
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020

Virtual Congress: 11-15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

ON PRECONDITIONING VARIABLE POISSON EQUATION WITH
EXTREME CONTRASTS IN THE COEFFICIENTS

Àdel Alsalti-Baldellou 1,2, F. Xavier Trias1, Andrey Gorobets3 and Assensi Oliva1

1Heat and Mass Transfer Technological Center, Technical University of Catalonia
C/ Colom 11, 08222 Terrassa (Barcelona), Spain; www.cttc.upc.edu
{adel.alsalti, francesc.xavier.trias, asensio.oliva}@upc.edu

2Termo Fluids SL
C/ Magı́ Colet 8, 08204 Sabadell (Barcelona), Spain; www.termofluids.com

3 Keldysh Institute of Applied Mathematics
4A, Miusskaya Sq., Moscow 125047, Russia; www.keldysh.ru

andrey.gorobets@gmail.com

Key words: Poisson Equation, Variable Preconditioning, Multiphase Flow, Adaptive Mesh Refinement

Abstract. It is well known that the solution by means of iterative methods of very ill-conditioned systems
leads to very poor convergence rates. In this context, preconditioning becomes crucial in order to modify
the spectrum of the system being solved and improve the performance of the solvers. A proper balance
between the reduction in the number of iterations and the overhead of the construction and application of
the preconditioner needs to be sought to actually decrease the total execution time of the solvers. This is
particularly important when considering variable coefficients matrices as, in general, its preconditioners
will also be variable and need to be updated regularly at an affordable cost. In this work we present a
family of variable preconditioners designed for the effective solution of variable Poisson equation with
extreme contrasts in the coefficients, which represents a particularly challenging case as it translates
into a variable and extremely ill-conditioned system arising in many situations such as with multiphase
flows presenting high density ratios or in the presence of highly-stretched adaptive mesh refinements.
Finally, the results of the numerical experiments performed are presented and discussed, confirming our
preconditioners as extremely affordable, highly-parallelizable and easy-to-implement alternatives to the
more standard (and usually unfeasible) preconditioners, still showing great improvements in the rate of
convergence of the solvers without requiring the variable coefficients matrix to be explicitly rebuilt at
each iteration.

1 INTRODUCTION

Under certain assumptions, divergence constraints follow from basic conservation principles, such as
the conservation of mass or electrical charge. Such constraints lead to a Poisson equation for a sort of
scalar potential whose solution is usually one of the most time-consuming and difficult to parallelize
parts of scientific simulation codes. Consequently, the development and implementation of efficient and
scalable Poisson solvers results a crucial task for simulations of physical phenomena belonging to a wide

1

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

variety of fields, as computational fluid dynamics (CFD), linear elasticity, electrostatics or oil reservoir
modeling, among many others.

As should be expected, changes in the discretization or in the configuration of the physical system will
result into different versions of the discrete Poisson equation, presenting (eventually very) different prop-
erties that will need to be carefully considered and profited by the solvers. In this sense, the aim of this
paper is to propose a solver for the variable coefficients Poisson equation which, in its general form and
defining the scalar fields α(r, t),φ(r, t),ψ(r, t) ∈ R, reads:

∇ · (α∇φ) = ψ

and, after an appropriate discretization, results into:

MAGφh = ψh

where A = diag(αh), M and G are the discrete divergence and gradient operators, and αh,φh and ψh the
discrete scalar fields α, φ and ψ.

More concretely, we will focus on the case where the coefficients field, α, presents very high contrasts
along the physical domain. Two factors make this particularly challenging: firstly, as A changes in
time, so does the matrix of the system, MAG, being then unaffordable the use of direct solvers due
to their setup costs (apart from their excessive memory requirements). Secondly, as direct solvers are
unusable, then the use of iterative methods becomes imperative. However, and as will be seen in the
forthcoming sections, high contrasts in the coefficients immediately translates into very ill-conditioned
systems, leading to very slow convergences.

The need for solvers adequately adapted to such versions of the Poisson equation is not new and, indeed,
shared by many different fields such as multiphase flows, groundwater flows or oil reservoir simulations
or semiconductor modeling (cf. [1], [2], [3], [4]). Although much previous work had already been done,
the first two papers analyzing the impact of extreme contrasts in the coefficients appeared in 1999: in
[3], Vuik et al. applied it to oil reservoir modeling, where extreme contrasts in the permeability of sand
and shale layers are present (typically leading to permeability ratios of order 10−7). On the other side,
in [5], Graham and Hagger applied it to the development of additive Schwarz domain decomposition
preconditioners on unstructured meshes for such cases. More recent contributions incorporate the use of
deflation techniques [6, 7, 8], model order reduction [2, 8] and multigrid preconditioning [9].

