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Electric vehicles (EVs) have recently attracted increasing research interest, on account of environmental issues and diminishing
fuel reserves. EVs are environmentally friendly but have a short driving range. EVs must utilize energy efficiently, because they
travel with limited energy. Conventional vehicle routing methods are not suitable for EVs, as they do not take energy consumption
into account. This study introduces an energy efficient routing method using ant colony optimization (ER-ACO) to maximize the
energy efficiency.We simulated ER-ACO and compared it with other ACO techniques, including the conventional routing method
and other approaches for EVs. As a result, the proposed model improved the energy efficiency in terms of both the average distance
per kW and average energy consumption.

1. Introduction

Presently, research on electric vehicles (EVs) is necessary
owing to the situation of diminishing fossil fuels and climate
change. There are three main types of EV [1]. The first is
a hybrid vehicle (HEV), which employs a combination of
electricity and fossil fuels. The second is a plug-in hybrid
vehicle (P- HEV), which employs electrical power for short
distances and fossil fuels for long distances. Finally, there are
electric vehicles that utilize electrical energy exclusively.

EVs have three main advantages compared with conven-
tional vehicles. First, EVs are better for the environment, as
they obtain their motive power from rechargeable batteries.
This means that they function as a clean source of energy.
Thus, toxic gases and fumes are not emitted, which reduces
𝐶𝑂2 emissions [2]. Second, EVs introduce a cost-saving
effect, as electrical energy is cheaper than traditional fuels
such as petrol and diesel. Moreover, the mechanical structure
of an EV is simpler than that of a conventional car, and so it
is cheaper to maintain. Finally, EVs reduce noise pollution,
and electric motors provide a softer driving experience for
drivers.

Vehicle routing is to determine a traveling route of a vehi-
cle geographically. Usually, it is defined as an optimization
problem tominimize total travel time and distance. However,

EV is powered by battery which still asks long charging time,
and it has the short driving range due to the limit of battery
capacity [3]. Thus, for EVs routing, it needs to consider not
only travel time and distance traditionally, but also energy
consumption. The battery can be drained more or can be
charged according to the gradients of driving roads. EV
consumes less energy or even charges the battery on downhill
roads, but more energy is needed on uphill roads. Therefore,
EV requires its own routing method with consideration of its
characteristics. In addition, considering the limited capacity
of battery, it is important that EV reaches its destination using
the minimum amount of energy.

Many studies focus on the energy consumption, cost,
and travel time in connection with EV routing. However,
the unique characteristic of an EV is its energy recuperation
function. Recuperation energy is energy generated while
traveling downhill or during braking, which is utilized to
recharge a vehicle’s battery. This study proposes an approach
considering recuperation for EV routing.

Various parameters are applicable for the routing of EVs,
such as the travel distance, time, cost of driving, and state
of charge (SoC). There are two important characteristics
of EV routing to consider. First, there is diversity because
different parameters need to be controlled. In addition, there
is uncertainty owing to environmental factors, such as human
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driving, pedestrians, and road conditions. Therefore, many
researchers have tackled EV routing using AI techniques.
We propose a routing method using ant colony optimization
(ACO).

The remainder of this paper is organized as follows.
Section 2 introduces related work concerning EV routing.
Section 3 presents the system model and proposed strategy
using ACO. Section 4 presents and discusses the simulation
results. Finally, Section 5 summarizes the study.

2. Related Work

In this section, we discuss routing methods divided into two
main categories: routing methods only and combinations of
routing and charging methods. A routing method aims to
reach the destination without charging, while a combination
method includes charging while driving. There have been
many studies related to EV routing that have utilized several
AI techniques, such as Tabu search [4], particle swarm
optimization (PSO) [5], A∗ [6], and ACO [7, 8].

Abousleiman and Rawashdeh proposed a strategy to
determine the most energy efficient route [4]. They utilized
four parameters: elevation changes, battery capacity, road
cost, and traffic information. Tabu search is a flexible heuristic
method, which was adopted because there were very few
constraints. However, it is difficult to obtain a global opti-
mization result, because this approach searches in a direction
in which the slope of the road decreases. Siddiqi et al.
proposed a model that utilizes PSO techniques to determine
optimized paths [5]. The authors suggested minimizing the
distance by taking into account the travel time, delay time,
charging time, and charging cost. PSO has the advantage of
an optimization ability for complex functions. Although it
achieves relatively fast convergence, it can suffer from early
nonoptimal convergence. Furthermore, this study did not
take into account the energy recuperation function for EVs.
Sachenbacher et al. proposed a model for determining the
optimal energy path using the A∗ algorithm [6] and also
considered the recuperation energy. However, the authors did
not take into account various factors such as the travel time,
cost, and traffic congestion, which are importantmeasures for
vehicles.

