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FORMULATION OF THE STOKES PROBLEM USING ARBITRARY
INTERPOLATIONS*
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Abstract. The stress-displacement-pressure formulation of the elasticity problem may suffer
from two types of numerical instabilities related to the finite element interpolation of the unknowns.
The first is the classical pressure instability that occurs when the solid is incompressible, whereas the
second is the lack of stability in the stresses. To overcome these instabilities, there are two options.
The first is to use different interpolation for all the unknowns satisfying two inf-sup conditions.
Whereas there are several displacement-pressure interpolations that render the pressure stable, less
possibilities are known for the stress interpolation. The second option is to use a stabilized finite
element formulation instead of the plain Galerkin approach. If this formulation is properly designed,
it is possible to use arbitrary interpolation for all the unknowns. The purpose of this paper is precisely
to present one of such formulations. In particular, it is based on the decomposition of the unknowns
into their finite element component and a subscale, which will be approximated and whose goal is
to yield a stable formulation. A singular feature of the method to be presented is that the subscales
will be considered orthogonal to the finite element space. We describe the design of the formulation
and present the results of its numerical analysis.
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1. Introduction. The analysis of the three-field formulation of the linear elastic
incompressible problem is probably not a goal by itself, but rather a simple model to
study problems in which it is important to interpolate the stresses independently from
the displacements and, in the case we will consider, also the pressure. Perhaps the
most salient problem that requires the interpolation of the (deviatoric) stresses is the
viscoelastic one. In this case, the algebraic constitutive equation (linear or nonlinear)
that relates stresses and strains has to be replaced by an evolution equation (see [3]
for a review).

The problem we will study in this paper is the simple Stokes problem arising
in linear elasticity or creeping flows, taking as unknowns the displacement field (or
velocity field, in a fluid problem), the pressure, and the deviatoric part of the stresses.
In particular, we shall consider that the material is incompressible.

When the finite element approximation of the problem is undertaken, it is well
known that incompressibility poses a stringent requirement in the way the pressure
is interpolated with respect to the displacement field. The displacement and pres-
sure finite element spaces have to satisfy the classical inf-sup condition [8]. Several
interpolations are known that satisfy this condition and yield a stable displacement-
pressure numerical solution. However, less is known about another inf-sup condition
that needs to be satisfied when the stresses are interpolated independently from the
displacement. This inf-sup condition is trivially satisfied for the continuous problem,
but only a few interpolations are known that verify it for the discrete case. It is
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discussed, for example, in [25]. In the context of viscoelastic flows, a popular stable
three-field interpolation was introduced in [23], and the numerical analysis was un-
dertaken in [15]. See also [28, 26] for other contributions proposing different stable
finite element interpolations.

The inf-sup conditions for the displacement-pressure and stresses-displacement
interpolations are needed if the standard Galerkin method is used for the space dis-
cretization. However, there is also the possibility to resort to a stabilized finite element
method, in which the discrete variational form of the Galerkin formulation is modified
in order to enhance its stability. The purpose of this paper is precisely to present one
of such formulations. In particular, the one proposed here is based on the decomposi-
tion of the unknowns into their finite element component and a subscale, that is, the
component of the continuous unknown that cannot be captured by the finite element
mesh. Obviously, this subscale needs to be approximated in one way or another. This
idea was proposed in the finite element context in [20, 21] and termed variational
multiscale approximation, although there are similar concepts developed in different
situations (both in physical and numerical modeling).

The important property of the formulation to be presented here is that the sub-
scale will be considered orthogonal to the appropriate finite element space. This idea
was first applied to the Stokes problem in displacement-pressure form in [9], and sub-
sequently applied to general incompressible flows in [10]. Likewise, we will introduce
a way to motivate an expression for the subscales on the element boundaries. These
will allow us to consider discontinuous interpolations for either the pressure or the
stress, or both. We will restrict ourselves to conforming approximations, and thus the
displacement interpolation will be considered continuous.

Other stabilization methods based on projecting the pressure or the pressure
gradient to deal with the incompressibility constraint can be found in the literature. A
simple method based on projecting onto discontinuous pressure spaces of lower order
can be found in [13]. In [4] a method based on projecting onto pressures defined
on patches of elements is proposed, which can be also interpreted (after appropriate
approximations) in the variational multiscale framework [7]. See also [24] for an
abstract analysis and generalization of these type of methods. Nevertheless, some
conditions on the finite element mesh are often required that are difficult to meet in
practical unstructured finite element meshes.

Different stabilized formulations for the three-field Stokes problem can be found
in the literature. The GLS (Galerkin/least-squares) method is used, for example, in
[5, 16, 27]. In [19, 14] the authors propose what they call EVSS (elastic-viscous-split-
stress), which is related to the formulation proposed in this paper in what concerns
the way to stabilize the stress interpolation. An analysis of both approaches, GLS
and EVSS, is presented in [6].

Even though our interest is to consider incompressible materials and therefore
to include the pressure as a variable, a similar formulation to the one proposed here
could be applied to other versions of the elasticity problem. The difficulty to devise
stable total stress-displacement interpolations is well known (see, for example, [2] and
also the general approach adopted in [1]). A stabilized formulation for the stress-
displacement-rotation formulation can be found in [17] (in 2D) and [18] (in 3D). In
these references the stability of the Galerkin formulation is also enhanced by adding
some least-square-type terms. The application of the formulation to be presented to
different versions of the elasticity problem would be straightforward.

The paper is organized as follows. In the following section we present the problem
to be solved and its Galerkin finite element approximation, explaining the sources of
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numerical instability. Then we present the stabilized finite element formulation we
propose, for which we present a complete numerical analysis in section 4. The paper
concludes with some final remarks.

