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Abstract. Distributed optical fiber sensors (DOFS) are gaining momentum for in-situ con-
dition monitoring and damage detection purposes. Although DOFS are a versatile sensing
method enabling high-resolution strain and temperature mapping, they are also sensitive to me-
chanical vibrations. Vibrations are typically created by the ambient environment (e.g acoustic
background, rotating equipment) which can produce high levels of measurement noise. With
physical access to DOFS installations, the principle of acoustic or mechanical vibrations can also
be utilized for malicious sensor tampering.

The current lack of anomaly-detection systems suggests that practical DOFS applications
would benefit from an automated analysis to detect and classify compromised measurements.
Noise classification makes it possible to identify its source and potentially remove its effects from
the measurement in the future. This would expand the commercial applications of DOFS systems
significantly. Neural networks have been used for error detection in cyber-physical applications
in numerous studies with high-accuracy results. Specifically, long short-term memory (LSTM)
neural network models have become popular in recent years to classify anomalies in sequential
e.g time-series data.

Our investigation conducted a series of physical experiments using magnitude-controlled me-
chanical disturbances on bare free-hanging DOFS. Both random low-frequency vibrations at
large displacement amplitudes and a constant high-frequency acoustic source at a low amplitude
were employed. Experiments revealed that strain patterns are visually different with varying
types and levels of disturbances. For the numerical analysis, statistics and machine learning-
based approaches were applied for DOFS vibration noise classification, and their accuracy is
discussed in detail. Results from the post-processing of compromised DOFS data suggest that it
is possible to develop a vibration detection or classification system based on off-the-shelf DOFS
interrogation equipment coupled with LSTM numerical tools.

1 INTRODUCTION

Today, many types of sensors are routinely employed for on-demand insights into the state
of a system or a structure. Among the advanced sensing equipment, distributed optical fiber
sensors (DOFSs) are gaining momentum for structural health monitoring (SHM) and damage
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detection related applications [1]. The main benefit of DOFSs is that they can provide contin-
uous monitoring of strain or temperature at a high spatial resolution and over long distances.
That is to say, a single DOFS can replace thousands of point sensors such as strain gauges or
thermocouples. Another unique characteristic is that the optical fiber is both the communication
medium and the sensor itself, making the DOFS setup more compact and less energy consum-
ing than traditional sensors. The glass fiber of the DOFS is resilient to harsh environmental
factors such as chemicals, weather and corrosion. However, a major drawback of the Rayleigh
scattering-based DOFS technology is that strain measurements become noisy when exposed to
mechanical vibrations [2]. Practical experience from the lab confirms that when acoustic or
vibrational disturbances are present, the integrity of the DOFSs data becomes compromised.

Artificial neural networks (ANNs) are a very powerful data processing tool that can learn
and predict complex patterns between inputs and outputs of a system. The availability and
quality of data are central aspects for the ANN deployment. DOFSs capability of generating
large amounts of data quickly makes DOFSs and ANNs a good pairing. This is confirmed by
recent studies which employed DOFS data in combination with ANNs for damage detection,
localization [3] and disturbance classification purposes [4]. Applying machine learning (ML)
analysis on DOFS data is an emerging research topic. A review of pattern recognition and ML
methods in the context of vibration sensing with DOFSs has been provided by Li et al. [5].
This study highlighted the potential of deep learning (ANNs with multiple hidden layers) to
extract features automatically from the sensor system data. For example, raw amplitude data
from DOFSs was used to train a convolutional neural network (CNN) model to recognize and
classify intrusions for perimeter security applications with good recognition accuracy [4, 6].
Similarly, ANNs were used for pipeline integrity monitoring to detect and classify external
disturbances such as mechanical digging or drilling [3, 7]. Strain data from the DOFSs was
also used in combination with an ANN for structural deformation estimation [8]. Evidently,
several recent studies have successfully detected and classified vibrational movements by using
DOFSs. However, the sources of disturbances in these investigations were often of similar type
and magnitude.

In this study, strain data is gathered from bare free-hanging DOFSs exposed to highly-varied
intensities of mechanical and acoustic disturbances. The strain data from the DOFSs is used to
train ANNs to classify these vibrational disturbances. DOFS measurement data is essentially
similar to a time-series array, hence an appropriate ANN structure has been employed for the
analyses: a long short-term memory (LSTM) ANN. This study serves as a proof-of-concept for
classification of compromised DOFS data by using LSTM ANNs.