Hooda and Kumar considered driving costs, including
the travel distance from source to destination, toll fee, and
battery charging cost, using ACO [7]. To calculate the prob-
ability function, the authors utilized heuristic information
that contained location information between each city. Zhang
et al. considered five parameters: the travel distance, travel
time, temperature, battery life, and energy consumption
[8]. They not only considered driving, but also the driving
environment. For example, the use of air conditioning func-
tions depends on the temperature inside and outside of a
vehicle. The temperature was set as a parameter, because air
conditioners consume energy. [8] defined four conversion
probability functions, which consisted of two air condition-
ers, a charging function, and a speed function. These were
chosen using the roulette wheel selection technique with
heuristic information, which employs the Euclidean distance
between the next node and destination.
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Figure 1: A graph representation of a network.

Studies that combine routing techniques with charging
techniques, such as charging stations, are summarized as
follows [9–11]. Sweda and Klabjan aimed to determine the
minimumcost pathwhenEVsneed to recharge their batteries
[9]. Two solutions were proposed: dynamic programming
and reverse recursion techniques. In that study, the driving
costs, including charging costs, were considered to minimize
the driving time. Zhang et al. proposed a mathematical
model that considered three parameters: the travel distance,
travel time, and electricity charging cost [10]. In that study
the source node, middle node, and destination node were
specified. Tang et al. studied a joint optimization approach for
routing and charging to maximize the consumer profit [11].
The authors proposed a distributed algorithm, which reduces
the complexity of computation. In addition, they considered
two types of charging station for various situations.

As discussed above, many studies have attempted to solve
the EV routing problem using AI techniques. Among the
available AI techniques, there are advantages to ACO. First
of all, the ACO technique converges quickly. In addition,
it does not select the next step using only the previous
information. It selects the next step in a probabilistic manner,
which can navigate various paths. Many studies have solved
the EV routing using energy cost, travel distance and travel
time. However, to reduce the energy cost for EV with a
limited driving range, minimizing energy consumption is the
most important. Energy consumption is affected by energy
recuperation and driving speed. By considering recuperation
in the routing, energy can be drained slowly. The driving
speed also affects the energy drain speed as well as traveling
time. Thus, we propose an energy efficient routing strategy
utilizing ACO and considering recuperation and speed.

3. Methodology

Anetwork can be expressed as a weighted directed graphG =
(V,E), where V is the set of nodes and E is the set of arcs
connecting the nodes, as illustrated in Figure 1.

EVs travel along the arcs from the source node to the
destination node. Each arc sets the Euclidean distance as a
cost.

3.1. SystemModel. Unlike conventional vehicle routing mod-
els, which assume that the energy consumption is a linear
function of the travel distance and time, we modeled the
energy consumption by considering the speed and the gra-
dient of the road. The energy consumption of an EV has
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two key features: discharge and recuperation. Discharge is
the function through which an EV loses energy, whereas
recuperation is the function through which the EV receives
energy. Regenerative braking transforms an EV’s kinetic
energy into electrical energy to recharge the EV’s batteries
[12].

We compute the energy discharge and recuperation in
three steps. First, the required mechanical power 𝑃𝑀 of a
conventional vehicle is calculated based on the speed and
gradient [13].

𝑃𝑀 = (𝑚 ∗ 𝑎 + 12 ∗ 𝑐𝑑 ∗ 𝜌 ∗A*V2 + 𝑚 ∗ 𝑔 ∗ sin (𝛼)

+ 𝑐𝑟 ∗ 𝑚 ∗ 𝑔 ∗ cos (𝛼)) ∗ V,
(1)

where 𝑚 denotes the total vehicle mass (kilograms), 𝑎 is the
acceleration (meter per square second), 𝑐𝑑 is the aerodynamic
drag coefficient (0 ≤ 𝑐𝑑 ≤ 1), 𝜌 is the air density (kilogram
per cubic meter), A is the frontal surface of the vehicle
(square meters), V is the velocity (kilometer per hour), 𝑔 is
the gravitational constant (meter per square second), 𝑐𝑟 is the
rolling resistance coefficient (0 ≤ 𝑐𝑟 ≤ 1), and𝛼 is the gradient
of the road (degree).

