can be due to the fact that experimental
stresses were calculated along the flow lines.

In Figures 4.1.6e to 4.1.6j the numerical and experimental stress contours are
plotted. The stress concentration zones are similar in both cases, but the general
contour shapes are not much alike.

4.1.7 Roll force and torque

Figure 4.1.7 shows the force and torque time evolution. The behaviour of
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both variables coincide with that expected (See [7]). The experimental values are
presented in Table A-1. The experimental F//M values are 89.82 (Bottom roll)-
and 102.84 (Top roll). The numerical final force and torque value computed using
the stress field and the first group of constitutive law constants ( See 4.1.1) are:
F = 29491 N/cm; M = 326.48 Nm/cm, and F/M = 90.33. If we multiply the
numerical values by the slab’s width (12.47 cm), the results are of same order of
magnitude than experimental values. However, the force and torque magnitudes
obtained can be changed by computing the stress field with the second constitutive
law constants, this leads to numerical results very close to experimental data. For
this last case, the friction coeficient was { = 0.04 (The friction factor for both cases
was m = 1.0). The numerical and experimental rolling force and torque multiplied

by slab’s width 12.47cm are:
Experimental Numerical

F =0.630 MN F=0513 MN
M =170142 NM — 6126.1 NM M = 6643.8 NM

Thus, the rolling force and torque present a strong dependency with respect
to the constitutive law. This is confirmed in the next numerical example.

4.2 Example II: 2D hot rolling problem

In this example we will show the influence of different constitutive laws in
force and torque calculation and the behaviour of friction elements. Also, the free

surface and microstructural changes computation will be presented.

The geometry and boundary conditions are equal to the Example I above.
The constitutive laws that we will use are not only strain rate and temperature
dependent, but also strain dependent. These are the Hajduk model (equation (6),
and the modified Sellars-Tegart model (equation (12)) with the following strain

dependent constants [3]:
D[N/mm?] = 4.5986 + 236.63¢ — 554.17¢2 + 562.53¢° — 202.808"
C[N/mm?| = 84.122 — 3902.6¢ + 10617.0e2 — 14917.08° + 7882.6"  (73)

QLK J /mol] = 320.61 + 220.75€ + 250.582> — 378.862°
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Above equations are valid for 0.5 < € < 650 s~! and for 0.05 < £ < 0.8. For
the lower bound, 0.5 < & and 0.05 < €, a cut-off value of p = 10° N - s8/cm?
was taken for the viscosity; for € > 0.8 the following values were taken for the
constants: D = 44.16 N/mm?, C = —652.01 N/mm?, Q = 460.894 K J/mol and
for € < 0.05 D = 15.44 N/mm?, C = —85.04 N/mm?, Q = 311.818 KJ/mol.
For the case € > 650 s~ a cut-off value of & = 650 s~1 was done.

The Hajduk model constants were taken from [2], these were (see equation
(6)): A1 = 17.07, m; = 0.00284, Ay = 1.647, mq = 0.217, A3 = 0.789, m3 =
0.104, Ko = 166.2 N/mm2, g, = 0.4.

4.2.1 Stress ﬁ(;,lds

In Figures 4.2.1a and 4.2.1b we show the stress fields using the constitutive law
referenced above. In general, the stress field obtained with the Hajduk model is
of one order of magnitude greater than this obtained with modified Sellars-Tegart
model. This can be due to the fact that the computed yield stress with Hajduk
model is greater than that computed with the modified Sellars-Tegart model. This
is confirmed in Figure 4.2.1c, where it can be observed that even the equivalent
strain rate is equal for both model, the viscosity is higher for the Hajduk model
(see equation (19)).

Therefore, the computed rolling force and torque are higher for Hajduk model
than for modified Sellars-Tegart model. These are:

Hajduk model Mod.Sellars-Tegart

F =4.623 MN F =0.353 MN
M =54192 NM M =4140.1NM

This shows the strong dependence between the rolling force and torque and the
constitutive law. As a final remark, it can be observed that if the deviatoric

stress field in XX and YY directions (Figure 4.2.1a) are added, the resultant field
is practically zero, which confirms the material incompressibility (see equation

(18)).

