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Abstract. Computational Fluid Dynamics codes usually adopt velocity-pressure splitting to re-
duce the computational effort in the solution of the Navier-Stokes equations. In standard projec-
tion methods, the finite element approximations show difficulties to find a solution with discrete
free-divergence velocity field in all space points. In this work, a new velocity-pressure method for
Navier-Stokes equations that projects the velocity field inside the discrete free-divergence velocity
space is presented. This algorithm computes the velocity field on the discrete free-divergence
space by using Raviart-Thomas finite elements. The projection is obtained by the minimization
of the distance, over the discrete free-divergence space, between the auxiliary field and the de-
sired Raviart-Thomas interpolation space. The Raviart-Thomas discretization is based on the
quadrilateral and hexahedral finite element space and therefore the divergence mimetic computa-
tional approach is used to avoid the well-known degradation of the divergence term convergence.
The auxiliary velocity field is obtained by solving the velocity-pressure split system used in the
classical Chorin–Temam algorithm. The pressure is recovered by the orthogonal space to the pro-
jection on the Raviart-Thomas interpolation space. The method is investigated with an explicit
and semi-implicit treatment of the pressure terms. The issues on boundary conditions and the
errors in the reproducibility of the tangential components are investigated. Several numerical
examples are reported to support this new projection method.

1 INTRODUCTION

The simulation of incompressible flows often involves the use of CFD codes. In this context,
the divergence-free fields play a key role in the conservation of mass. The most routinely
used commercial codes include finite element (FEM) and finite volume (FVM) methods for
the approximation of the solution. These two methods are very popular and can be used in
different engineering applications with similar costs. The finite volume method is preferred, in
some cases, due to the conservation of mass issues that can arise by using the finite element
method. However, the desired divergence-free field in all the points of the discrete domain is
very hard to obtain for both methods.
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In this paper, we deal with the issue of obtaining a FEM solution for the Navier-Stokes
system that has a divergence-free velocity field over the discrete domain by using Raviart-
Thomas basis functions [1]. This problem is studied in the case of coupled and split pressure-
velocity formulation. It is well known that the solution of the coupled incompressible Navier-
Stokes system is very CPU expensive and this has led to the development of different numerical
algorithms for the treatment of the split system solving the velocity and the pressure fields
[2]. Another obstacle to the solution of the Navier-Stokes equations is the coupling between
velocity and pressure by the incompressibility constraint that leads to saddle-point matrices in
the discrete form. To overcome these problems, Chorin and Temam introduced the projection
method by which the Navier-Stokes system is split into two separate steps, one for the resolution
of the velocity field and one for the pressure field [3, 4]. This numerical method leads to very
efficient simulations and reduces the computational effort. For this reason, several projection
methods have been developed in recent years [5].

2 ORTHOGONAL DECOMPOSITION OF VELOCITY FIELD

Unless otherwise specified, we assume in this section that Ω is a bounded subset with ap-
propriate regular boundary ∂Ω. It is well known that a generic function u ∈ L2(Ω) can be
decomposed as

u = ∇q + ∇ × ϕ , (1)

where q ∈ H1(Ω)/R and ϕ ∈ H1(Ω). We can introduce the divergence space H(div, Ω) by

H(div, Ω) = {u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)} , (2)

and its subspaces H0(div, Ω) and S0(Ω) as

H0(div, Ω) = {u ∈ H(div, Ω) : u · n = 0 on ∂Ω} (3)

and
S0(Ω) = {u ∈ H0(div, Ω) : ∇ · u = 0} , (4)

respectively. Because S0(Ω) is a closed subspace of L2(Ω), we have the following decomposition

L2(Ω) = S0 + S⊥
0 , (5)

where (⊥) denotes the orthogonal of S0 in L2(Ω) for the standard scalar product.
We are now interested in a decomposition of the velocity field u∗ ∈ H1(Ω) that satisfy the

classical boundary constraint
∫

∂Ω u∗ · n = 0. Now we can introduce divergence-free spaces

V = {u ∈ H1(Ω) : ∇ · u = 0} , V0 = {u ∈ H1
0(Ω) : ∇ · u = 0} (6)

and decompose H1(Ω) and H1
0(Ω) as

H1(Ω) = V + V⊥ , H1
0(Ω) = V0 + V⊥

0 . (7)