Second, the mechanical power is converted to elec-
trical power 𝑃𝐸 to apply to an electric vehicle, whereby
an electric motor has to provide the required amount of
mechanical power. The relationship between the mechanical
power described by the regression parameters 𝜙 and the
emitted electrical power is utilized. The 𝜙𝑑 is the parameter
of discharge by the motor and the 𝜙𝑟 is the parameter
of recuperation by the generator. The electrical power for
discharge 𝑃𝑑𝐸 and recuperation 𝑃𝑟𝐸 is dependent on whether
the mechanical power is positive or negative. When 𝑃𝑀
was less than zero, which means downhill roads, the energy
recuperation occurs.

𝑃𝑑𝐸 = 𝜙𝑑 ∗ 𝑃𝑀 (𝑃𝑀 ≥ 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)
𝑃𝑟𝐸 = 𝜙𝑟 ∗ 𝑃𝑀 (𝑃𝑀 < 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)

(2)

Third, the electrical power is converted into the amount
of battery power 𝑃𝐵. To move an EV, battery energy is
converted inside the electric motor [14]. It is utilized the
relationship between the electrical power 𝑃𝐸 described by
the additional regression parameters 𝜑 and the battery power
𝑃𝐵. The 𝜑𝑑 is the discharging parameter and the 𝜑𝑟 is the
recuperation parameter. The battery power for discharge 𝑃𝑑𝐵
and recuperation 𝑃𝑟𝐵 is calculated when the electrical power
was greater than zero and when the power was less than zero
respectively. Battery power 𝑃𝐵 is the value of unit time.

𝑃𝑑𝐵 = 𝜑𝑑 ∗ 𝑃𝑑𝐸 (𝑃𝐸 ≥ 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)
𝑃𝑟𝐵 = 𝜑𝑟 ∗ 𝑃𝑟𝐸 (𝑃𝐸 < 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)

(3)

Battery power 𝑃𝐵 is multiplied by the associated travel time
𝑡𝑖𝑗 to calculate the energy consumption for traveling from
location 𝑖 to 𝑗. The final energy consumption 𝐸𝑖𝑗 is given by

𝐸𝑖𝑗 =
{
{
{
𝑃𝑑𝐵 ∗ 𝑡𝑖𝑗 𝑖𝑓 (𝑃𝑀 ≥ 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)
𝑃𝑟𝐵 ∗ 𝑡𝑖𝑗 𝑖𝑓 (𝑃𝑀 < 0 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠)

(4)

3.2. Proposed Strategy Using ACO. ACO is a widely employed
metaheuristic technique based on certain behavioral patterns
of ants searching for food. Ants have the capability to find
the optimal path between food and their nest. Ants move
randomly to find food and return to the nest with it. They
lay down chemical substances called pheromones 𝜏, which
are accumulated and also evaporate along their path. A path
consists of arcs and nodes, as illustrated in Figure 1.

The more ants travel on the same trail, the more con-
centrated the pheromones on that trail become, and the trail
becomes more attractive for other ants. Ants accumulate
pheromones through iterations from the source to destina-
tion.Through this mechanism, ants can find the shortest path
between a food source and their nest, and the shortest path is
the best path for the ants. When applied to EVs, the best path
is an energy efficient path.

One iteration of the ACO algorithm consists of three
steps: initialize the pheromone, adjust the probability, and
update the pheromone. For the pheromone initialization, all
path pheromones are initialized to the same value 𝜏0 before
starting the iteration. For the probability adjustment, each ant
selects the next node according to a stochastic greedy search,
which is called the state transition rule. A state transition
rule utilizes both heuristic and pheromone information. The
transition probability 𝑝𝑘𝑖𝑗 is given in

𝑝𝑘𝑖𝑗 =
𝜏𝛼𝑖𝑗 ∗ 𝜇𝛽𝑖𝑗

∑𝑙∈N𝑘
𝑖

(𝜏𝛼
𝑖𝑙
∗ 𝜇𝛽
𝑖𝑙
) (5)