4.2.2 Behaviour of friction elements

In this section is showed the behaviour of both friction approaches: i.e. Avitzur
Coulomb and Lubricant approach. For the simulation of both friction approaches,
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_the modified Sellars-Tegart constitutive law (with the parameters presented in
Section 4.2) was used. The friction parameter’s values for Avitzur model were
¢ =0.1, m = 1.0 and the lubricant viscosity was po = 107.

Figure 4.2.2a shows the velocity vertical profiles (at roll inlet and outlet)
produced by both friction approaches. The two friction elements simulate very
well the velocity jump between the roll and metal surfaces (one surface slips over
the other).

Figures 4.2.2b and 4.2.2c display the stress along the contact surfaces (roll
surface and metal surface), using the different friction elements implemented in
this work. The shear stress computed using the lubricant approach (Figure 4.2.2b
bottom-left) is smoother than that computed using the Avitzur Coulomb approach
(Figure 4.2.2b top-left). In addition, the former is more realistic from a physical
point of view. At the inlet section, the metal is pushed into the roll and high shear
stresses develop; then the metal accelerates due to the incompressibility and the
shear stress decreases. The pressure fields are quite similar for both approaches
(Figure 4.2.2b top and bottom-rigth). On the other hand, the distribution of
deviatoric horizontal and vertical stresses is quite different for both approaches
(Figure 4.2.2c). For the lubricant approach, these stresses satisfy the material
incompressibility in a better manner (Tzz +Tyy = 2uV -u =0).

The rolling force and torque are similar for both friction approaches, these are:

Avitzur Coulomb Lubricant

F =0.348 MN F =0.353 MN
M = 4828 NM M =4140 NM

The rolling force and torque present a stronger dependency respect to the
constitutive law than respect to the friction parameters. The magnitude order
of the rolling force and torque is the same for different friction parameters (This
does not happen for different constitutive laws, as shown in section 4.2.1). For the
lubricant approach using different lubricant viscosity pg the following values are
obtained:

po(dy.s/cmz) Force(MN) Torque(NM)

10® 0.346 4355.3

106 0.356 3164.7

For the Avitzur Coulomb approach using different Coulomb’s coeflicients the
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following values are obtained:

¢ Force(MN) Torque(NM)
0.10 0.348 4828.0
0.04 0.349 3321.2

However, non-realistic roll stress distributions are obtained if an incorrect friction
parameter is chosen. This can be observed in Figure 4.2.2d, where the shear
stress increases at outlet section (Figure 4.2.2d bottom-left) which does not make
physical sense. Furthermore, the velocity profile at the outlet section (Figure
4.2.2d top-right) indicates that metal is still pushed by roll, which does not agree
with experimental evidence.

4.2.3 Computation of free surface

Figure 4.2.3 shows the free surface evolution using the Lagrangian and the
Eulerian methods. It can be observed that the position of the material front is
basically the same for both methods. However, the Lagrangian method provides
information about the displacement and strain field at each time step. In addition,
the Eulerian method presents numerical problems in some cases due to the
parabolic differential equation that has to be solved. Problems like numerical
oscillation in zones where velocity field is almost perpendicular to the pseudo-
concentration gradient, and the difficulties to identify the inflow (T'; see equation
(23b)) at each time step to prescribe the pseudo-concentration, are critical in the
3D case as it will be presented in the next numerical example.

4.2.4 Microstructural changes

In Figure 4.2.4a can be observed the grain size distribution due to static
recrystallization for several time steps (Note that at the material front position, the
fictitious fluid grain size is zero). The parameter values for Sellars-Tegart model
were (2] a = 0.8, A =4.9-107%, dy = 300[uM], n = 0.15, D = 0.5[uM]*33, B =
2.5-10719, B' =1.06-10715, p =2, ¢ =0, 7 = —0.6, Qrez = 300[K J/mol], A' =
5.02-10%% for T' < 1000°C and A' = 3.87-10% for T > 1000°C, and Qg =
914[K J /mol] and 400[K J/mol] respectively for the same cases that A’.