2 MATERIALS AND METHODS

2.1 Optical Fibers

Single-mode optical fibers, SMB-E1550H by OFS Fitel, are hereby used as distributed strain
sensors. While the light travels along the fiber, some of it becomes naturally scattered due
to small-scale variations in the glass profile along the fiber length. When the variations in
glass are much smaller than the wavelength of the light, this phenomenon is referred to as
Rayleigh scattering. By exposing the fiber to mechanical strain, the small-scale structure of
the fiber changes, which causes the Rayleigh scatter to change as well. Optical backscatter

2



Valeria Usenco and Kaspar Lasn

reflectometry (OBR) is used to interpret and translate the difference in Rayleigh backscatter
into a distributed strain (or temperature) measurement. This makes it possible to identify
perturbations at a millimeter-scale resolution along the length of the fiber. Test equipment is
typically very accurate but when optical fibers are integrated into real-life structures, strain or
temperature can practically be measured at a resolution of ca. 10 µϵ or 1 °C respectively.

Due to the high sensitivity of DOFSs, real-life measurements are not always entirely noise-
free. Empirically, strains can easily vary by ca. ±5 µϵ [9]. Measurements can become noisy
from excessive bending of the fiber, poor fusion splicing and dirty connections between the
interrogation device and the fiber. Fortunately, it is easy to rectify these causes of noise by using
good working procedures. A more problematic cause of noise are externally-created vibrations
from mechanical sources or from sound, as these are not always possible to eliminate when the
DOFSs are deployed. Therefore, classifying the source of vibrations could be highly informative
and enables the extraction of new types of information from the measurement.

2.2 Measurement States

In this experimental/numerical investigation, the DOFSs were subjected to various distinct
measurement states as described in Table 1. In each measurement instance, a reference trace
and another trace obtained during exposure to a disturbance state were recorded by using the
OBR 4600 interrogation device. The accompanying OBR software was used to process the raw
trace data into strain measurements. The strain data was then used to train the LSTM ANN
model to recognize different disturbance classes. As seen in Table 1, in addition to pure states
Norm, Vac and Fan1-4, the measurement states were also assembled into a Low and a High
group of composite states. The utility of Low and High composite states is explained in a later
section of the paper.

2.3 Experimental Setup

Six optical fibers, approximately 0.99 m in bare (jacket-free) length, were fed through an
airtight tube and a steel mesh tube in series as seen in Figure 1. The fibers were secured to two
supporting polystyrene disks with hot glue. Two opposite-facing computer fans were positioned
approximately 0.2 m equidistant to the center of steel mesh on either side of the setup. The air
fan speed was controlled by an Arduino. A loud industrial vacuum cleaner was also positioned
1 m away from the setup. A microphone (44 kHz sampling frequency) was positioned at the
lower opening of the steel mesh to record audio samples for every measurement state. The
loud sound of the vacuum produced very low-amplitude but high-frequency movements of the
fibers. The air fans did the opposite, inciting large-amplitude but low-frequency mechanical
disturbances. The fibers were connected to the fiber optic switch (FOS) and the OBR 4600
device, which sent and received the back-scattered light from the optical fibers.

The optical fibers were subjected to one of the six pure i.e. non-composite states as defined
in Table 1. Before implementing any of these states, reference measurements were taken for
each fiber. Reference measurements are essentially additional measurements taken in the Norm
state to establish the baseline trace for the fiber. Following that, the system was put through all
measurement states (Norm, Vac, Fan1-4 ) and twenty repeated OBR measurements were taken
for each of these classes of data by using Python UI automation. For each OBR measurement,

3



Valeria Usenco and Kaspar Lasn

Table 1: Descriptions of disturbance states.

Measurement
State

Description

Norm Quiet room with minimal airflow. No deliberate distur-
bances activated.

Vac Loud industrial vacuum cleaner placed 1 m away from opti-
cal fibers and turned on. Pure acoustic effect, no significant
movement of air.

Fan1 Two opposite-facing air fans turned on at 1/4 maximum
speed. Little visible movement in fiber ends.

Fan2 Two opposite-facing air fans turned on at 1/2 maximum
speed. Moderate visible movement in fiber ends.