An ant 𝑘 placed on node 𝑖 moves to node 𝑗 with probability
𝑝𝑘𝑖𝑗. The probability 𝑝𝑘𝑖𝑗 represents the probability of moving
to an adjacent node 𝑗 from node 𝑖, N𝑘𝑖 denotes the set of
neighboring nodes of ant 𝑘 on node 𝑖, and 𝜏𝑖𝑗 denotes the
amount of pheromones between nodes 𝑖 and 𝑗. We define
the heuristic information 𝜇𝑖𝑗, which represents the energy
consumption and speed. The energy consumption and speed
are expressed in the form of heuristic information for the
following reasons. First, the energy consumption is important
for EVs with a short driving range. Second, the speed
includes information on the distance and time. The heuristic
function is calculated by assigning weights to the energy
consumption and speed. The parameters 𝛼 and 𝛽 control the
relative influence between the amount of pheromones and
the heuristic information. For the pheromone and probability
update, when an ant 𝑘 arrives at a destination it returns to its
source position, laying down a certain amount of pheromone,
such as ΔT𝑘, in each arc, as illustrated in (6). All arcs in
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(1) Set the start node and the destination node
(2) Initialize pheromones to the value 𝜏0 on all arcs
(3) For iteration 𝑖 = 1 to 𝑛 do
(4) For ant 𝑘 = 0 to𝑚 do
(5) let 𝑉0 be the start node for ant k(6) current node = 𝑉0(7) While (next node != destination node)
(8) calculate the probabilities of the neighbors of the current node using Equation (5)
(9) determine the next node based on the calculated probabilities
(10) current node = next node
(11) EndWhile
(12) EndFor
(13) update the pheromones on all arcs using Equation (6) and (7)
(14) EndFor

Algorithm 1: EV routing algorithm using ACO.

the path formed by the ant 𝑘 have the same ΔT𝑘 value. The
expression for updating the pheromone valueT𝑖𝑗 is shown in

T𝑖𝑗 ←󳨀 (1 − 𝜌)T𝑖𝑗 + ΔT𝑘 (6)

For each iteration, the deposited pheromones are evaporated.
The decay parameter 𝜌 determines how quickly routes are
forgotten. Therefore, busy paths accumulate pheromones,
whereas they evaporate on less busy paths, speeding up
the convergence. If an ant gets lost, this is not reflected in
the update. The ACO algorithm converges rapidly, and can
explore a range of paths. Therefore, it is suitable for the
EV environment, which requires quick and broad decisions.
The goal of routing is to maximize the energy efficiency.
We propose an objective function that considers the energy
consumption and speed. The proposed energy optimization
model for EV routing is presented in

min𝑓 (𝑥) = (w*𝐸𝑠𝑑) + (1 −w) ∗ 1
𝑠𝑝𝑒𝑒𝑑𝑠𝑑 (7)

The proposedmodel aims to minimize the objective function
for a path. Here, 𝐸𝑠𝑑 is the amount of energy consumed
from the source to destination node, and 𝑠𝑝𝑒𝑒𝑑𝑠𝑑 is the
average speed of an ant in the path. The speed influences the
energy consumption, and the weight parameter 𝑤 balances
the energy consumption and speed. The proposed algorithm
is specified in Algorithm 1.

4. Experimental Comparison

4.1. Simulation Model. As an energy efficiency routing sim-
ulation, a simple road network based on the city of Sioux
Falls in South Dakota was implemented [15]. As shown in
Figure 2(a), all nodes and arcs are numbered. The network
is composed of 76 arcs and 24 nodes. A road network
with distance information is presented in Figure 2(b). Road
parameters were defined as the road length, gradient of the
road, and moving speed. First, we adopted two distributions
for the speed, Gaussian and uniform, with amean of 42 km/h.
Then, according to the policy concerning the structure and

facility standards of the National Highway Traffic Ministry,
the gradient of the road should be between 0 and 9∘ [16].
Therefore, we employed a log function with a mean of 2
and standard deviations of 0.2, 0.5, and 1 for the gradient.
Uphill and downhill paths are deployed randomly. Finally,
we classify the length of the path into three distances of 6,
8, and 10 km from the source node to the destination. For
the 6 km path, we selected the pairs (0, 4), (2, 14), and (3,
18) as the source and destination. For the 8 km path, we
selected (1, 18), (2, 17), and (5, 22) and for the 10 km path (0,
17), (0, 23), and (1, 19) were selected. In this experiment, we
set 𝜎 = 1 for the log function, a Gaussian distribution for
the speed function, and a 10 km path length as default. The
parameters 𝛼 and 𝛽 were set to 1, the decay parameter 𝜌 was
set to 0.7, and the acceleration was set to 0. All experiments
were conducted over 300 iterations and the experimental
value was the average of 200 experiments performed. The
strategic parameter 𝑤 was utilized to balance the energy
consumption and speed. Since the speed is one of factors that
affect energy consumption, it is important to give adequate
weight between energy consumption and speed. Besides, the
performance of ACO depends on how many ants are used
in an experiment. Therefore, a preliminary experiment was
conducted to determine the value of the strategy parameter,
𝑤 and the number of ants. We simulated in two environment,
Gaussian and uniform distribution for speed. In Figure 3,
the performance according to 𝑤 and the number of ants is
illustrated.