2. Problem statement and Galerkin finite element discretization.

2.1. Boundary value problem. Let Q be the computational domain of R?
(d =2 or 3) occupied by the solid (or fluid), assumed to be bounded and polyhedral,
and let 9Q be its boundary. If w is the displacement field, p the pressure (taken as
positive in compression), and o the deviatoric component of the stress field, the field
equations to be solved in the domain () are

(2.1) -V.-o0+Vp=Ff,
V-u=0,

1 Sy —
(2.3) EU—V u =0,

where f is the vector of body forces, y the shear modulus, and Vou the symmetrical
part of Vu. For simplicity, we shall consider the simplest boundary condition u = 0
on 0N).

2.2. Variational form. To write the weak form of problem (2.1)—(2.3) we
need to introduce some functional spaces. Let V = (H}(Q))¢, @ = L%(Q)/R, and
T = (LQ(Q))gerr‘f, the space of symmetric tensors of rank two with square-integrable

components. If we call U = (u,p,0), X =V x Q x 7, the weak form of the problem
consists in finding U € & such that

(2.4) BU,V) = L(V),

for all V = (v,q,T) € X, where

(2.5) B(U,V) = (st, o)—(p,V-v)+ (¢, V- -u)+ i(a,r) — (Vsu, T),
(2.6) L(V) = (f,v),

where (-, -) is the L? inner product and (-, -) is the duality pairing between V and its
dual, (H=1(Q))¢, where f is assumed to belong.

2.3. Stability of the Galerkin finite element discretization. Let us con-
sider a finite element partition P, of the domain Q2 of diameter h. For simplicity, we
will consider quasi-uniform refinements, and thus all the element diameters can be
bounded above and below by constants multiplying k. The extension of the following
analysis to general shape-regular meshes (also called nondegenerate meshes) can be
done using the strategy developed in [11].

From the finite element partition we may build up conforming finite element
spaces Vi, C V, Qp C Q, and 7, C 7 in the usual manner. If X, = V), x Qp X 7Tj,
and Uy, = (up, pr,on), the Galerkin finite element approximation consists in finding
Uy, € &}, such that

(2.7) B(Un, V) = L(Vh),

for all Vi, = (vn, qn, Th) € Xh.
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In principle, we have posed no restrictions on the choice of the finite element
spaces. However, let us analyze the numerical stability of problem (2.7). If we take
Vi, = Uy, it is found that

1
2.8 B(Up,Up) = —|lou |,
(2.8) (Un, Un) 2MllC’hH
where || - || is the L?*(Q) norm. It is seen from (2.8) that By, is not coercive in X}, the
displacement and the pressure being out of control. Moreover, the inf-sup condition
B(Up,V
inf  sup (Un, Vi)

UneXn vyex, |Unllxl|[Vallx —

is not satisfied for any positive constant 3 unless the two conditions

V.
(2.9) inf  sup _an, Vo) >y,
€ v, ev, lanlley, lvnllv,
vS
(2.10) inf  sup (T, V"vn) > Cy,

vV e, | ThllT, lvnllv, —

hold for positive constants C; and Cy (see, for example, [25]). In all the expressions
above, || - ||y stands for the appropriate norm in space ).

Conditions (2.9) and (2.10) pose stringent requirements on the choice of the finite
element spaces. Our intention in this paper is to present a stabilized finite element
formulation that avoids the need for such conditions and, in particular, allows equal
interpolation for all the unknowns. However, we will consider the most general case,
and we will assume that Vj,, Qp, and 7, are constructed from finite element interpo-
lations of degree k,, kp, and k., respectively, being the functions in V} continuous
but the stress and pressure interpolation possibly discontinuous.

Before closing this section, let us introduce some notation. The finite element
partition will be denoted by P, = {K}, and summation over all the elements will
be indicated as )" ,. The collection of all interior edges (faces, for d = 3) will be
denoted by &, = {E} and, as for the elements, summation over all these edges will
be indicated as ). The symbol (f, g)p will be used to denote the integral of the
product of functions f and g over D, with D = K (an element), D = 0K (an element
boundary), or D = E (an edge). Likewise, ||f||% = (f, f)p. Suppose now that
elements K7 and K5 share an edge F/, and let n; and ne be the normals to F exterior
to K7 and Ko, respectively. For a scalar function f, possibly discontinuous across F,
we define its jump as [nf ], = niflox,ne + N2 flok.nEe, and for a vector or tensor
v, [n-v]; :=n1-vok,nE + N2 - V|or,nE-

3. Design of the stabilized finite element approximation using sub-
scales. In this section we describe the finite element formulation proposed. The
arguments in this design step are necessarily heuristic. Their validity depends on
the numerical performance of the formulation, which will not be checked here (see
the final remarks in section 5), and on the numerical analysis to be presented in the
following section.

3.1. Decomposition of the unknowns. Let us start by explaining the basic
idea of the multiscale formulation proposed in [20] and applying it to our problem. If
we split U = U, + U’, where U}, belongs to the finite element space X}, and U’ to any
space X’ to complement X}, in X, problem (2.4) is exactly equivalent to

(3.1) B(Uh + UI, Vh) = L(Vh) YV, € Ay,
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(3.2) BU,+ U, V') =L(V') VW' ex'

In essence, the goal of all subscale methods, including the approximation with bubble
functions, is to approximate U’ in one way or another and end up with a problem for
Uy, alone.

Integrating some terms by parts and using the fact that u, = w' = 0 on 99, it is
easy to see that (3.1) in our case can be written as

1
B(Un, Vi) + (Vvp,0') — (0, V - vp) + @(Ul’m)

(3.3) + Z (g, [ngy —n-7h])E + Z (U, =V, +V - 11)x = L(Vh),
B K

where we have distinguished between the displacement subscale in the elements inte-
riors, u’, and on the edges, u;. The stress and pressure subscales are required only
in the element interiors (recall that they may be discontinuous).