Despite considering extreme contrasts, nearly all the proposals mentioned so far do not tackle (at least
explicitly) the extra problem of having to work with a variable coefficients matrix, which poses a huge
extra challenge as setup costs may easily make a solver prohibitively expensive in computational terms.
In this work we present a set of preconditioners specially designed for this case and compatible with
the conjugate gradient method (CG) and, consequently, with the rest of less restrictive Krylov subspace
methods, such as GMRES, CGS, BICGSTAB... The main features of our proposal are:

• It does not require the full matrix MAG to be built explicitly and updated at each iteration.

• The update costs of our variable preconditioners are rather negligible.

• It gives rise to a family of new “adaptive” preconditioners based on already existing ones that
generally result unaffordable in the variable case.

2

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

• The extra operations involved in our preconditioners (with respect to the existing preconditioners
from which they arise) are highly parallelizable, scalable and easy to implement.

On the other side, given the never-ending growth of the computing capacity and the general incorporation
of massively parallel accelerators by most modern supercomputers, it is worth to emphasize that the
update of our preconditioners does not require any inter or intra-node communication, as the operation
is completely local. This would allow the scientific codes to not be affected by slower latencies and to
efficiently engage all the available devices, achieving better scalabilities and higher performances thanks
to their increased memory bandwidths.

The rest of the paper is organized as follows: in Section 2 the framework from which our preconditioners
are derived will be detailed, that is: firstly, Poisson equation and its discretization in the context of CFD
will be given; secondly, some fundamental properties of the iterative methods of choice will be reviewed;
thirdly, preconditioning techniques will be introduced. Afterwards, in Section 3, the preconditioners that
we propose will be derived as suitable alternatives to other ones already existing and widely applied to
the non-variable Poisson equation. Then, in Section 4 numerical results obtained from a realistic multi
phase test case will be given and, finally, in Section 5 some concluding remarks will be made.

2 VARIABLE COEFFICIENTS POISSON EQUATION

As was already pointed, variable versions of the Poisson equation with large discontinuities on its coeffi-
cients may be found in many different areas. Thus, even though the development of our preconditioners
will be based on incompressible multi phase flows, its extension to other fields will be almost direct.

2.1 Poisson equation in CFD

Let us consider an incompressible multi phase flow governed by:

Navier-Stokes:
∂v
∂t

+(v ·∇)v =
1
ρ
(µ∆v−∇p+σκδΓn̂)

Incompressibility: ∇ ·v = 0

where the velocity-pressure coupling is solved by means of the well known fractional step method of
Chorin [10] and Témam [11], whose application leads to the solution of a variable Poisson equation to
obtain the pressure field, p, that will later be used to correct the predictor velocity, vp, and project it onto
a divergence-free subspace:

∇ ·
(

1
ρ

∇p
)
=

1
∆t

∇ ·vp

Applying a symmetry-preserving discretization of the system (cf. [12, 13, 14]) results into the following
discrete version of the Navier-Stokes equations:

Ω
dvh

dt
=−C(vh)vh +NDvh−R−1ΩGph +σKGθh, with

Convective operator: C(vh)
Diffusive operator: D
Mesh volumes: Ω = diag(Vh)
Level set marker: θh
R = diag(ρh), N = diag(µh/ρh)

3

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

being K the discrete curvature (see [12]) and with the discrete gradient and divergence operators related
by:

G =−Ω−1Mt (1)

and, therefore, the discrete constant Laplace operator taking the form: L =−MΩ−1Mt . Additionally, our
discrete variable coefficients Poisson equation for pressure would then read:

L̃p = Mvp (2)

where the discrete variable Laplace operator is defined as L̃ := MR−1G and, by virtue of Equation 1, can
be expressed as L̃ =−MR−1Ω−1Mt . It would be then meaningful to consider a sort of new metric of the
system, Ω̃, accounting for the density and defined as Ω̃ := ΩR, thus reaching:

L̃ =−MΩ̃−1Mt . (3)

2.2 Poisson solvers

As was commented in the introduction, the use of iterative solvers results mandatory as direct solvers
are not usable because of the characteristics of the system we aim to solve and the typical mesh sizes
involved.