At the roll section, no recrystallization is presented due to the high strain rate
values. After deformation, recrystallization occurs due to the high temperature
and residual strain and low strain rates. Figure 4.2.4b shows the values of

temperature, equivalent strain, equivalent strain rate and grain size for time 0.30s.
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This values confirm the experimental result: the higher the temperature is, the
larger the strain and the lower the strain rate are, and also more recrystallization
occurs [2]. Finally, the surface grain size is larger than the interior grain size, due

to the temperature distribution. This also agrees with experimental evidence [26].
4.2.5 Other results

Figure 4.2.5 shows the velocity, viscosity and equivalent strain rate fields for
time—0.40s. The viscosities are lower at the roll section where high equivalent
strain rate values occur, which is agree with the theory. Cut-off values for the
viscosity are imposed at zones where the strain rate values are small to avoid ill

conditioning of the equations (See eq. (19)).

4.3 Example III: 3D hot rolling problem

The principal aim of this example is to show the advantages of the Lagrangian
method to compute the free surface position for 3D hot rolling problems. Also,
some other 3D results are shown.

The geometry and spatial mesh of the problem is presented in Figure 4.3. due
to symmetry, only one quarter of the slab is simulated. The initial and boundary
conditions are similar to the 2D case presented above. The modified Sellars-Tegart
model, with the same parameter’s values chosen for Example II, was adopted.

4.3.1 Free surface and displacement time evolution

Figure 4.3.1a shows the free surface evolution using the Lagrangian method.
In Figure 4.3.1b the same result is presented with the Eulerian method. The
Lagrangian method gives more realistic slab shapes than the Eulerian one. In
addition, the Eulerian method presents numerical oscillation at the front of the
slab. This can be due to the fact that the velocity is almost perpendicular to the
surface tracking in the “z” direction.

In Figure 4.3.1c the deformed lagrangian mesh at differents time step can be
observed. The displacement field and the strain tensor are obtained from this
deformed mesh. Also, the final slab shape is obtained.
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4.3.2 Stress field

Figure 4.3.2 displays the stress and pressure fields at the contact surface (roll
and metal). The results are very realistic, and the incompressibility constraint is
satisfied (see plots for deviatoric stress XX and deviatoric stress YY). The shear
stress behaviour is analogous to the 2D case. In the first part the metal is pushed
into the roll (high shear stress), after the metal increases the velocity due to the
incompressibility and the shear stress decreases. Also, the pressure field is very
realistic; it presents high positive values at the roll section, and high negative values
at inlet and outlet section. This negative values are due to the metal expansion
(swelling effect)..

4.3.3 Other results

Figure 4.3.3 shows the temperature, velocity, viscosity and equivalent strain
rate fields at time=0.20s. The behaviour of these fields are similar to the 2D cases.

5. CONCLUSIONS

In general, the finite element model developed for hot rolling processes
provides results that are according to the problem’s physics and close to
the experimental data. The principal variables: velocity, temperature, and
displacement fields, present a good behaviour. Several constitutive laws for
metals at high temperature have been implemented and evaluated. Two friction
approaches have been considered and a model to computed microstructural
changes has been implemented. The principal conclusion from the numerical
examples are shown below.

The stress and pressure fields depend on the chosen model to interpolate high
temperature properties of metals. The Hajduk model yields to stresses values
larger than the modified Sellars-Tegart model. However, both model present
similar strain, strain rate and temperature fields. Then, the differences are due to
the fact that the yield stress computed with the Hajduk model is larger than that
computed with the modified Sellars-Tegart model. This conclusion are so far only
valid for the parameter’s values used in this work.

The roll’s force and torque present values are very close to the experimental
data. These values strongly depend on the chosen constitutive law. In general,



36

the modified Sellars-Tegart model to compute the yield stress at high temperature

values leads to force and torque results closer to the experimental data.

