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 The main problem of the free surface capturing algorithms is the 
treatment of the pressure (gradient) discontinuity at the interface due to 
the variation of the properties there.

 In most of these algoritms the sharp transition of the properties at the 
interface is smoothed (extended to a band of several elements width) 
and therefore the accuracy in capturing the free surface is reduced.
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 A new free surface capturing approach able to
overcome/improve most of the difficulties/ 
shortcomings of the existing algorithms is presented.

 This approach is based on:
◦ Stabilisation of governing equations (incompressible two-

fluids Navier-Stokes equations) by means of the FIC 
method.

◦ Application of ALE techniques.
◦ Free surface movement is solved using a level set approach.
◦ Monolithic Fractional-Step type Navier-Stokes integration 

scheme.
◦ Application of domain decomposition techniques to 

improve the accuracy in the solution of governing equations 
in the interface between both fluids.



 Two (incompressible) fluids (non honogeneous) Navier Stokes 
equations:

 With:

 And the necessary initial and boundary conditions
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 Let be Ψ a function (level set), defined as follows:

 Therefore we can re-write the density field as:

 And finally, obtain an equivalent equation for the density in 
terms of Ψ (level set equation):
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 Two (incompressible) fluids level-set type Navier Stokes 
equations:

 With:

 And the necessary initial and boundary conditions
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 We may easily re-write the previous equations in an Arbitrary 
Lagrangian-Eulerian frame:

 Where um is the (mesh) deformation velocity of the moving 
domain:
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Consider a convection-diffusion problem in a 1D domain of length 
L. The equation of balance of fluxes in a sub-domain of size d is:  
qA-qB = 0

where  qA and qB are the incoming fluxes at points A and B. The 
flux q includes both convective and diffusive terms.
Let us express now the fluxes qA and qB in terms of the flux at an 
arbitrary point C within the balance domain. Expanding qA and qB
in Taylor series about point C up to second order terms gives:

Substituting above eqs. into balance equation gives
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 Applying the FIC concept to the Navier Stokes equations, the 
stabilized Finite Calculus form of the governing differential 
equations is obtained:

 It can be proved that a number of stabilized methods allowing 
equal order interpolation for velocity and pressure fields and 
stable and accurate advection terms integration can be derived 
from this formulation.
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 Let K be a finite element partition of domain Ω, and consider 
a domain decomposition of Ω into three disjoint sub domains 
Ω3(t), Ω3(t) and Ω5(t):



Ω1 (Fluid 1)

Ω2 (Fluid 2)
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 From this partition let us define two overlapping domains 
Ω*1, Ω*2 in such a way that 
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 We can write an equivalent problem, using a standard 
Dirichlet-Neumann domain decomposition technique 
(using Ω*1, Ω*2 decomposition). The resulting 
variational problem is:
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 Integration of Navier-Stokes equations in every domain is done 
by means of a Monolithic Fractional-Step type scheme.

 This scheme is based on the iterative solution of the momentum 
equation, where the pressure is updated by using the solution of 
a velocity divergence free correction (m iteration counter):

 This scheme only requires to solve scalar problems, with the 
subsequent savings on CPU time and memory.

( )[ ]

( )

( )[ ] 0
2
1

2
1

0
2
1

,1,,
1,1

,1,,1,

,1,1,,
1,1

=∇−⋅−+
−

∇+⋅∇=−∆

=∇−⋅∇+∇⋅−+
−

++++
++

++++++

++++++
++

mnmnmmn
nmn

mn
dd

mnmnmn

mn
mm

mnmnmmn
nmn

r
t

rppt

t

θ
ψψ

θθ

θθθθ

θθθθ

ψ
δ

ψψ

δ

ρ
δ

ρ

huu

hu

rhσuuuuu



 Dirichlet conditions are applied on Γ*1 (compatibility of 
velocities at the interface)

 And Neumann condition are applied on Γ*2 (jump condition)

 t* is evaluated from the resulting velocity and pressure field
on Ω*1. Pressure evaluation must take into account the jump
condition given by:

 Where γ is the coefficient of surface tension, and p1, p2 are 
the pressure values evaluated on the real free surface
interface Γ.
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 It is usual in many practical applications to have only 
one fluid of interest. These applications involve most 
of the flows of interest in naval/marine applications, 
where density and viscosity ratio are about 1000.

 It is important for these cases to adapt the ODDLS 
technique to solve monophase problems, reducing 
the computational cost and capturing the free surface 
with the necessary accuracy and maintaining the 
advantages of the proposed method.