It is well known that for each g ∈ H1/2(∂Ω) satisfying
∫

∂Ω g · nds = 0, there exists a function
u0 ∈ H1(Ω) unique up to an additive divergence-free function in H1

0(Ω), such that ∇ · u0 = 0 in
Ω and u0 = g on ∂Ω. Thus, we can consider equally functions in u∗ ∈ H1

0(Ω) or u∗ ∈ H1(Ω).
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It is possible to formulate the decomposition problem in terms of an optimization problem.
Given a function u∗ ∈ H1(Ω), with

∫
∂Ω u∗ · nds = 0, we introduce a quadratic functional

F(u) = 1
2

∫
Ω

(u − u∗)2dΩ , (8)

with u ∈ H(div, Ω). We seek u by minimizing the functional (8) over the space H(div, Ω) under
the incompressibility constraint

∇ · u = 0 , (9)

for all x ∈ Ω. The solution of the minimization problem is easy to find by using the Lagrange
multiplier method. Given the Lagrange multiplier p ∈ L2(Ω), we set the total variation to zero
and obtain

δL =
∫

Ω
(u − u∗)δudΩ +

∫
Ω

δp∇ · udΩ +
∫

Ω
p∇ · δudΩ = 0 ,

for all δu ∈ H(div, Ω) and δp ∈ L2(Ω). By setting all the variations to zero we have the following
optimality system∫

Ω
δp∇ · u dΩ = 0 ∀δp ∈ L2(Ω) , (10)∫

Ω
(u − u∗)δudΩ +

∫
Ω

p∇ · δudΩ = 0 ∀δu ∈ H(div, Ω) . (11)

After integration by parts the strong form becomes

∇ · u = 0 , u∗ = u − ∇p ,

with appropriate boundary conditions (δu|Γ = 0 or p|Γ = 0). Clearly, given u∗ ∈ H1(Ω), we
decompose the field with u ∈ V and ∇k ∈ V⊥. When standard finite element spaces are used,

Figure 1: Low order Raviart-Thomas degrees of freedom on different geometries.

the solution of the Navier-Stokes does not belong to the discrete H(div, Ω). We use the Raviart-
Thomas space to construct this approximation. First, we construct the space over a canonical

3



G. Barbi, A. Cervone, A. Chierici, V. Giovacchini, S. Manservisi, R. Scardovelli and L. Sirotti

element as shown in Figure 1, where low order Raviart-Thomas degrees of freedom on different
geometries are symbolically sketched. We suppose that Ω is a polyhedron and that it is covered
by a hexahedral or tetrahedral mesh. The mesh consists of elements K characterized by the
size h. A single reference element is denoted by K̂ while the real element K is obtained by
the application of a trilinear diffeomorphism Fk : K̂ → RN such that K = Fk(K̂), where N is
the dimension of the problem. The functions in H(div, Ω) are transformed naturally from K̂
to K via Piola transformation tensor P. More precisely, a field ûh(K̂), defined over K̂, can be
transformed into uh as uh = Pûh(K̂) by

uh(x) = detJ(x̂)−1J(x̂)ûh(x̂) , (12)

where x̂ ∈ K̂, x = F (x̂), and J(x̂) is the Jacobian matrix of the mapping F and detJ(x̂) the
determinant of J(x̂).

KK̂ = [−1, 1]2x̂ = F−1
k (x1, x2) x = Fk(x̂1, x̂2)

Fk

F−1
k

=⇒
⇐=

Figure 2: Quadrilateral domain element K and square canonical element K̂.

We remark that the Piola transformation has the following properties

∇ · uh(x) = detJ(x̂)−1∇ · ûh(x̂) ∀x̂ ∈ K̂ , (13)∫
K

∇ · uh(x) ph dx =
∫

K̂
∇ · ûh(x̂) p̂h dx̂, (14)∫

∂K
uh(x) · n ph dx =

∫
∂K̂

ûh(x̂) · n̂ p̂h dx̂ , (15)

for some ph = p̂h(F −1(x̂)) while n and n̂ denote the unit outward normals on K and K̂,
respectively. We remark that continuity in the normal direction of the field u · n is assured
by using the Piola transformation. The construction of a finite element subspace proceeds by
assuming all the needed hypotheses on the mesh elements [6].