On the other hand, integrating back some terms by parts in (3.2) it is found that

Z<'v’,—'n,p—|—'n,-o->3K—|—Z<v’,Vp—V.0'>K
K K
1
(34) + (¢, YV u)+ (0, 7) = (Vou,7) = L(V'),
I
which yield as Euler-Lagrange equations the original differential equations projected
onto X', together with the continuity of —mp + n - & across interelement boundaries
in the corresponding trace space.
Let us denote by P, the projection with respect to

(35) (f,9)n =D _ (£, 9)K,

K

for f and g such that the integral of their product in each K € Py is well defined.
Observe that (f, g), coincides with the L?(€2) inner product when f, g € L?(Q).

With this definition, (3.4) and the continuity of the stresses across interelement
boundaries imply

-V.o'+Vp =r, =f+V-on—Vpy+E§,

(3.6) V-uyp=r, ==V -u,+¢ in each K € Py,
ﬁo’ -Vl =r, = —iah + Vuy + &,
u' = uly
(3.7) [np—n-ol, =0 } on each E € &,

where £, &, and &, are orthogonal to V', Q', and 7", respectively, with respect to
projection Pj,. These vectors are responsible to enforce that the previous equations
hold in the space for the subscales, which still needs to be approximated (see [10]
for more details). Clearly, if (3.6) is to be understood in a classical sense, f should
be more regular than required up to now and, likewise, the subscales need to be
more regular than required. Nevertheless, for the moment we may assume as much
regularity as needed. We will see that the final problem (3.18)—(3.19) is well defined
in the functional framework introduced earlier.

The way to approximate the solution of problems (3.6)—(3.7) and to choose the
space for the subscales is the topic of the following subsection. The objective is to
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obtain a closed form expression for ¢/, p’, and u/ defined on the element interiors
and for u’; defined on the interior edges. Without any further simplification, the
problem is as complex as the original one. The essential approximation step consists
of approximating (3.6) without taking into account u’, and then approximating this
unknown assuming the subscales on the element interiors are known.

3.2. Approximation of the subscales in the element interiors. There are
several possibilities to deal with problem (3.6). As in [10], we will approximate o”, p/,
and u’ by using an (approximate) Fourier analysis of the problem. We start explaining
the basic idea and then we apply it to problem (3.6).

Let us consider a linear differential equation of the form LU = F posed in each
element domain K, where U is in general a vector unknown corresponding to a sub-
scale, £ a linear differential operator, and F' a given vector function. Let us denote the
Fourier transform by ~. Scaling the wave number as k/h, with k dimensionless and h
being the diameter of K, the basic heuristic assumption is to assume that U is highly
fluctuating, and thus dominated by high wave numbers. Thus, the boundary term
in the Fourier transform of the derivatives can be considered negligible compared
with the term involving the integral in K, since the former is O(1) and the latter
O(|k|). This essential approximation amounts to evaluating the Fourier transform of
the equation as for functions vanishing on 9K (and extended to R? by zero).

Suppose now that the differential equations are written in such a way that the
product F*'U is dimensionally well defined; that is to say, all the terms in the sum
have the same dimension. Here and in what follows we assume that U, possibly with
a subscript, is an element in the domain of £ and F', may be also with a subscript,
is an element in the range of £. It is obvious that the products FfFy and UfUs; may
not be dimensionally well defined. Let M be a scaling matrix, symmetric, positive-
definite, and possibly diagonal, which makes the products FfMF, and UM ~1U,
dimensionally consistent. We will denote |F|3, = F*MF and |U[3,_, = U'M~'U
and refer to these quantities as the squared M-norm of F and the squared M ~!-norm
of U, respectively. Likewise, we denote by || F'|| 12 (k) the L?(K) norm of |F|y;.

Our purpose is to approximate LU = AU in a certain sense, with A a matrix
which has to be determined and that will be called matriz of stabilization parameters.
We propose to do this imposing that the induced L3,(K) norm of A is an upper bound
for the induced L3,(K) norm of L; that is to say, £l 22, (k) < [All L2, (x)- The symbol
< has to be understood up to constants and holding independently of the equation
coefficients.

According to the approximation explained, we may write the Fourier transform
of LU as L(k)U(k), where L£(k) is an algebraic operator. The approximate upper
bound of [|£[|zz (k) can be obtained as follows. For any U in the domain of £ we
have

||~CUH%§W(K)=/KIEU|§de
~ [ IE®D k)
9
< [ B BAD R
= IZGO [ 1) R

~ LNz (-
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In the first and in the last steps we have used Plancherel’s formula for the approximate
Fourier transform, whereas k° is a wave number whose existence is guaranteed by the
mean value theorem. From the previous result it follows that ||L]|z (x) < |L(K°)|ar
for a certain wave number, still denoted k°. Therefore, our proposal is to choose A
such that |L(k”)|[pr = |A|pr. Obviously, the value k° is unknown. Its components
have to be understood in this context as algorithmic coefficients.

The norm |C(k0)| M can be computed as the square root of the maximum eigen-

value (in module) of the generalized eigenvalue problem E(ko)tM E(kO)X =AM~1X.
This leads to an effective way to determine the expression of matrix A.

The general idea exposed allows one to obtain the correct matrix of stabilization
parameters for several problems (see [12] for an obtention of this matrix in the context
of the hyperbolic wave equation). In particular, we will apply it now to the design
of this matrix for the problem considered in this paper. Furthermore, we will show
that in this particular case a simple dimensional argument is enough to obtain A if
we assume this matrix is diagonal.