In Figures 3(a) and 3(b), energy consumption is the
highest when 𝑤 is 0.1. This is because it puts more emphasis
on the speed than on the energy consumption. For Gaus-
sian distribution, the bigger the 𝑤 value, the less energy
consumed. On the other hand, in uniform distribution, the
energy consumption was the lowest when 𝑤 is 0.3. In terms
of the travel time, the performance is the best when𝑤 = 0.5 in
Gaussian distribution or 𝑤 = 0.1 in uniform distribution. In
terms of the travel distance, the performance is the best when
𝑤 = 0.5 in Gaussian distribution and in uniform distribution.
In Figures 3(c) and 3(d), the best energy consumption occurs
with 15 ants in both distributions. When the number of ants
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Figure 2: Sioux Falls in South Dakota with the adjusted distance network: (a) simple network topology; (b) network topology with distance.
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Figure 3: Performance comparison with varying weight and number of ants: (a) varying weight with Gaussian distribution, (b) varying
weight with uniform distribution, (c) varying the number of antswith Gaussian distribution, and (d) varying the number of antswith uniform
distribution.
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Figure 4: Performance comparison with varying road gradients in a Gaussian distribution: (a) travel time, (b) travel distance, (c) travel
distance per unit of energy consumption, and (d) energy consumption.

is too small, such as with 5 or 10 ants, the result may be biased.
When the number of ants is too large, like 20 ants or more, it
can be difficult to find the optimal path because randomness
increases. The travel time and distance are the least when
𝑤 = 20 or 𝑤 = 15. As a result, so further simulations, we
experiment with a weight of 0.3 and 15 ants.

4.2. Results and Analysis. In this study, we compared the
proposedmodel, called energy efficient routing on ACO (ER-
ACO),with a routing algorithm for conventional vehicles and
another routing algorithm for EVs. The routing algorithm
for conventional vehicles, called conventional vehicle routing
(CVR), defines a function using the distance and time costs
[17]. The other routing algorithm for EVs, called compare
another ACO (CA-ACO), defines a function using the time
and energy costs [18]. The energy refers to the cost of charg-
ing. However, we assumed that vehicles are fully charged
when they depart, and do not charge until arriving. We set
up two scenarios by varying the gradients of the roads and
distance between the source and destination.

As shown in Figure 4, we set the gradients of the
road differently using the standard deviation 𝜎 of the log
function. We adopted a Gaussian distribution for the speed.
The simulation results show the difference in time, distance,
energy consumption, and travel distance per kW. As shown
in Figures 4(a) and 4(b), the performance of CVR is the
best, because the conventional vehicle routing provides a

route for the shortest distance and the shortest time. In
Figure 4(a), CVR exhibits a performance approximately 25%
superior to ER-ACO (𝑤 = 0.5). However, the performance is
similar to CVR at 𝜎 = 1. Although this approach provides a
route that is not the shortest distance, there is an advantage
in terms of energy owing to recuperation. In terms of the
travel distance per kW, the performance of CVR is inferior
to that of ER-ACO. ER-ACO (𝑤 = 0.3) achieved the best
performance in terms of energy efficiency. ER-ACO achieved
an energy efficiency that is approximately 40% and 96%better
than CVR and CA-ACO, respectively, for the log function at
𝜎 = 1. It can be observed from Figure 4(d) that ER-ACO
achieves a good performance. It does not consume much
energy, because even though ER-ACO yields a long travel
distance this does not affect the energy consumption owing
to recuperation.