We construct the Raviart-Thomas finite elements of low order RT0. The interested reader
can refer to [7, 6, 1] for the construction of the RT0 finite elements. Since our focus is on
low-order methods, for the mixed Galerkin method we consider scalar approximations p̂h on a
mesh triangulation τh by the piecewise constant function space

Ŝ0
h = {p̂h(x̂) ∈ L2(Ω)| p̂h = c ∈ R ∀x̂ ∈ K̂, ∀K̂ ∈ F −1(τh)} . (16)

The element triangulation τ̂h of canonical elements K̂ is denoted by F −1(τh). The corresponding
space based on the domain element K is

S0
h = {ph(x) ∈ L2(Ω)| ph = p̂h(F −1(x)) ∀x ∈ K, ∀K ∈ τh} . (17)
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Clearly, also S0
h is a space of piecewise constant functions. For vector fields, we denote by N̂f the

basis functions on K̂ on the face denoted by f . In two-dimensional geometries for triangular and
quadrilateral meshes, we have f = 1, . . . , 3 and f = 1, . . . , 4, respectively. For three-dimensional
geometries, we have f = 1, . . . , 4 and f = 1, . . . , 6 in the case of tetrahedral and hexahedral
finite elements, respectively [6, 1]. We define the functional space R̂T 0 generated on K̂ as

R̂T 0 = {ûh ∈ H(div, Ω)| ûh(x̂) =
∑

f

pf N̂f (x̂) ∀x̂ ∈ K̂, ∀K̂ ∈ F −1(τh)} , (18)

where pf =
∫

∂K ûh · n̂hds is the value of the degree of freedom for the vector field. The degrees
of freedom are equal to the number of element faces. The corresponding space is generated as

RT0 = {uh ∈ H(div, Ω)| uh(x) = Pûh(F −1(x)) ∀x ∈ K, ∀K ∈ τh} . (19)

Therefore, given uh ∈ RT0 ⊂ L2(Ω) Raviart-Thomas low order, we have

ûh(x̂) =
∑

f

pf N̂f (x̂) ∀x̂ ∈ K̂ , uh(x) =
∑

f

pf Nf (x) ∀x ∈ K , (20)

where pf are the face fluxes and Nf = PN̂f the basis functions for Raviart-Thomas space with
f = 1, . . . , nf . We remark that pf remains invariant in the transform from the real and the
canonical element, due to Piola transformation property (15).

Now we consider the solution of the Navier-Stokes equations. Let Xh ⊂ H1(Ω) be a Taylor-
Hood finite element space, see for details [8]. Given u∗

h ∈ Xh, we want uh ∈ RT0 ⊂ H(div, Ω)
by minimizing

F(uh) = 1
2

∫
Ω

(uh − u∗
h)2dΩ, (21)

∇ · uh = 0 , (22)

over the linear function subspace RT0 ⊆ H(div, Ω). For u∗
h ∈ Xh ⊂ H1(Ω) Lagrangian quadratic

polynomials, we have u∗
h =

∑
j u∗

jhϕj(x) with u∗
jh velocity points and ϕj(x) basis functions. For

uh ∈ RT0 ⊂ L2(Ω) Raviart-Thomas low order, we have uh =
∑

f pf Nf (x), with pf flux at
faces and Nf (x) Raviart-Thomas vector basis functions. It is important to remark that the
Piola tensor transforms a constant divergence field ∇̂ · ûh over K̂ into a non-constant divergence
field ∇ · uh = detJ−1∇̂ · ûh over K. This opens a series of issues on the convergence of the
divergence for many problems where these basis functions are used. In our case we consider
only divergence-free solutions, namely we have ∇̂ · ûh(x̂) = 0 on all reference elements K̂ and
also, from (13) with detJ−1(x̂) ̸= 0, ∇ · uh(x) = 0 on all real elements K. The interested reader
can consult [7, 9]. The minimization of the functional (21), by using the Lagrange multiplier
ph ∈ Sh ⊂ L2(Ω), gives∫

Ω
δph∇ · uh dΩ = 0 ∀δph ∈ Sh ⊂ L2(Ω) , (23)∫

Ω
(uh − u∗

h) · δuh dΩ +
∫

Ω
ph∇ · δuh dΩ = 0 ∀δuh ∈ RT0(Ω) .
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3 NUMERICAL TEST FOR THE MINIMIZATION PROBLEM

In this section, the numerical results related to the presented orthogonal decomposition of the
velocity are shown. In particular, we aim to decompose a vector field by following the Helmholtz
theorem. In this context, we can introduce a generic velocity field u∗ ∈ H1(Ω), written as the
sum of a gradient and a free-divergence field. Our purpose is to find a velocity uh ∈ RT0 that
corresponds to the known free divergence vector. Several cases have been evaluated, differing
by geometry and boundary conditions. The computations are performed by using FEMuS code
[10].