For the sake of simplicity, let us consider the case d = 2 (being obvious the
extension to d = 3) and let us organize the unknowns as U = (u1,us,p, 011, 012, 022).
The first point is to choose matrix M. If [] denotes a dimensional group, from (3.6)
it is readily checked that

h2
| ] =R =i W || =0 =

and therefore we may take
(3.8) M =diag (m,m,1,1,1,1), m:= —.

Let us consider matrix A of the form
A= diag(Aua AU7 Apa A<77 Aoa Aa)'

If we apply the strategy presented above to determine A,, A,, and A,, it turns out
that these parameters are uniquely determined by dimensionality. To see this, let us
start by noting that if £ is now the operator associated to (3.6), it can be checked
that the eigenvalue of the problem

ML) ML(K)X = \X
has dimensions [A] = [u]~2, and therefore
MAMA = diag (A2m?, A2m?, A2, A2, A2, A2)

has to have all the diagonal entries of dimension []~2. Being u the only parameter
of the equation, this immediately implies that

2
A;l = y—, A;l = ap2p, A;l = a,2u,
I

where «,,, ap, and o, are constants that play the role of the algorithmic parameters
of the formulation. This allows us to approximate the solution of (3.6) as

2
(3.9) Wy = an s,
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(3.10) P = ap2ury,
(3.11) o' = a,2ur,.

These are the expressions we were looking for.

It only remains to determine which is the space of the subscales, that is, to choose
the functions &, &p, and §,. Our particular choice is to take the space for the subscales
Py, orthogonal to the finite element space (see (3.5) for the definition of Py). In view
of (3.9)—(3.11), this implies that 7, 7, and 7, must be orthogonal to V4, Qy, and
Ty, respectively. Denoting by P,, Pp, and P,, the P, projections onto these spaces
and by P;-, B;", and P;- the orthogonal projections, we will have that

h2
€&, =—-P.u(f+V-0,—Vp,) and u’Kzau;Pj(fﬂLV-ah—Vph),

& = —Pp(—=V-uyp) and  p' = ap2uP, (=V - up),

1 1
I <——ah + Vsuh) and o' = a,2uP; (——ah + Vsuh) )
2u 2u

Clearly, we have that P;-(—0o) = 0. We may also assume for simplicity that the
body force belongs to the finite element space, and thus P (f) = 0. Hence, the
expressions for the subscales we finally propose are

/ h?

(3.12) Uy :au;Pj(V-ah—Vph),
(3.13) P =—ap2uP;-(V - up),
(3.14) o' = a,2uP; (Vouy).

3.3. Approximation of the displacement subscale on the interelement
boundaries. The objective now is to propose an expression for u’; in (3.7). Let K;
and K5 be two elements sharing an edge E (face, for d = 3). The idea is to assume
that the expressions (3.12)-(3.14) just obtained for wj , p;, and o on element K;,
i = 1,2, hold up to a distance 6 = dph, 0 < dy < 1/2, to the edge F, and that the
normal derivative of u’ on E can be approximated as

1
(3.15) n; - Vu'|ox.nE = 5 (up —uk,), i=12,

which will contribute to the stress on 0K; N E with

n; - ogloxine = 2nAM; - VU [orinp),

where tangential derivatives w’ on OK; N E have been disregarded and A is a sym-
metric and positive-definite matrix which comes from the fact that o'|gk,ng has to
be approximated by the symmetric gradient of u’ on K; N E.

Calling also u’Ki, p;, and o7, the extension of the subgrid displacement, pressure,
and stress computed in the interior of element K; (i = 1,2) and extended to the
boundary, the continuity of the total stress expressed in (3.7) implies

0=[npr+p)—n-(on+o' +op)lg
= [n(pn +p') —n-(on+0)]g —2uA[n-Vu']y,
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and using (3.15)
5
(3.16) ulp = {uche + 5 A7 [l +9) —n (@0 + ) g

where {u }p = (uf, + Y, )|r/2 is the average of the displacement subscales com-
puted in the element interiors and extended to edge E.

Expression (3.16) can be used as subscale on the element boundaries. In fact, all
the analysis presented in section 4 carries over when it is used. However, both from
numerical experiments and from the numerical analysis presented later on it turns
out that it suffices to use a simpler expression, obtained by keeping the dominant
finite element terms in (3.16) and replacing A by the identity (recall that this is a
symmetric and positive-definite matrix). The bottom line is expression

(3.17) uly = E[[nph—nﬂ'h]]E,

which will be used in the following.

3.4. Stabilized finite element problem. Once the approximation for sub-
scales in the element interiors (3.12)—(3.14) and for the displacement subscale on the
interior edges (3.17) have been derived, the stabilized finite element problem is ob-
tained by inserting these approximations into (3.3). Noting that (¢/,74) = 0, the
result is the following: Find Uj € A}, such that

(3.18) Bgstab (Un, Vi) = L(Vh),
for all V}, € &}, where

Bstab(Uha Vh) = B(Uha Vh)

+ a6 2u(P(VE0h), PH(VOun)) + 0p20( P (V - wp), P (V - uy))
h2
o Y (Pr(Van =V - 7h), Pr(Vpn = V - o1)) i
K

(3.19) +520—SZ<[[7L(]}1_n'Th]]a[[nph_n'Uh]DE'
E

The stabilized finite element method we propose and whose stability and convergence
properties are established in the following section is (3.18). In expression (3.19) for
the stabilized bilinear form some orthogonal projections are used to highlight the
symmetry of the resulting formulation. If P+ is any of the orthogonal projections
appearing in (3.19) and P = I — P, in the implementation of the method for any
discrete functions f, and g, one may compute (PL(f4), P(gn)) = (fn,9n — P(gn))
and treat P(gp) either implicitly or in an iterative way, that is, evaluated at a previous
iteration of an iterative scheme of any type. For example, denoting with a superscript
the iteration counter, in the simplest case (P*(f4), P*(g})) could be approximated by
(fn, g — P(gi ")) (see [11] for more comments on implementation issues of a similar
formulation).