 In these cases, the computational domain is reduced 
to the nodes in the fluid of interest plus those in the 
other fluid being connected to the interface (Ω*1). The 
later nodes are used to impose the pressure and 
velocity boundary conditions on the interface.



Green waters experiment



 This example shows a 
simple model of green 
water flow.

 The model consists of a
tank with open roof of 
dimensions 3.22x1x1 m.
A water column of 0.55 m.
height is closed behind a
door. The door is opened 
instantaneously by 
releasing a weight.

 A block of 0.161x0.403x0.161 
meters is set in the middle of the 
tank, with 8 pressure gauges. 

 The experiments in the model have 
been performed Maritime Research 
Institute Netherlands (MARIN).



 On the walls of the tank the slipping boundary condition is 
imposed. The model consists of 1.16 million linear 
tetrahedra in an unstructured mesh.

 Above figure shows a comparison between the zero level set 
function, the free surface, and the experimental water front.





Flow
direction



Navtec NT-130 



 This example shows the application of the presented technique to the analysis of a 
semi-planning hull designed by Navtec. The general characteristics of this boat 
are shown in the following table:

 The geometry of the boat has been defined by means of NURBS entities. 

Main Characteristics

LOA 14.0 m

Moulded Draft 1.05 m

Moulded Beam 3.54 m

Design Speed 14 Kn (Fn = 0.65)



 The first analysis consist of the towing of the hull
at different speeds (still water).

 Characteristics of the analyses:
◦ 2 sets of analysis were done: fixed ship and free to sink

and trim.
◦ 4 different speeds were run for every set of analysis with

an unstructured 3.2 million linear tetrahedra mesh. 
◦ Two more meshes of 1.8 and 15.8 million linear 

tetrahedra were used to study the influence of the mesh
density in the results.

◦ All the cases were run using an ILES-type turbulence
model.



Snapshot of the results (V = 12kn):
•Mesh of 15.8 million tetrahedra
•Left: (dynamic) pressure
•Down: velocity modulus



Snapshot of the results (V = 12kn):
•Left: velocity modulus (mesh of 
15.8 million tet.)
•Down: View of the mesh of 1.8 
million tets.
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 The second analysis consist of the towing of 
the hull at different speeds with head waves.

 Characteristics of the analyses:
◦ The analyses were carried out with the ship free to

sink and trim.
◦ 4 different speeds were run for every set of 

analyses with an unstructured 2.5 million linear 
tetrahedra mesh.
◦ The selected wave lenght for the analyses was

1.5xLOA (about critical values for slamming). 
◦ All the cases were run using an ILES-type

turbulence model.



 The waves are generated by defining an oscillating velocity boundary 
condition at the inlet of the basin. The velocity is obtained from the 
equivalent movement of a wall given by x=d·sin(ωt), where ω is the 
wave generator frequency and d is the amplitude of the movement 
(stroke).  The resulting boundary condition is as follows (k is the wave 
number and Vo is the ship speed):

 For this problem linear wave theory states that the relation between 
wave number, channel depth and wave-maker frequency is 
ω2=g·k·tanh(kh). Where k is the wave number, h is the water depth and 
g the gravity acceleration

 The waves are dumped at the right hand side of the tank by disposing a 
beach.
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Dynamic pressure field (sequence). Fn = 0.65.



Head waves: side view
Left: Fn = 0.56
Down: Fn = 0.65



Head waves: front view
Left: Fn = 0.56
Down: Fn = 0.65



Left: Pressure forces (OX)
Down: Trim angle



 The present work describes a new methodology for the analysis of free 
surface flows so-called ODDLS. 

 ODDLS method is based on the domain decomposition technique 
combined with the Level Set technique and a FIC stabilized FEM. The 
ODDLS approximation increases the accuracy of the free surface 
capturing (level set equation) as well as the solution of the governing 
equations in the interface between two fluids. The greater accuracy in 
the solution of the interface between the fluids allows the use of non-
structured meshes, as well as larger elements in the free surface.

 The method can be simplified by solving only one of the two fluids, 
which increases the efficiency in most of the naval/marine applications 
where the effect of one of the fluids can be neglected.

 The proposed ODDLS methodology has also been integrated with an ALE 
algorithm for the treatment of moving meshes.

 The ODDLS technique has been applied in the analysis of different free 
surface flows problems. The good qualitative and practical results 
obtained in comparison with experimental data show the capability of 
the ODDLS methodology for solving free surface flows problems of 
practical interest.



 Contact email address:
info@compassis.com

 A demo version of the software can be
downloaded from: 

http://www.compassis.com
 The validation cases can be downloaded from: 

ftp://ftp2.compassis.com/papermodels
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