The strain rate and viscosity fields present a good behaviour. Large strain rate
and small viscosity values are obtained at the roll section. This makes physical

S€nse.

Both friction elements provide velocity profiles and stress distributions that
also make physical sense. The friction parameters can be varied in a short range
to adjust the roll’s force and torque values. However, these valuse are not strongly
dependent on friction parameters, i.e., large friction parameter variations result in
small force and torque variations. Finally, even though both friction approaches
produce similar values of force and torque, the stress distribution at the roll surface

is smoother and more physical for the lubricant approach than for the Avitzur

Coulomb model.

The free surface computation using the Lagrangian method provides better
results than the Eulerian method in the 3D case. This first approach shows good
behaviour for slow creeping flows. In addition, with the Lagrangian methodology
the displacement and strain fields can be computed and the numerical problems of
the Eulerian method are avoided. Computations of the equivalent strain field using
an Eulerian approach presents the same problems than the Eulerian free surface.
The equation to be solved is parabolic and the avoidance of numerical oscillations
requires the definition of a smooth initial equivalent strain field [9], which does not
make much physical sense. In addition, the inflow has to be calculated at each time
step to prescribe the equivalent strain, which is not trivial for 3D cases. Moreover,
the strain field computation using the Lagrangian method presents good results
and avoids the problems of Eulerian method. In addition, the non-linear part of

the strain tensor can be easily computed.

Computation of the microstructural changes (grain size) can be performed very
easily from the thermomechanical variables given by the finite element model. The
grain size distribution agree with the experimental evidence, i.e., the austenitic
grain size is larger at the surface of the slab than in the interior. Moreover, the
recrystallization results are directly proportional to the temperature and the strain
fields, and inversely proportional to the strain rate field.

In conclusion, the numerical formulation developed and the corresponding
computer code for the analisys of hot rolling processes seems to be a powerful

tool for enhanced design and analisys of practical hot rolling operations.
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*******************k**‘k*******************************************‘k*

PROBENNUMMER : PROBE 39/40
ABMESSUNGEN VOR DER UMFORMUNG : DICKE : 24.10 MM
GESAMTBREITE : 124.70 MM
BREITE NR 39 3 62.30 MM
BREITE NR 40 2 62.40 MM
ABMESSUNGEN NACH DER UMFORMUNG : DICKE : 20.15 MM
GESAMTBREITE : 126.15 MM
BREITE NR 39 : 63.05 MM
BREITE NR 40 2 63.10 MM
BERASTERTE PROBENHAELFTE 2 40
RASTERGROESSE z 1.00 * 1.00 MM
RASTERAUFBRINGUNG MIT : KODAK KTFR 1 : 3
RASTER-AETZUNG 41 .8 G FECL36H20 AUF 100 ML H20 / 39 BAUME
ZWISCHENSCHICHT BAYER LEUKONIN BLAU : GROSSE DICKE/TROCKEN
RASTER-RAUHTIEFE $ VOR : * Kk kK
NACH 2 * Xk k k%
SCHUTZGAS (TECHNISCH REIN) : LINDE ARGON 4.8
OFENTEMPERATUR : 1200 @
HEIZBEGINN : 11.10 UHR
HEIZENDE . B 11.55 -UHR
ERWAERMUNGSZEIT : 45 MIN
ABKUEHLUNG AN LUFT AUF : 1000 C
UEBERSETZUNG : 13.6 : 1 -
WALZENRADIUS 3 146.5 MM
MOTORDREHZAHL (BEIDE ANTRIEBE) : 200 UPM
UMFANGSGESCHWINDIGKEIT WALZE 2 0.2256 M/S
HYDRAULIKDRUCK FLACHZYLINDER 3 400 BAR
HYDRAULIKDRUCK HUBZYLINDER 7 100 BAR
LUMISCRIPT :
PYROMETER TEMPERATUR EIN 3 955.0 C
PYROMETER TEMPERATUR AUS : 970.0 C
WALZKRAFT : 0.630 MN
DREHMOMENT UNTEN i 7014.2 NM
DREHMOMENT OBEN 3 6126.1 NM
WALZGUTGESCHWINDIGKEIT EIN : 0.1948 M/S
WALZGUTGESC  ~ DIGKEIT AUS : 0.2473 M/S
GEMESSENE W. IDREHZAHL 7 14.35 UPM