Fan3 Two opposite-facing air fans turned on at 3/4 maximum
speed. Moderate visible movement in fiber ends.

Fan4 Two opposite-facing air fans turned on at maximum speed.
Vigorous visible movement in fiber ends.

Low A composite state consisting of {Vac, Fan1}.
High A composite state consisting of {Fan2, Fan3, Fan4}.

distributed strains were calculated with a virtual gauge length of 10 mm and a sensor spacing of
5 mm. To exclude the tip-termination reflection effects (established in [10]), a sensing range of
800 mm was chosen, starting from the top entrance to the upper tube, which resulted in 159 data
points per measurement for the given parameters. The recording of one Rayleigh backscatter
trace with the OBR 4600 system took about 3-4 seconds from sending the command (i.e pushing
the button) to saving the output raw data file.

Fast Fourier transforms (FFTs) of the audio recordings taken during each measurement
state are shown in Figure 2 with both linear and logarithmic intensity scales. The Norm state
exhibits the lowest levels of noise over all frequencies. It appears that Fan2 and Vac share
similar frequency spectrum intensity characteristics, which is interesting because the industrial
vacuum cleaner appeared much louder to the ears than the fans. However, the placement of the
microphone meant that the turbulent flow of air affected the microphone directly. The audio
from Fan3 and Fan4 shows intensities several multitudes higher than that of any other state.

In short, the OBR 4600 interrogator is used in this investigation as it is commercially intended
for distributed strain measurements. The additional functionality of vibration state classification
is achieved by LSTM-based post-processing of strain data, outside of the interrogator and its
accompanying software package. Twenty repeated measurements of the same type, over six
parallel optical fibers in similar conditions provide a large volume of independent information
for the machine learning process, while also accounting for fiber-to-fiber inconsistencies within
analogous measurement states.
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Figure 1: Experimental setup.

(a) Linear intensity (b) Log intensity

Figure 2: Fourier transform of mic audio from each disturbance state activation.

2.4 LSTM Data Analysis Method

Machine learning (ML) is a broad term for data processing methods that are established by
learning from data. Artificial neural networks (ANNs) are a subset of ML, which use parameters
in non-linear functions to map inputs to outputs. Deep learning refers to ANNs with multiple
hidden layers. For sequential data, it is common to use a recurrent neural network (RNN)
structure. Unlike conventional ANNs, which consider outputs to be independent of the input
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order, RNNs learn the sequential dependencies within data arrays by combining outputs from
previous data points in the sequence with the data point it is currently processing. An LSTM
network is an improved RNN, which mitigates the vanishing/exploding gradients problem that
RNNs suffer from and allows LSTM networks to learn longer patterns than usual RNNs. This is
accomplished by the addition of a memory unit, which stores outputs from data points further
back in the array.

The Keras API was used with Python 3.9 to develop the ANN. An LSTM network consisting
of two LSTM blocks of 32 and 16 units and a dropout layer was trained on 60% of all measured
data. The training data set was augmented by flipping (i.e. multiplying the series by -1). The
rest of the data set was split evenly between the validation (20%) and test (20%) data sets.
L2-regularization with a regularization factor of 0.01 for the kernel, recurrent and bias weights
was used in the 16 unit layer. The same structure was used both for the network with six pure
states and the network with composite states. The learning rate was set to 0.0001 and a batch
size of 16 was used. Early stopping was invoked when validation loss increased for more than
three consecutive epochs.

3 RESULTS

3.1 Statistical Analysis

The strain measurements from distributed optical fibers in states Norm, Vac and Fan1-4
revealed clearly how data becomes increasingly noisier with higher disturbance intensities. The
strain curves also share some similarities between the different states. To exemplify the variation
in strain curves, four arbitrary strain measurements for each disturbance state of fiber No. 3
(F3) are shown in Figure 3. The vertical dashed line marks the transition between the airtight
tube (to the left) and the open mesh (to the right). Although no direct force was applied on
the free-hanging fibers at any time, noise from the acoustic sound or from the turbulent flow
of air manifested itself in the measurements as high strain values, increasingly so for higher
disturbance intensities. This is reiterated in the probability density function (PDF) graph in
Figure 4: for lower disturbance states (Norm, Vac, Fan1 ), the majority of strain values are
very small, whilst for higher disturbance states (Fan2, Fan3, Fan4 ), the strain values tend to
be higher, as shown by lower, horizontally-spread out center peaks on the PDF graph.

