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Abstract. The paper presents an up-to-date finite element numerical model for fully
coupled thermo-mechanical problems, focussing in the simulation of solidification pro-
cesses of industrial metal parts. The proposed constitutive model is defined by a thermo-
visco-elasto-(visco )plastic free energy function which includes a contribution for thermal
multiphase changes. Mechanical and thermal properties are assumed to be tempera-
ture dependent, and viscous-like strains are introduced to account for the variation of
the elastic moduli during the cooling process. The continuous transition between the
wnitial flurd-like and the final solid-like behaviour of the part is modelled by considering
separate viscous and elasto-plastic responses as a function of the solid fraction. Thermo-
mechanical contact conditions between the mould and the part are specifically considered,
assuming that the heat fluz is a function of the normal pressure and the thermal and
mechanical gaps. A fractional step method arising from an operator split of the govern-
ing equations is used to solve the monlinear coupled system of equations, leading to a
staggered product formula solution algorithm suitable for large scale computations. Rep-
resentative simulations of industrial solidification processes are shown, and comparison
of computed results using the proposed model with available experimental data is given.



1 INTRODUCTION

The numerical simulation of coupled thermo-mechanical solidification processes has
been one of the research topics of great interest over the last years. Also, during the
last decade, a growing interest on this and related topics has been shown by many
industrial companies, such as automotive and aeronautical, motivated by the need to get
high quality final products and to reduce manufacturing costs. However, and despite the
enormous progress achieved lately in computational mechanics, the large scale numerical
simulation of these problems continues to be nowadays a very complex task. This is
mainly due to the highly nonlinear nature of the problem, usually involving nonlinear
constitutive behaviour, liquid-solid and solid-solid phase changes, nonlinear thermal
and mechanical boundary conditions, frictional contact interaction and complex coupled
thermo-mechanical phenomena. In this paper the topic of the numerical simulation of
industrial solidification processes is addressed.

2 FORMULATION OF THE THERMO-MECHANICAL PROBLEM

2.1 Local Governing Equations

The local system of partial differential equations governing the (quasi-static) coupled
thermo-mechanical initial boundary value problem is defined by the momentum and
energy balance equations, restricted by the inequalities arising from the second law of
the thermodynamics. The local form of the momentum and energy balance equations

can be written as
0= V.-o+B

©S=-V.-q+R+Djy @)
where B are the (prescribed) body forces, V- (-) the divergence operator, o the Cauchy
stress tensor, © the absolute temperature, S the entropy, q the heat flux, R the (pre-
scribed) heat source and Dj,; the internal dissipation per unit volume. Additionaly,
suitable prescribed boundary and initial conditions must be supplied, as well as consid-
ering the equilibrium equations at the contact interfaces.

Also, the entropy S and the Cauchy stress tensor o must be defined via constitutive
relations, subjected to the following restriction on the internal dissipation:!

Dipp=0:6+0OS—FE >0 (2)

where € is the infinitesimal strain tensor and F is the internal energy. The heat flux
q is related to the absolute temperature through Fourier’s law (¢ = —k(©) VO, with
k = k(©) being the temperature dependent thermal conductivity), subjected to the

restriction on the dissipation by conduction:
1
©

V@-q:@ve-ve >0 (3)
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The state equations are obtained from Eq. (4) using Coleman’s method as:!

o= 0eV = K(O)eel + 2G(0O) dev [ee]

d®

x ) . R . (10)
S=—0g0 = /@000(@) = — doW - doll

where the term —9gW = 3K (e. + eo)|e + ao(© — O,ef)] — %K@(eg — e2) may be
different from zero even if the material properties are constant.