Γi

Γo

ΓwΓw

Lx = 1

Ly = 2

x

y

l np ∥u0 − uh∥0 ∥p0 − ph∥0 conv. rate

2 2.56E+02 0.4850 0.0093
3 1.02E+03 0.2435 0.0040 0.9975
4 4.10E+03 0.1217 0.0019 0.9981
5 1.64E+04 0.0609 0.0010 0.9984
6 6.55E+04 0.0305 0.0005 0.9997
7 2.62E+05 0.0152 0.0002 1.0000
8 1.05E+06 0.0076 0.0001 1.0000

Figure 3: Plane channel. Geometry (left), error data and convergence rate (right) for different
levels l and mesh points np.

Field in a plane channel. In this test, we consider a plane channel geometry, as shown in
Figure 3 on the left, and an analytical vector field u∗ = (u∗, v∗). We consider

u∗ = π

2 sin2(πx) sin(πy) +
(
x − 1

2
)(y2 − 2y

2
)

, (24)

v∗ = −π sin2
(
π

y

2
)

sin(2πx) +
(
y − 1

2
)(x2 − 2x

2
)

. (25)

Clearly this vector field u∗ can be decomposed as u∗ = u0 + u⊥
0 with u0 ∈ V0 and u⊥

0 ∈ V⊥
0

where

u∗ =
[

u∗

v∗

]
=

[ π
2 sin2(πx) sin(πy)

−π sin2(π y
2 ) sin(2πx)

]
+

 (x − 1
2)

(
y(y−2)

2

)
(y − 1

2)
(

x(x−2)
2

)
 = u0 + u⊥

0 . (26)

In this decomposition, defining p0 = xy(x−2)y(y −2)/4, we have u⊥
0 = ∇p0 =

(
(x− 1

2)(y(y−2)
2 ),

(y − 1
2)(x(x−2)

2 )
)
. We compute (uh, ph) by solving system (23). The boundary conditions are
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np

10−4
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10−2

10−1

100

||u
0
−

u
h
|| 0
,||
p 0
−
p h
|| 0

uh

ph

h1

h2

Figure 4: Plane channel case: error convergence.

u∗ · n = uh · n = 0 on Γw ∪ Γo and p0 = ph = 0 on Γi in order to fix the constant on ph. The
tables on Figure 3 (right) and Figure 4 show the error data and the estimated convergence rate
for different refinements (level l with np mesh points). The error ϵl is defined as the sum of L2

norm of velocity and pressure error at the level l. Taking the logarithm of the ratio between ϵl

and ϵl+1 we obtain an estimate of the convergence order, which is reported in the last column.
Regarding this value, the results confirm how the order convergence rate follows a linear behavior
considering the mesh size h, namely

∥u0 − uh∥0 ≤ Ch∥u∗∥1 , ∥p0 − ph∥0 ≤ Ch∥p0∥1 . (27)

Figure 4 shows the L2 norm error of velocity and pressure concerning the number of points in
the grid. As noted in the previous table, we can notice a good agreement with the linear trend
of the error norm represented by the solid black line.

Γw

r = 1

103 104 105 106

np

10−3

10−2

10−1

100

||u
0
−

u
h
|| 0
,||
p 0
−
p h
|| 0

uh

ph

h1

h2

Figure 5: Circle geometry (left) and error convergence (right).

Field in a circle. In this test, we consider a circle, as shown in Figure 5 on the right, and an
analytical vector field u∗ = (u∗, v∗), decomposed as u∗ = u0 + u⊥

0 , with u0 ∈ V0 and u⊥
0 ∈ V⊥

0
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where

u∗ =
[

u∗

v∗

]
=

[
4(x2 + y2 − 1)y

−4(x2 + y2 − 1)x

]
+

[
(x + 1)2

0

]
= u0 + u⊥

0 . (28)

By setting p0 = (x+1)3/3, we have u⊥
0 = ∇p0. We solve (23) for the RT0 finite element solution

(uh, ph). The boundary conditions are u0 · n = uh · n = 0 on Γw and p0 = ph = 0 at the point
x = (−1, 0), needed to fix the constant on ph. In Figure 5 on the left, the circular geometry is
shown, where non-affine quadrilateral elements must be used. The decomposition shows good
results and the velocity and pressure error scale linearly with the mesh size h as shown in the
table in Figure 5 on the right.