On the whole, the FFT curves of the vibration sources in Figure 2 and the strain PDF curves
in Figure 4 are in agreement with each other: the states with high and sharp PDF curves are
produced by low acoustic intensities, whilst the states with shallow PDF curves correlate with
high acoustic intensities. One exception is Fan2, which gave a shallow PDF curve but had low
acoustic intensities, as measured by the microphone.

Gramian angular difference field (GADF) matrices are an intuitive way of visualizing time
series data [11]. To generate a GADF matrix, each point in the time series is parameterized
into a polar coordinate representation. Then, the phase angle difference between each point and
every other point in the time series is plotted in a matrix form. In this way, the GADF matrix
makes it possible to observe general trends a time series data. Figure 5 shows the mean GADFs
of all measurements. The matrices were generated by calculating the GADF matrix for each
measurement and taking the average value of each matrix cell at the same index. On average,
the GADF matrices become progressively noisier for higher disturbance intensities from left to
right. Some disturbance states produce similar GADF matrix textures, for example, Fan2-Fan4.
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Figure 3: Representative examples of DOFS strain curves for six different disturbance states.
Four measurements were arbitrarily selected from twenty taken for fiber No. 3 (F3).

Small stripes of constant color represent a time series that fluctuates often and randomly, similar
to Gaussian noise. Fiber No. 5 (F5) was considered to be anomalous as its data produced similar
noisy GADF matrices in all disturbance states. Therefore, data from F5 was not used for the
following ANN data analysis.

The GADF visualization matrices through all optical fibers (the vertical direction in Figure 5)
appear more consistent for the extreme states of Norm, Fan3, and Fan4. For each of these three
states, the GADF textures of all fibers, excluding the outlier F5, are visually similar. In contrast,
the intermediate states Vac, Fan1, and Fan2 display a higher variation in GADF visualizations
for different fibers. This is troublesome because all fibers should in principle be affected by similar
external perturbations. As the noise variability from fiber to fiber is higher, these intermediate
states are more difficult to classify already with the human eye, and similar difficulties can be
expected for the ANN algorithm.

The transition from the enclosed tube to the open mesh tube occurs at approximately 1/3
length from the beginning of the data-series array (dashed lines in Figure 3). In Figure 5 this
transition is, surprisingly, easiest to identify from the GADF matrix textures of the “disturbance-
free” Norm state. The same transition line is also recognizable for the mellow Fan1 state.
Whereas for the acoustic noise of Vac and especially for the intense airflow of Fan2-Fan4 states
the transition line between two tubes becomes unrecognizable.

7



Valeria Usenco and Kaspar Lasn

(a) Wide range of strains (b) Narrow range of strains

Figure 4: Distributions of strain values over twenty measurements for all fibers in different
disturbance states.

Figure 5: Mean of GADF matrices for all optical fibers (F1-F6).

3.2 LSTM Model Predictions

For the machine learning analysis, the LSTM ANN was applied on the optical fiber strain
data. Figure 6a shows the predictions made by the LSTM model using six pure states (defined
as Model M1) in a confusion matrix. The states are ordered according to the intensity levels
from the FFT (Figure 2). Figure 6a shows that Model M1 sometimes confused Fan1 and Norm,
which can be attributed to the states’ similar frequency spectrum characteristics as evident in
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Figure 2. The model also struggled to differentiate between Fan2-Fan4, which exhibit clear
similarities in Figure 5. However, the strong diagonal trend in the confusion matrix shows that
when the model made an incorrect prediction, it was often one of the adjacent states (94%
of Model M1’s predictions were correct within the neighborhood of one state). Grouping the
disturbance states into three larger, i.e. composite groups (Table 1) gave even better results,
as shown in the confusion matrix for Model M2 in Figure 6b. A summary of the prediction
accuracy of each data set for both models is provided in Table 2. The training, validation and
test accuracy for both models were within 2-6%, suggesting that the models generalized well.

(a) M1: average test accuracy of 70%. (b) M2: average test accuracy of 89%.

Figure 6: Confusion matrices for initial M1 and grouped M2 LSTM models.

Table 2: Summary of accuracy of models M1 and M2.