Finally, let us comment on the choice of the constants o, v, o, and Jp. The
analysis to be presented next can be applied for any set of values. In some numerical
tests using linear and quadratic elements, with both continuous and discontinuous
stresses and pressures (alhough with the same interpolation for o, and p;) we have
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observed that these parameters can be taken in a wide range with little influence in
the results. By default, we use ay = o, = 1, a, = 4, and Jp = 1/10 in our numerical
tests.

4. Numerical analysis of the formulation. We present here the numerical
analysis of the method proposed in the previous section using heuristic arguments.
The norm in which the results will be first presented is

1
IVall? := EHMH? + ao2p|| VEun1* + ap2ul|V - op?
h2 2 h 2
(4.1) + s Z IVan — V- Tull% + 60; Z Ingn —n - 71 ]l%,
K E

although later on we will transform our results to “natural” norms. In fact, the term
multiplied by ¢, is unnecessary, since it already appears in the term multiplied by
. However, we will keep it for generality, to see the effect of the subscale associated
to the pressure introduced in the previous section. Moreover it would be essential in
the case of some nonconforming elements (not considered in this work) for which the
discrete Korn’s inequality does not hold in general (see [22]). In all what follows we
will assume that all the numerical parameters o, ap, oy, and 6y are positive.

As it has been mentioned in section 2, we will consider for the sake of conciseness
quasi-uniform finite element partitions. Therefore, we assume that there is a constant
Ciny, independent of the mesh size h (the maximum of all the element diameters),
such that

(42) ||vvh||K S CinvhilnvhHKa

for all finite element functions vy, defined on K € Pj. This inequality can be used for
scalars, vectors, or tensors. Similarly, the trace inequality

(4.3) HU”%K < Chrace (h71||v|‘%< + hHVUH%{) )

is assumed to hold for functions v € H'(K), K € Pj,. The last term can be dropped if
v is a polynomial on the element domain K. Thus, if ¢}, is a piecewise discontinuous
polynomial (the pressure or the stresses, in our case) and 1), a continuous one, it
follows that

(4.4) ZH[[”‘Ph]]HzE < 2Ctracch_1ZH<Ph”%<a
E K
1 -
(45) S lnl3 < g Cnceh™ 3 Il
E K

In all what follows, C', with or without subscript, will denote a positive constant,
independent of the discretization and the physical coefficient u, and possibly different
at different occurrences.

We start proving what is in fact the key result, which states that the formulation
proposed is stable in the norm (4.1). This stability is presented in the form of an
inf-sup condition:

THEOREM 4.1 (stability). There is a constant C > 0 such that

. Bstab(Uha Vh)
(4.6) inf sup ——————+ >C.
Un€Xnviex, NUnllIVall
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Proof. Let us start noting that, for any function U, € A}, we have
1
Bstab (Un, Un) = —IIUhH2 + g 20l P (V) ||* + a2 Py (V- wa )|

(4.7) Z:IIPl Vp, = V- op ||K+_ZH np, —n- o ]||%.

The basic idea is to obtain control on the components on the finite element space for
the terms whose orthogonal components appear in this expression. The key point is
that this control comes from the2 Galerkin terms in the bilinear form Bg;ap.

Let us consider Viy 1= ay = ( w(Vp, — V -01),0,0). Recall that P, is defined
based on elementwise integrals, and thus P, (Vp, —V - o}) is well defined. We will use
the abbreviation v; = P,(Vp, — V - o). A straightforward application of Schwarz’s
inequality and the inverse estimate (4.2) leads to

h2 Oinv
stab(Uha Vhl) > B(Uh, Vhl) - adz,uau [

lo1[[[1P; (V5 un) |

h2 Oinv 1
(4.8) —%2#%7 ol By (V- )]l

On the other hand,

[\

B(Up, Vi) = auh > (Vv1,0m)k — (V- v1,p0)K)
K K

h? h?
= s > (=01, V- on)k + (v1, Vpn)k) — s > (i, [npr—n-on])e
K E

h? h?

> a,— Y foillk —aw— > lvilsllnpn —n-on]ls
B [
h2 thracc

2 o Dol — o= 3 impn = -l

where Young’s inequality and (4.5) have been used in the last step. Using this in (4.8)
and making use again of Young’s inequality, it follows that there exist constants C;,
7 =1,2,3,4, such that

h? h
Bstab (Un, Va1) > CllauFHPu(vph ~V-ou)|* - Cl2auﬁ Z Ilnpn —n-on ]l
3
(4.9) — Crzaal | Py (Voup)||? = Cracwail| Py (V- un)|%.

Consider now Vipo = ap2u(0,¢2,0), where ¢o = P,(V -up). Note that this
function may be discontinuous across interelement boundaries. It turns out that

h2
Bstab (Un, Vi) = ay2p]q2||* + O‘uﬁ Z (Vao, PF(Vpp — V- o1))k
K

00202 (Taa ] Inpn — - o
K E
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The same strategy as before, now using (4.4) to deal with the last term in this ex-
pression, leads to the existence of certain constants Caj, j = 1,2, 3, such that

h2
Bitan(Un, Vaz) = Cor0pu||Py(V - un)||* — szapaizl\Pi(Vph ~ Vo)l
h
(4.10) —Czsap5§;ZH[[nph—n-oh]]l\%-
E

Finally, taking Vi3 := a,2u(0,0, —P,(V7uy;)) we obtain that there exist con-
stants Cs;, j = 1,2, 3,4, such that