Three-dimensional field. We now consider a three-dimensional field. The domain is shown
in Figure 6 on the left. Let us consider the following analytical vector field u∗ = (u∗, v∗).

Γi

Γo

Γl

Γr

Γt

Γb

Lx

Ly Lz

Lx = Ly = 1, Lz = 4
103 104 105 106

np

10−2

10−1

100

||u
0
−

u
h
|| 0
,||
p 0
−
p h
|| 0

uh

ph

h1

h2

Figure 6: Three-dimensional field: channel geometry (left), field (center) and error as a function
of the resolution (right).


u∗

v∗

w∗

 =


2π sin2(πx) sin(πy) cos(πy)z(4 − z)

−2π sin2(πy) sin(πx) cos(πx)z(4 − z)
+π sin2(πy) sin(πz/4) cos(πz/4)x(1 − x)

−4π sin2(πz/4) sin(πy) cos(πy)x(1 − x)

 +


50(x − 0.5)(y2 − y)

50(x2 − x)(y − 0.5)

0

 . (29)

The field, as shown in Figure 6 (center), can be decomposed as u∗ = u0 + u⊥
0 with u0 ∈ V0

and u⊥
0 ∈ V⊥

0 . By setting p0 = 25(x2 − x)(y2 − y) we have u⊥
0 = ∇p0. The (23) is used to

solve (uh, ph) ∈ RT0 × S0
h. The boundary conditions are u∗ · n = uh · n = 0 on boundary and

p0 = ph = 0 at the point x = (0, 0, 0) needed to fix the constant on ph. The error between uh

and u0 is reported in Figure 6 (right) as a function of the level resolution, namely the number
of mesh points np. Convergence of first order is guaranteed in both velocity and pressure cases.
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4 VELOCITY-PRESSURE SPLIT FOR NAVIER-STOKES EQUATIONS

Considering a generic incompressible fluid flow, with constant physical properties, the pres-
sure and velocity fields can be computed by solving the following Navier-Stokes system

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f ,

∇ · u = 0 .
(30)

The solution of the coupled velocity-pressure system (30) is very CPU expensive and this has
led to the development of different numerical algorithms for the treatment of the split system for
velocity and the pressure fields. In order to overcome these problems, many authors introduced
the projection method by which the Navier-Stokes system is split in two separate steps, one
for the velocity and one for the pressure [3, 4]. This numerical method leads to an efficient
simulation and reduces the computational effort. The interested reader can consult [5] for an
overview over projection methods.

To introduce the pressure-velocity split, we discretize the equation by the simple Euler scheme
on time. We introduce a fictitious velocity field un∗ and we have

un∗ − un∗

∆t
+ un − un−1

∆t
+ (un · ∇)un = −∇pn + ν∇2un + f . (31)

Considering pn = pn−1 + δpn, we can now split the equation

un − un∗

∆t
= −∇δpn , (32)

un∗ − un−1

∆t
= −(un · ∇)un − ∇pn−1 + ν∇2un + f . (33)

There are different approaches for the solution of the pressure-velocity split. The classi-
cal pressure-velocity split with incremental algorithm solves a standard Laplacian operator for
pressure. By using ∇ · un = 0 the pressure equation becomes [5]

∇ · un∗ = ∆t∇2δpn , (34)

where un∗ ∈ H1(Ω), pn ∈ H1(Ω) and un = un∗ − ∇δpn ∈ H(div, Ω). The Laplacian operator
needs boundary conditions for pressure and this may be a problem where velocity boundary
conditions are applied in the coupled equation system. In this case one usually sets ∂p/∂n|Γ = 0
which is a non-physical Neumann boundary condition.