Figure 5 illustrates the results when utilizing a uniform
distribution for thee speed. As shown in Figure 5(a), the
performance of CA-ACO is the best for three standard devi-
ations. However, as shown in Figure 5(b), the performance of
CA-ACO is approximately 30% inferior to that of ER-ACO,
because CA-ACO does not account for distance. It can be
observed in Figure 5(c) that ER-ACO achieves the best energy
efficiency, which is approximately 69% and 49% stronger than
for CVR and CA-ACO, respectively, for the log function at
𝜎 = 1. The lowest energy consumption is provided by ER-
ACO for all three different standard deviations.
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Figure 5: Performance comparison with varying gradients of the road in a uniform distribution: (a) travel time, (b) travel distance, (c) travel
distance per energy consumption, and (d) energy consumption.

Figure 6 presents the results for three distances between
the source and destination pairs. The speed distribution is
defined by a Gaussian distribution. As shown in Figure 6(a),
the average travel time of CA-ACO is approximately 20%
better than that of ER-ACO for the 10 km path. In addition,
the travel time of CVR is approximately 25% better than
that of ER-ACO. In terms of the travel distance, ER-ACO
achieves a travel distance around 20% further than CA-
ACO for the 10 km path. In terms of the average travel
distance per kW, ER-ACO achieves the best energy efficiency,
even though it follows a detouring travel path. ER-ACO
exhibits an energy efficiency that is approximately 41% and
47% better than those of CVR and CA-ACO, respectively,
for the 10 km path. As shown in Figure 6(d), ER-ACO
exhibits the best performance in terms of the average energy
consumption.

For the results shown in Figure 7, we employed a uniform
distribution for the speed. As shown in Figures 7(a) and 7(b),
the average travel time of CA-ACO is approximately 25%
better than that of ER-ACO, and the average travel distance
of CA-ACO is approximately 13% shorter than that of ER-
ACO for the 10 km path. On the other hand, it can be seen
in Figures 7(c) and 7(d) that the energy efficiency of ER-ACO
is approximately 61% and 59% better than those of CVR and
CA-ACO, respectively. The average energy consumption for
ER-ACO is two times lower than that of CA-ACO for the
10 km path.

We conducted four experiments under two scenarios.
According to these experiments, CVR performs well in terms
of the travel time and distance. CA-ACO achieves a good
performance in terms of the energy consumption and travel
time. Finally, ER-ACO performs well in terms of the energy.
The recuperation enhances the energy efficiency, which helps
EVs to achieve a further travel distance. The speed was
considered because it influences the energy consumption.
Therefore, ER-ACO achieves a high energy efficiency, and
so it achieves a longer distance with less fuel. The methods
achieving the shortest routes are CVR and CA-ACO, but
ER-ACO is suitable for routing when considering energy
efficiency.

5. Conclusions

This paper has presented an energy efficient routing method
for EVs. The energy efficiency, energy consumption, and
speed were considered as parameters. The energy consump-
tion included recuperation functions, which in turn help to
save energy. The speed is related to the energy consumption,
and so this was important to suitably adjust the speed. This
study proposed an ER-ACO strategy that sets the energy
consumption and speed using ACO. We compared other
techniques with ER-ACO under four scenarios. As a result
of the experiments, it was observed that the ER-ACO strategy
achieves a good performance in terms of the energy efficiency.
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Figure 6: Performance comparison with a varying distance between the source and destination in a Gaussian distribution: (a) travel time,
(b) travel distance, (c) travel distance per energy consumption, and (d) energy consumption.
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Figure 7: Performance comparison with a varying distance between the source and destination in a uniform distribution: (a) travel time, (b)
travel distance, (c) travel distance per energy consumption, and (d) energy consumption.
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This study considered the case of arriving at the destination
without charging. In future work, this can be expanded by
adding a charge in the middle of the journey. In addition,
various environmental factors can be considered, such as the
positions of charging stations and charging costs [19, 20].

Data Availability

The data used to support the findings of this study have not
been made available, because our funding agency has not
agreed to this.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) Grant funded by the Korean Govern-
ment (MSIT) (no. NRF-2015R1D1A1A09057141 and no. NRF-
2018R1A2B6002505).

References

[1] B. Bilgin, P. Magne, P. Malysz et al., “Making the Case for Elec-
trified Transportation,” IEEE Transactions on Transportation
Electrification, vol. 1, no. 1, pp. 4–17, 2015.

[2] A. Emadi, “Transportation 2.0,” in IEEE Power & Energy
Magazine, vol. 9, pp. 18–29, IEEE, 2011.

[3] M. Neaimeh, G. A. Hill, Y. Hübner, and P. T. Blythe, “Routing
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