1
Batab(Un, Vi) > Cz100 ]| Py (Viup)||* — 032(10;H0'h|‘2
o 1 2 o 2
(411) - OBB%%EHPU (Vpp, =V -on)lI” - 034%50; > lnpn —n- o]l
E

Let Vi, = Uy, + B1 Va1 + B2Via + B3Vas, with Vi, @ = 1,2, 3, introduced above. Adding
up inequalities (4.9)—(4.11) multiplied by 31, 02, and [s, respectively, and adding also
(4.7), it is trivially verified that the coefficients §;, ¢ = 1,2, 3, can be chosen large
enough so as to obtain

(412) Bstab(Uha Vh) > C|||Uh|||2
On the other hand, we have that

h2
IVarll? < 205 (e + ao—)C?nV;HVph ~V-au)? < U,

[Viall? < 2102 (20, C2, + 460Chrace) |V - un||® < C|UA|,

mv

IVisll® < 2020(1 4 20, C2, + 466Crace) ||V un||? < UL,

mv

from where it follows that ||V,|| < C||Un|l. Using this fact in (4.12) we have shown
that for each Up, € X&), there exists V}, € Xj, such that Bsian (Un, Vi) > ClURIIVR
from where the theorem follows. d

Once stability is established, a more or less standard procedure leads to con-
vergence. To prove it, we need two preliminary lemmas. The first concerns the
consistency of the formulation:

LEMMA 4.2 (consistency). Let U € X be the solution of the continuous problem
and Uy, € X, the finite element solution of (3.18). If f € Vi, and U is regular enough,
s0 that Bgstab(U, V3,) is well defined, then

(4.13) Bstab(U — Uy, Vh) =0 YV, € X,.

Proof. This lemma is a trivial consequence of the consistency of the finite element
method proposed (considering the force term f in the finite element space). Note
that all the terms added to B in the definition (3.19) of Bstap, vanish if Up, is replaced
by U (recall that o, could have been added to Vouy, since P;- (o) = 0). O

Remark 4.1. If P-(f) # 0 there are two options. The first is to include this
orthogonal projection in the definition of the method, and therefore to modify the
right-hand side of (3.18). All the analysis carries over to this case. The second is to
take into account the consistency error coming from f in (4.13). It is easy to see that
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in this case this equation can be replaced by Bgstab(U — Up, Vi) < CE(h)||Vh||, where
E(h) is introduced below, and the following results can be immediately adapted.

The second preliminary lemma concerns an interpolation error in terms of the
norm ||-|| and the bilinear form Bgap for the continuous solution U = (u,p,o) € X,
assumed to have enough regularity. Let W), be a finite element space of degree k.
For any function v € H k'/u“(Q) and for 4 = 0,1, we define the interpolation errors
g;(v) from the interpolation estimates

. k' 4+1—14 .
(414) vhlélé\/h % HU — Uh”Hi(K) < Ch vt ; HUHH%'-H(K) = gi(’l}),

where k! = min(k,, k]). We will denote by ¥, the best approximation of v in W,
Clearly, we have that eo(v) = he1(v). We will use this notation for v = u (dis-
placement), v = p (pressure) and v = o (stresses), being the respective orders of
interpolation k., k, and k.

This notation will allow us to prove that the error function of the method is

(9) + ——col(o).

(4.15) E(h) = \/pe1(u) + %80 N

This is indeed the interpolation error:

LEMMA 4.3 (interpolation error). Let U € X be the continuous solution, assumed
to be regular enough, and Uy € X, its best finite element approximation. Then, the
following inequalities hold:

(4.16) Bitan(U = Up, Vi) < CE(h) ||Vl
(4.17) |U = Unll < CE(h),
where E(h) is given in (4.15).

Proof. Let us start considering a general discontinuous finite element interpolation
of a function v. Using the trace inequality (4.3) we have that

S o n—ow)]II% <2l —onlljx
E K
< 2Ckrace Z (h™YJv — Bn||% + B||Vv — ViR ||%)
K
(4.18) < C (h'ej(v) + hel(v)) .

The same estimate holds for a continuous interpolation:

(4.19) >l =wn)lE < C (A7 ej(v) + hef(v))
E

Let us prove (4.17). By the definition (4.1) of the norm ||-|| and the result just
obtained it is immediately checked that

~ 1
U -G <C [W-a(a) T o2 () + a2yl ()
h2 9 h? 9 h2 9 h? 9
4+ ay—ei(p) + ay—ei(o) + 0g—ei{(p) + do—ei(o) ],
L) + 0 elo) + 0 ) + o e3o)

and (4.17) follows.
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Let e, = u—Up, €p = p— Pn, and e, = 0 — &), The proof of (4.16) is as follows:
Bgtan (U — Un, Vi) = (Vs'vh, er) — (ep, V- vp) + i(‘rh, es)
- Z (=Van +V - Th,eu)k + Z (Ingn —n-7h],eu)E
K E
T ap(PH(VS0n), PE2uV5e, — e0)) + ap2u(PE (Y - 01), PA(Y - 1))

00 3 (g —n- ] [ney — - )

E
< C|VulvViv IILHe [+ VeV -v Hille [+ 5—=lTnll—=lles|l
~ h \/ﬁ o h \//_14 D 2\/_ Th \/— €o
f vh VE
+ —|Vgn, — V-1 eullx + —|[ng, —n - T ey
Z\/_II an nllx=—lleulx Z\/ﬁl\ an h]]IIE\/EH e

+ VAV VEI Ve + \/ﬁllvsvhllﬁlleall + VIV - onllVEllV - eull

+ZE: %I[{nqh -n- Th]]IIE@ (Ilnep ]l + [[n - eo ]l e)

N

All the terms have been organized to see that, after making use of (4.18) and (4.19),
they are all bounded by CE(h)||V,]|, from where (4.16) follows. O

We are finally in a position to prove convergence. The proof is standard, but we
include it for completeness.