The internal dissipation can be expressed in terms of the evolution of the internal
variables as

Dintza:év+a:ép+q£20 (11)

where ¢ is the conjugate variable of &, that is, ¢ = —85\11 = —(95[;[ .
Note that considering the constitutive equation for the entropy and taking its time

derivative and applying the chain rule the heat capacity and the elastoplastic heating
can be defined as

Cs(0) := © 95 =Cp(0) — ©8%g (W + H)

. . 12
Hep(©) := O (8eS : (€c + éo) + 0eSE) = —O g (0 : (€ + éo) — q &) (12)

where Eq. (5) and the equalities 9¢S = —0go and 0¢S = 0gq have been used. With
these definitions at hand, Eq. (1.b) can be rewritten in the usual temperature form as

Cs0 =-V-q+ R+ Dyt — Hep (13)

In the case of an increase of the temperature-dependent elastic moduli due to the
cooling process of a loaded elastic solid, irrecoverable strains necessarily occur. These
strains are evident if a sample loaded with given elastic moduli is unloaded at a later
time when the temperature has dropped and, therefore, the elastic moduli are higher.
This stiffening effect is incorporated in the constitutive model introducing a viscous
strain tensor as an internal variable. Taking the time derivative of Eq. (10.a) yields

o = (K(©)ée + K(O)ee)1 + 2G(0)dev [&] + 2G(O) dev [eg] (14)

On the other hand, the experimental observation of the relation between the rate of
stress and the rate of strain takes the form:
oc =K(©)(é —éo)l +2G(O)dev[é — ép |

= K(6) (e + é)1 + 2G(O) dev[ée + év] (1)

Equating Eq. (14) to Eq. (15.a) yields the following evolution law for the viscous strain:
(G) (K) (G)

?dev [Ge] = Fpl I Wdev [O'] (16)

(K)

€y = ?Cel +



Figure 1. Rheological mechanical model with phase change.

where G' = G(0)/fs(0) is the effective (temperature dependent) shear modulus. The
evolution law of the viscous strains, Eq. (16), is also modified to account for the viscous
behaviour of the fluid, and it is rewritten as

. (K) (G) 1

éy = Fpl—i—(ﬁ—kﬁ)dev[a] (21)
where the fle = 7¢(©)/f;(©) is the effective (temperature dependent) elastic viscosity.
Note that for the solid phase f;(©) = 0 and, therefore, fje = 0o, and the solid model is
recovered. On the other hand, for the fluid phase f5(©) = 0 and, therefore, G = oo and
a pure Norton’s model is recovered.

Also the volumetric change due to the phase change is included, so that Eq. (6) is

rewritten as

€o = [(©)(0 = Orep) — a(B0)(O0 — Orey) + éepc (fs(©) = fs(®))]1  (22)

where epc is the volumetric variation due to phase change. Usually, this consists of a
volumetric contraction referred to as phase change shrinkage (epe < 0).

Finally, the thermal term of the free energy T = T(@) must be extended to account
for the thermal effects of the phase change. In this work, it will take the form:

T — 7(©) = /e To(©)d6 = — /G; 6 [°1Co(®) + Lo(®)] ds (23)

where L = L(©) is the latent heat function. It is possible to define the latent heat
function in terms of the solid fraction as L = L fs(©), with £ constant, but there are



3 TIME INTEGRATION OF THE COUPLED PROBLEM

The numerical solution of the coupled thermomechanical IBVP involves the transfor-
mation of an infinite dimensional transient system, governed by a system of quasi-linear
partial differential equations into a sequence of discrete nonlinear algebraic problems
by means of a Galerkin finite element projection and a time marching scheme for the
advancement of the primary nodal variables, displacements and temperatures, together
with a return mapping algorithm for the advancement of the internal variables.

With regard to the time marching scheme different strategies are possible to perform
this transformation, but they can be grouped in two categories: simultaneous time-
stepping algorithms and staggered time-stepping algorithms.

Simultaneous time-stepping algorithms solve both the mechanical and the thermal
equilibrium equations together, thus advancing all the primary nodal variables of the
problem, displacements and temperatures, simultaneously. This invariably leads to
large and unsymmetric systems of equations, usually prohibitively expensive to solve.
Furthermore, the use of different standard time-stepping algorithms developed for the
single uncoupled problems is not straightforward, and it is not possible to take advantage
of the different time scales possibly involved in the problem for the mechanical and
thermal parts. On the other hand, it is relatively simple to devise unconditionally
stable schemes using this approach.

A variant of this approach is to attempt the solution of the resulting equations using a
block-iterative solution. This leads to smaller and usually symmetric system of equations
to be solved, but then the study of the stability of the algoriths is complicated, as it
depends on the tolerances used to assess convergenge. The problem of stability in time
is then linked to that of convergence within the time step.!!