In this paper we propose a new velocity-pressure split which consists of the velocity equation

un∗ − un−1

∆t
= −(un∗ · ∇)un∗ − ∇pn−1 + ν∇2un∗ + f , (35)

and the pressure equation

un − un∗ + ∆t∇δpn = 0 . (36)

9
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In this paper we use the Raviart-Thomas optimality problem for solving (36). Considering
kh = δph ∈ Sh ⊂ L2(Ω), un

h ∈ RT0 ⊂ H(div, Ω), and ∇ · un
h = 0, we have∫

Ω
δkh∇ · un

h dΩ = 0 ∀δkh ∈ Sh ⊂ L2(Ω) , (37)∫
Ω

(un
h − u∗n

h )δun
h dΩ +

∫
Ω

kh∇ · δun
h dΩ = 0 ∀δun

h ∈ RT0(Ω) . (38)

5 NUMERICAL RESULTS FOR THE RT0 PROJECTION METHOD

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v

y = 1

uc

us

uRT

Figure 7: Two-dimensional Poiseuille flow. Regular and irregular mesh for the channel flow
(left) and velocity v for coupled, split system and Raviart-Thomas approximation (right).

Two-dimensional Poiseuille flow. In this section, the results of the projection method for
the Navier-Stokes equations are reported for standard laminar velocity profile inside a channel,
and therefore we expect to obtain the classical Poiseuille parabolic flow.

In Figure 7 (left) the investigated geometries are reported, with particular attention to the
irregular mesh with non-affine elements. In Figure 7 (right) the velocity profile for the stream-
wise component is reported. In particular, the same field is represented for different numerical
solutions: the first one in the solid black line is obtained with a coupled algorithm for the
Navier-Stokes equations, the second one in the red dotted line is obtained with a standard split
algorithm, and finally the circular markers represent the velocity profile obtained with a split
algorithm using the Raviart-Thomas approximation. The plot shows a perfect agreement of the
velocity profile computed with the different algorithms.

Two-dimensional cavity. In order to check the convergence error rate, we consider a plane
channel flow with wall boundaries, i.e., a cavity configuration. The steady exact Navier-Stokes
solution has been imposed on the right-hand side, allowing for the computation of the L2 norm

10
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l np ∥u − uh∥2
0 = ϵ2

l

ϵl

ϵl+1
log2

( ϵl

ϵl+1

)
2 2.56E+02 0.23581 - -
3 1.02E+03 0.05933 1.9936 0.997
4 4.10E+03 0.01487 1.9957 0.998
5 1.64E+04 0.00371 1.9977 0.998
6 6.55E+04 0.00092 1.9996 0.999
7 2.62E+05 0.00023 2.0000 1.000

Table 1: Two-dimensional cavity. Error for steady state uh for the RT0 split approximation.

of the velocity error. We report the exact solution of the velocity components

u∗ =
[

u

v

]
=

[ π
2 sin2(πx) sin(π y

2 ) cos(π y
2 )

−π sin2(π y
2 ) sin(πx) cos(πx)

]
. (39)

In Table 1 the error and the order of convergence for different levels of refinement are reported.
The last column confirms, also in this case, the linear trend in error convergence for the velocity
norm.
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Figure 8: Three-dimensional channel flow. Clip of the w-component of the steady velocity
field (right) and its values for coupled Navier-Stokes solution, Raviart-Thomas and standard
projection split system.

Three-dimensional channel flow. The three-dimensional geometry of the channel flow is
reported in Figure 8 (left) (Lx = 1, Ly = 1 and Lz = 4). The flow enters into the bottom (inlet)
and exits through the top (outlet). No-slip boundary conditions are applied on the walls. From
Figure 8 (right) the accuracy of the computation can be noticed. Indeed, the velocity profile
obtained with the Raviart-Thomas basis projection (35)-(36) is equal to the velocity profile
obtained with standard coupled (30) and split algorithms (35)-(34).
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6 CONCLUSION

In this paper we have studied a vector decomposition by using Raviart-Thomas basis functions
in order to approximate the velocity field, solution of the Navier-Stokes equations. This kind
of finite element allows us to have exactly zero divergence at each point, which is an important
condition for the mass conservation. Several test cases have been presented using regular and
irregular mesh, and the results show a good agreement with the theoretical assumption regarding
the order convergence rate. Moreover, the RT0 space has been used to approximate the velocity
field in the framework of the velocity-pressure split algorithm. A minimization problem has
been solved in order to compute the velocity and pressure fields, avoiding the resolution of
the Laplacian equation for pressure. The numerical results confirm the approximation of the
velocity with the advantage of having exact free divergence velocity at each point. In addition,
this technique reduces the computational effort of the computation owing to fewer dof number.
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