X/Y-SCHREIBEK

ZEIT [S] TEMPERATUR (C] OBEN MITTE UNTEN

0.0 OFENAUSTRITT 1200 1200 1200
42.0 ABKUEHLUNG 1050 1050 1010
52.1 BEGINN V:i:ZSPALT 1010 1020 970

= MINIMUM-WALZSPALT 935 1015 940
53.7 ENDE WALZSPALT 950 1000 940
GESAMT-WALZZEIT 2 1.7 [S]

Table A-1: Experimental conditions.
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Figure 4.1b Finite element mesh (210 Q2/P1 elements, 903 nodal points).
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Figure 4.1.2b Experimental horizontal velocity.
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Figure 4.1.2d Experimental total velocity.
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Figure 4.1.3b Experimental temperature.
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Figure 4.1.4b Experimental effective strain.
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Figure 4.1.4d Experimental effective strain contours.
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Figure 4.1.5b Experimental effective strain rate.



‘SINOJUOD 9)Bl UTRI)S SISIJA] UOA [BOLI2WINN O0CQ'T'F vhﬂwmm

el
9T
76'¢
¢£T'S
12%°]
x M
A
]
0=NIN
S8L=XVIN
VHALS VIIALS TVAON
v HNLL Ob ‘ddLS
AR
SIAOYd ‘THAOIN
€661 NVI 1T YANNTVLYD 3d LVLISYTAINN azo-1'T MHIAWHL/NIOWHA




tPV / VO W/ rmaml

0.027

.0.017

A\
VA

3

—

0.00

.

VY

—_

A A

AN\

|
g

6 .n_\.\x 10
] \/N/f///M
\//
\//
e el
|
# % 0“0“0“0““&%%/

N S > 7
Q%&%%%&%&

X
i
syﬂ. s

PROBE

et N
A%

oS QQ""O‘//

\
I\
SR

NS
=
3209 .4.,., s

/
N T
\

/
IR

N U
R

]

SESSAOCCS

40

0

//[/./NO

NS

4!0””4"0

<SS
<TSITSISSS
eSS oos

SO

//
/

i
.

i

[ [ [ ] ]

<O

5% oKD
A e,
-"Rﬂﬁ%um%«%&mummmmmm»o

I’ ’

)
0
N
o
A
)

DO
oy
W
o0
o
()
W

"

)
.:::
o’oo.
0::::’0‘
0
":’o’n
@

4
.0

)
y
y
)

>

SO

)

SO
SO

S SO

SIS <P

::

)
W
M
o0
(i
A
0.0.:

)

)
N
\

Figure 4.1.5d Experimental effective strain rate contours.
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Figure 4.1.6b Experimental horizontal stress.
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‘Figure 4.2.1a Stress fields [dy/cm?] for different constitutive laws.
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Figure 4.2.1c Viscosity [dy/em?] and equivalent strain rate [s~1].
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Figure 4.2.2b Shear stress and pressure [dy/cm?] distribution at roll surface.

¢ =0.1, m=1.0 and pq = 10.
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Figure 4.2.2d Velocity profiles [cm/s] and stress distribution [dy/cm?] at roll surface for { = 0.04.
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Figure 4.2.4a Grain size [pM] time evolution.

ial grain size 300uM (Note:Fictitious fluid grain size is zero)
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Figure 4.2.5 Velocity field [cm/s], viscosity [dy - s/cm?] and equivalent strain rate.
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Figure 4.3 Geometry and spatial mesh for Example III.
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Figure 4.3.1b Free surface with Eulerian method.
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Figure 4.3.3 Temperature [0 C], velocity [em/s], viscosity [dy - s/cm?] and equivalent strain rate [s7"].
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