THEOREM 4.4 (convergence). Let U = (u,p,0) € X be the solution of the
continuous problem. Then, there is a constant C' > 0 such that

IU = Unll < CE(R),

where E(h) is given in (4.15).

Proof. Consider the finite element function Un—Uy € X, where, as in Lemma 4.3,
U, € Xy is the best finite element approximation to U. Starting from the inf-sup
condition (4.6), it follows that there exists V}, € X}, such that

CllUL = UnllIVall < Bstab (Un — Un. Vi)
= Byap(Un — U, V3) (from the consistency (4.13))
< CEM)|[Vall (from (4.16)),

from where ||U, — Un|| < CE(h). The theorem follows now from the triangle in-
equality [|U — Up|l < |U = Un|l + ||Un — Un|| and the interpolation error estimate
(4.17). O

Clearly, this convergence result is optimal.

Remark 4.2. From the expression of the error function (4.15) it follows that all
the terms have the same order in h if k, = k, + 1 = k, + 1. However, Theorem 4.4
holds without any restriction on the interpolation order of the different unknowns.

The next step will be to prove stability and convergence in natural norms, that
is to say, in the norm of the space where the continuous problem is posed, and not
in the mesh dependent norm (4.1). Even though the results to be presented are the
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expected ones, the analysis presented up to this point has highlighted the role played
by the stabilization terms of the formulation.

THEOREM 4.5 (stability and convergence in natural norms). The solution of the
discrete problem Uy, = (up, pp,on) € X can be bounded as

(4.20) Vil g e >+7ll h||+7|\ph|\ \/—Hf”H

Moreover, if the solution of the continuous problem U = (u,p,o) € X is regular
enough, the following error estimate holds:

1 1
(4.21) Virllw —unl i @) + —=llo —onll + —=llp = pul < CE(h).

Vi Vi

Proof. Let us first recall that Korn’s inequality implies that ||VSv]| is a norm in
V equivalent to |[v||g1 (), and this property is inherited by the conforming approxi-
mation considered. On the other hand, it is clear that

c
(Foon) < [l Villorllare) < —=1Fllz-1 @ IVall;
N (2) () N ()

where V3, = (vp, qn, Th) € X s arbitrary Therefore the inf-sup condition proved in
Theorem 4.1 implies that ||U] < %= ||f||H 1(), Which, together with the definition

of ||| in (4.1), yields the bound (4. 20) for the first two terms in the left-hand side of
this inequality. More precisely, we have that

1
M||“h|\%11(9) + ;”‘ThH2

Q

h? h
(422)  + =S V= Vol + =S npn — - onll < S0
"4 " I

On the other hand, using the inverse estimate (4.2) and the trace inequality (4.3) we
have

h? 2 _ b2 2 C 2
m Do IVonli < — Z IVpr =V - onll% + —||0h|\ :
K
h
;Zl\[[nph]]l\% ZH np, —n-on ]l + —HUhH
E
so that (4.22) implies

C
(4.23) pllunlip o) + - IIUhII2 +— Z IVl + Z Ilnpn ]I < Ellfllir—1 o
E

To prove the L2-stability for the pressure we rely on the inf-sup condition between the
velocity and pressure spaces that holds for the continuous problem, that is to say, the
continuous counterpart of (2.9). If p;, is the solution of the discrete problem, there
exists w € V such that

Clipn|l lwl m1 ) < (pr, V - w).
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Let us choose w with [|w| g1(q) = ||pr|| and let b, be the best approximation to w
in Vp,, which will satisfy ||w — wp|| < Chl|ps||. Using (4.3) once again we have that

Cllpnl* < (pn, V - w)
= — Z (Vpp,w —wp)k + Z ([npn], w—wn)e
K E

+ (O'h, stuh) — <f, ’l]]h>
< Cllpnl| <hz IVpnllx + VR lnpnllle + lon] + |f|H—1(Q)> -
K E

This, together with (4.23), implies the stability estimate (4.20).

The error estimate can be proved using a similar strategy. First, let us notice that
Theorem 4.4 implies the error estimate (4.21) for the displacement and the stresses.
We thus have

1
pllw — wn || F ) + ;HU —onl?

h? ,

+— Z IV(p—pn) = V- (o —0on)lik

(4.24) + = Z Iln(—pn) —n- (o —on)]lE < CE(R)*.
On the other hand, using the interpolation estimates (4.14) and (4.18)

h? h? C
— Z IV - o)k < — Z IN(p—pn) = V- (o —on)lk + Tg(")’

—Zn[[np )l ZH n(p - pn) <a—ah>ﬂ|\%+%aé<a>,

and, according to (4.24), both terms are bounded by E(h)%. To prove the L?-error
estimate for the pressure, let now w € V, with ||w||g1) = ||[p — pnll, be such that
Cllp —pul|? < (p — pn, V- w), and let @y, be its best approximation in V},. We have
that

Cllp=pall> < (p— pa, V - w)

=—Z (p—pn)w —wn)k + Y ([n(p—pn) ] w —wn)e

E
+ (a' —op, V° wy,)

< Cllp—pall <hZ|V(P—Ph)HK+\/EZH[[TL(P—ph)]]HE‘F |U—0h|> ;
K E

which yields ||p — px|| < C\/nE(h). This, together with (4.24), finishes the proof of
(4.21). O

To complete the analysis of the problem, let us obtain an L?-error estimate for
the displacement, which can be proved using a duality argument.