Staggered time-stepping algorithms are based on the use of an operator split, applied
to the coupled system of nonlinear ordinary differential equations, and a product formula,
algorithm, which leads to a scheme in which each one of the subproblems defined by
the partition is solved sequentially, within the framework of classical fractional step
methods. This leads to the partition of the original problem into smaller and typically
symmetric (physical) subproblems. Furthermore, the use of different standard time-
stepping algorithms developed for the uncoupled subproblems is now straightforward,
and it is possible to take advantage of the different time scales involved. Additionally, it
is now possible to obtain unconditionally stable schemes using this approach, providing
that the operator split preserves the underlying dissipative structure of the original
problem!213, In view of these motivations, in this work the staggered scheme has
been preferred. Additional details about the formulation, implementation and stability
analysis of the method can be found in references 2, 3, 12 and 13.

In the classical isothermal split the coupled system of equations is partitioned into a
mechanical phase at constant temperature, followed by a thermal phase at fixed config-
uration. The evolution of the internal variables is enforced in both phases. As shown in
references 12 and 13 the isothermal split does not preserve the contractivity property



(b.i) Thermal phase. Using a BE scheme the discrete weak form of the energy
balance equation and updated internal variables in the thermal phase take the form:

1
_<Csn+1 (@n+1 - @n) + Ln+1 - Ln, <0> - <Qn+1a V[CO]) =
At

(Rot1+ Dintn+1,¢0) — (@n+1, )T, — (Gns1, C)r,e  (29)
én+1 =Gn + Aé"n+1

(b.ii) Mechanical phase. Using a BE time stepping algorithm, the discrete weak
form of the momentum balance equation and updated internal variables G' in the me-
chanical phase take the form:

(on+1, VIno]) = (B, o) + (tn+1,m0)T, + (Ent1,m0)T,,, (30)
Gn+1 =Gp+ AGn+1
Results obtained with Scheme (b) are not the same as those obtained with Scheme
(a), but the difference between them is of the order of the size of the time step, O(At),
which is the order of the error of this type of operator splits. Note that in Scheme (b) the
update of the internal variables én+1 during the thermal phase is only necessary for the
evaluation of the term (ﬁint)n+1- In the simulation of solidification processes this term is
usually negligible, and therefore this first update of the internal variables can be avoided.
This is equivalent to performing an explicit update of the form (Dj,;)p11 = (Dint)n and
it results in an evident saving in computational cost.

4 NUMERICAL SIMULATIONS

The formulation presented in the previous Sections is demonstrated in the follow-
ing selected numerical simulations. First, an assessment of the constitutive model is
presented to establish qualitatively its validity. Then test industrial applications are
presented and compared with available experimental data. Finally, a large size indus-
trial analysis is performed and selected numerical results are shown.

The computations are performed with the finite element code COMET (COupled
MEchanical and Thermal analysis) developed by the authors. In all the following nu-
merical simulations the Newton-Raphson method, combined with a line search optimiza-
tion technique, was used to solve the nonlinear equations arising from the spatial and
temporal discretization of the weak form of the momemtum and energy balance equa-
tions. Convergence of the incremental (in time) — iterative procedure was monitored by
requiring a tolerance of 0.1% in the residual based error norm.
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assumed for the steel mould. Geometrical and material data can be found in the above
reference. A gap dependent convection-radiation coefficient between the aluminium and
the steel mould has been assumed.

Spatial discretization of the casting cylinder and the mould has been done using
a finite element mesh consisting of 848 axisymmetric 3-noded triangles. Numerical
simulation was done up to 90 s. of the solidification test using a time step of 1 s.
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Figure 3. Cylindrical aluminium solidification test. Geometry.
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Figure 4. Cylindrical aluminium solidification test. (a) Temperature evolution at the casting center,
casting surface and mould surface. (b) Radial displacement evolution at the casting and mould surfaces.
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Figure 5. Solidification of a brake component. Geometry and finite element mesh.
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Figure 7. Solidification of a brake component. Temperature evolution on section y-z.
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