Among the iterative solvers, Krylov subspace methods play a fundamental role thanks to their good
performance and to being highly parallelizable. For a detailed review of such methods the reader is
referred to [15].

Bearing in mind that under most discretizations L̃ is a symmetric negative-semidefinite matrix (being
ker L̃ = 〈1〉), it becomes clear that Equation 2 can be easily changed of sign to make its coefficients
matrix positive-semidefinite. Under such circumstances, CG should be the solver of choice given its
robustness, computationally cheap iterations and small memory requirements. A suitable choice for
non-symmetric discretizations of L̃ could be, among many others, GMRES (see [15]).

A well known result to describe the rate of convergence of CG applied to a general linear system Ax = b
is given by the following bound:

‖ek‖A ≤ 2

(√
κ(A)−1√
κ(A)+1

)k

‖e0‖A , where κ(A) =
λmax(A)
λmin(A)

and ‖ek‖A =

√
(xk− x0)

t A(xk− x0) (4)

which sets a link between the rate of convergence of CG and the spectral properties of the coefficients
matrix of the system, A, being λmax and λmin its largest and smallest (in magnitude) eigenvalues.

Roughly speaking we could say that: the higher the condition number of the coefficients matrix (κ(A))
is, the slower it will converge. This behavior is not exclusive with CG and similar bounds can be found
for other iterative methods. Precisely for this, matrices having a large condition number are said to be
ill-conditioned and expected to be harder to solve iteratively. Nevertheless, it is worth to mention that the
convergence of CG (and the rest of iterative methods) can be a bit more complex, sometimes yielding to a
superlinear convergence that can only be explained by means of the actual distribution of the eigenvalues.
A deeper analysis of this topic focusing on the CG case can be found in [16].

4

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

Going back to the Poisson equation, it is interesting to illustrate the impact of extreme contrasts in the
coefficients on the conditioning of the resulting system. With this aim, let us consider a two-fluid flow
test case run on MATLAB that will also be used in future sections to confirm the expected behavior of
our proposals. Our test case will be solved using a symmetry-preserving staggered discretization based
on the results presented in [12].

More concretely, the initial static configuration shown in Figure 1a will be assumed, letting the surface
tension make it evolve to the configuration shown in Figure 1b, to later perform all the numerical exper-
iments on that final snapshot. Since this work strictly focuses on the solution of Equation 2, for the sake
of simplicity the idealized parameters shown in Table 1 and a homogeneous spatial discretization have
been considered, thus having: Ω = ∆x∆yI and Ω̃ = ∆x∆yR.

(a) Initial configuration (b) Evolved configuration

Figure 1: Two-fluid flow test case: surface tension acts on the initial static ellipse.

parameter units internal fluid external fluid

Density ρ Kg/m3 ρ0 = 1.0 ρ1 = ratio−1

Dynamic viscosity µ Ns/m2 10−4

Surface tension coefficient σ N/m ρ1/1000
Initial ellipse axes (a, b) m (1.0, 0.5)

Table 1: Idealized parameters considered in the two-fluid flow test case.

In Figure 2 there is shown the impact of the density ratio on the spectrum of L̃. Two things should
be noted: firstly, the spectrum is presented normalized by the smallest (in magnitude) eigenvalue and
ordered from smallest to largest, thus ranging, for all ratios, from 1 to the condition number, κ(L̃) =
λmax/λmin. Indeed: the higher the ratio, the much more ill-conditioned the system. Secondly, this effect
becomes much more intense for finer meshes. Thus, we can assert that versions of L̃ arising from large
real case meshes and presenting important contrasts will be extremely ill-conditioned and, therefore, even
though Equation 2 can only be solved by means of iterative solvers, its convergence will be excessively
slow.

2.3 Preconditioning Poisson equation

It is clear that the solution by means of a direct application of CG (or any other iterative solver) is not
reasonable, as large aspect ratios immediately translate into extremely ill-conditioned systems. There
exists, however, a crucial tool to remedy this situation and achieve substantial improvements in the rate
of convergence of the solvers: to precondition the linear system.

5

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

100

101

102

103

104

105

0 32 64 96 128 160 192 224 256

λ
i/

λ
m

in

i

ratio = 1
ratio = 102

ratio = 104

ratio = 106

(a) 16×16 mesh

100

101

102

103

104

105

106

107

108

109

0 1024 2048 3072 4096 5120 6144 7168 8192 9216

λ
i/

λ
m

in

i

ratio = 1
ratio = 102

ratio = 104

ratio = 106

(b) 96×96 mesh

Figure 2: Normalized spectrum of L̃ applied to the two-fluid test case for various density ratios and
(homogeneous) meshes.