THEOREM 4.6 (L2-error estimate for the velocity). Suppose that the continuous
problem satisfies the elliptic Tegulam'ty condition

C
(4.25) Vilullgz@) + — ) < —=IfIl-

1
— lIpll 2 (0) <
Ve =

HUHHl(Q

\/_
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Then

(4.26) \/ﬁ||u - uhH < Ch (\/ﬁ|u — Uh||H1(Q) + \/ﬁ \/_ ) .

Proof. Let (w,m,S) € X be the solution of the following adjoint problem:

1 1
— o — ol + —=llp — pall
m

I

(4.27) V-8—-Vr= é—2(u —up) in £,

(4.28) ~V-w=0 in Q,

(4.29) Lsiviw=—o in Q,
2p

with w = 0 on 0N and where ¢ is a characteristic length scale of the problem that
has been introduced to keep the dimensionality, but that will play no role in the final
result. Let also (&p, 75, 85) be the best approximation to (w,,S) in Aj,. Testing
(4.27) with © —wuy, (4.28) with p—py,, and (4.29) with o — op,, we immediately obtain

£l = wnll? = B((w = wn,p = pn,o = o0), (w,7. 9)

:Bstab((u_uhap_phaa-_a-h)a(waﬂ—as))
1 1 S 1 S
_aozﬂ;<Pa <ﬂs+v w ), PH(VE (u —up))

20 Y (PHV @) PV - (1= w)))

K

K
RS NI SONTIL A AR
K
(4.30) ~ i3-S {[nm — - SL[nlp =)~ - (o =) ).
E

where we have made use of the definition (3.19) of Bstan. Note that we have included
S in Pj‘(ﬁs + Ve w) because it does not affect the definition of Bgtan, when applied
to discrete finite element functions.

The second and third terms in the right-hand side of (4.30) are zero because
of (4.29) and (4.28), respectively, and the last one is also zero because of the weak
continuity of the stresses associated to problems (4.27)-(4.29). Therefore, only the
first and fourth terms need to be bounded.

Using Lemma 4.2, for the first term in (4.30) we have

Bstab((u — Uh, P — Ph, O — a-h)a (waﬂ—a S))
(4.31) = Batab((w — wpn,p — pn, o — 01), (w — @p, m — 71, S — S)).

Using the interpolation properties and the shift assumption (4.25) it follows that
- 1
lw = @nllm(e) < Chllwlm @) < Chyllu—ul,
IS = Sall < ChlSlla ) < Chizllw =l
I = 7all < Chllwlms o < Chiglle = ul.
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From these expressions it can be easily checked that (4.31) can be bounded by
Bstab((u — Uh,P — Ph, O — o-h)a (wa T, S))

NI 1 1
4.32 < Ch~—||lu - — —|le — —|lp — .
(432) < Choplu upl { Villu — unll Q) + \/ﬁllfr onll + \/ﬁllp phll
Let us check this bound for example for the term in Bgap((w — up,p — pp, o —
o), (w,m, S)) involving boundary integrals, for which we have

5ogz<[[n(7~rh —m)—n-(8, = 8) ], [npr—p) —n-(on—0o)])E
E

h _ B - B -
< O (B2 =l 418 = S1) + 072w =l + 13 = Sl )]

X [h—l/Q(th —pll+ llon — o) + B2 (s — pllaa + o - UHHl(Q))}
h
< Cllu—wnl (lp = pall + o = anl).

The rest of the terms in Bgap (6 — wp,p — pp, 0 — o), (w,m,S)) can be bounded
similarly. We omit the details.

It only remains to bound the fourth term in (4.30). This is again easily done
using that ||S||g1(q) + |7 #1@) < Cd|lw — up||, which yields

2
Oéu% Z <qu‘(V7r -V S),Pj‘(V(p —pn)—V-(o— Gh))>K
K

h2
< 07 fallu—wnl(19p = Vpul + IV & = V- o)

Using this and (4.32) in (4.30) the theorem follows. O

5. Concluding remarks. Let us conclude with some remarks concerning the
numerical formulation presented in this paper. This formulation is an application of
subgrid scale concept to the stress-displacement-pressure formulation of the Stokes
problem. Apart from the novelty of this application, a feature of the formulation is
to consider the spaces of subgrid scales orthogonal to the finite element spaces. Other
ingredients original of this paper are the basis for the design of the parameters of
formulation and the introduction of subgrid scales on the element boundaries.

From the point of view of the numerical analysis, the method presented is sta-
ble and optimally accurate using arbitrary interpolations for the displacement, the
pressure and the stresses. Comparing it with the Galerkin method using stable inter-
polations, exactly the same regularity requirements are needed and the same conver-
gence rates are obtained, also in the same norms. Therefore, the main goal has been
achieved.

The accuracy of the method obtained in some numerical experiments is the one
expected from the convergence analysis. Theoretical convergence rates are exactly
recovered. We have preferred to skip the results of numerical testing in the linear
setting analyzed in this paper and to postpone them for a more extensive numerical
experimentation in more complex applications.

The practical interest of the problem studied is obvious. As it has been mentioned
in the Introduction, this is nothing but a model for more complex situations. Typi-
cally, viscoelastic flows are often posed as an example of a problem that requires the
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interpolation of the stresses, but this can also be done for nonlinear models such as
damage or plasticity in solid mechanics, and non-Newtonian fluids or even turbulence
models in fluid mechanics. When designing an extension of the formulations presented
here to these more complex situations, the most important idea to bear in mind is
which is the stabilization mechanism introduced by the formulations proposed. The
analysis dictates that pressure is stabilized by the term proportional to P (Vpy,) in-
troduced in the continuity equation, and the displacement gradient is stabilized by
the term proportional to P;-(VSuy) introduced in the momentum equation. This is

the

essential point. The only condition on the factors that multiply these terms is

that they have to yield an adequate scaling and order of convergence.
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