Data set

Model Training Validation Test

Initial (M1) 76% 70% 70%

Composite (M2) 90% 88% 89%

3.3 The Effect of the Virtual Strain Gauge Size

Traditional physical strain gauges come in different sizes depending on the structure being
measured. In the post-processing stage of OBR strain measurements, virtual gauge lengths
have to be chosen depending on the application. Until now, the optical fiber strains were
calculated using GL = 10 mm gauge lengths at SS = 5 mm sensor spacing. However, the
effect of these parameters on the LSTM ANN performance is unclear. A parametric study was
conducted using six different virtual gauge size configurations with gauge lengths between 5 mm
and 50 mm, to investigate how the sensing resolution affects the LSTM network prediction
accuracy. To maintain the quasi-continuity of the strain data, the parameters were constrained
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by the condition: SS = 1
2GL. Figure 7 illustrates, by a generic example, how changing the post-

processing parameters affects the calculated strains. The overall trend is that the strain curves
become less noisy with increased gauge length. This is because the strain value is calculated
using more points from the raw OBR data, which has a smoothing effect.

(a) Small virtual gauges (b) Large virtual gauges

Figure 7: Comparison of the same strain measurement data with various post-processing
parameters, GL and SS, using an example curve from the Fan4 state.

Models M1 and M2 were retrained using the recalculated strain data for each added gauge
size configuration. Figure 8 shows how the prediction accuracy was relatively stable for both
models for gauge lengths above 10 mm. However, training the networks on strain data generated
using the smallest gauge length of 5 mm resulted in a significant decrease in the performance of
both models, especially for Model M2. This is likely due to the data containing excessive noise
(Figure 7a) from the new source (OBR internal post-processing) which makes the vibrational
noise (i.e. another independent source) more difficult to predict.

3.4 The Effect of Data Set Size

Another numerical investigation was conducted to understand how the quantity of training
data files affects the test accuracy. The total number of files used for training was 360: 60% of
20 strain files × 6 states × 5 fibers. A pseudorandom reduced selection of files was additionally
chosen with each disturbance class represented evenly. The findings in Figure 9 show a clear
positive correlation i.e. more input data enables more accurate predictions. It is important
to note that the climbing trends have not started to plateau, suggesting that the prediction
accuracy of the classification models could be improved further with more data. Due to stochastic
variations in exactly which data files were chosen for each data segment, the results for small
data batches can break the trend. For example, the first point for Model M1 is abnormally high
presumably because the randomly selected strain curves were among those that are the easiest
to classify. The same random seed was used throughout this study, however, the models may
perform slightly differently with a different random seed.
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Figure 8: The effect of gauge length on the
LSTM prediction accuracy (SS = 1

2GL).
Figure 9: The effect of training data quan-
tity on the LSTM prediction accuracy.

4 CONCLUSIONS

It was experimentally confirmed that both large-amplitude random vibrations created by the
air fans and low-amplitude acoustic vibrations produce additional noise in the nearby Rayleigh
scattering-based DOFS strain measurement system. The noise manifests itself as spikes of strain
even though no external force is applied on the fiber and the strain is expected to be zero. When
the intensity of vibrations is increased, a larger proportion of strain data take on abnormally
large values.

For automated classification of noise, LSTM ANN models were trained and applied on the
experimental DOFS strain data. The accuracy of Model M1, differentiating between six diverse
states of perturbations, was 70% with good generalization. Furthermore, incorrect predictions
were almost always in the adjacent disturbance states in terms of noise intensity. Noise classi-
fication was improved by grouping data into three larger composite classes, giving an accuracy
of 89%.

A parametric numerical study, where strain data was calculated with different virtual gauge
lengths, revealed that the performance of both Model M1 and M2 is stable for gauge lengths
above 10 mm. This confirms that using LSTM ANNs is a robust method of disturbance clas-
sification for DOFS data. Investigating the effect of training data set size on LSTM prediction
accuracy showed a positive correlation, confirming that it is important to have a large quantity
of data. In the current case, the prediction accuracy could likely be further improved with more
measurement data.

In conclusion, this experimental/numerical analysis indicates that ANN-based models such
as LSTM can distinguish between different classes of vibrational disturbances on the DOFS
measurements. The method proved to be relatively indifferent to the main post-processing
parameters but significantly dependent on the training data quantity.
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