By preconditioning, we mean solving an equivalent system that results to be better conditioned. Hence,
being solved in less iterations at the extra cost of having to set up the preconditioner, K = K1K2, and
to apply it at least once per iteration. Typically, this can be done in three different ways that arise from
applying K (or its factors) to a different side of the coefficient matrix of a linear system Ax = b:

Left preconditioning: K−1Ax = K−1b
Right preconditioning: AK−1y = b, where Kx = y
Split preconditioning: K−1

1 AK−1
2 y = K−1

1 b, where K2x = y

Obviously, the spectral properties of the preconditioned system, e.g. K−1Ax=K−1b, should be improved
with respect to the unpreconditioned one, Ax = b. That is: κ(K−1A) should be closer to one than κ(A),
being its eigenvalues as clustered together as possible and, therefore, requiring the iterative solvers less
iterations to converge. Moreover, if the solver being used requires the system to satisfy a certain condi-
tion, then the preconditioned system needs to satisfy it, too. From this constraint can be derived that K
needs to be a symmetric positive-definite (SPD) matrix to be compatible with CG.

On the other side, setup and application overheads should be kept under control to not spoil the expected
reduction in the total execution time of the preconditioned solvers. In this sense, it is crucial that the
application of the preconditioner, which normally reduces to inverting K, is computationally affordable.
This is the reason why diagonal and triangular preconditioners are so popular. As we already pointed,
Equation 2 is particularly challenging, given that L̃ is not only seriously ill-conditioned, but also variable.
As a consequence, K will need to be updated according to the new L̃ at each time iteration and, therefore,
reasonably expensive setup overheads will no longer be affordable. The aim of this work is, then, to
propose a set of variable preconditioners that can be updated at almost no extra cost while still performing
equally well than other standard and widely used but unaffordable (in the variable case) preconditioners.

6

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

3 VARIABLE POISSON PRECONDITIONERS

The variable preconditioners that we propose arise as affordable, in the variable case, alternatives of
already existing preconditioners. In spite of the fact that we are only going to analyze two “adaptive
precontitioners”, namely adaptive Jacobi and adaptive Incomplete Cholesky preconditioners, it is worth
to mention that our approach gives rise to a whole new family whose shared main features have already
been reviewed in the Introduction and whose derivation details will be discussed in Section 3.2.

3.1 Adaptive Jacobi preconditioner

Given the variable coefficients Poisson equation, Equation 2, defined by the variable discrete Laplace
operator, L̃, Jacobi preconditioner is defined as:

KJac := diag(L̃). (5)

Despite being a rather simple preconditioner, in many cases its impact in the rate of convergence of
the solvers may be quite notable. Moreover, its application is computationally very cheap and highly-
parallelizable, as the product by the inverse of a diagonal matrix can be calculated trivially and does not
involve communications between computing devices.

Even though the full matrix L̃ is not required to extract its updated diagonal and build KJac, it must be said
that its calculation may represent a significant overhead, specially in discretizations where Equation 1 is
not verified and L̃ 6=−MΩ̃−1Mt , given that extra inter and intra-node communications may be necessary.
In order to remedy this situation and arising from the observation that for large (and not so large) contrasts
either in the coefficients or in the mesh sizes (R and Ω, respectively), the diagonal of L̃ is dominated by
Ω̃ and the following approximation can be made:

diag(L̃)' Ω̃−1 (6)

leading to our adaptive Jacobi preconditioner:

K̃Jac := Ω̃−1. (7)

whose action, as will be seen in Section 4, is very similar to that of KJac but eliminating the extra costs
associated to calculating the updated diagonal of L̃. This is done at a very small extra cost, namely
one more diagonal matrix product, as K̃Jac = R−1Ω−1 is formed by two factors while KJac = diag(L̃) by
one. In spite of that fact, one diagonal matrix product can be saved when either Ω or R are smooth,
since that factor can be eliminated from K̃Jac without having any major impact on the spectrum of the
preconditioned system. For instance, in the test case presented in Section 2.2 we can freely consider
K̃Jac = R−1, as the mesh is homogeneous and Ω = ∆x∆yI. Additionally, it is worth to mention that the
cost of obtaining the updated matrices Ω and R is considered negligible because in any simulation they
will be required and updated in other parts of the code outside the solver.

3.2 Adaptive variants of existing preconditioners

Even though Jacobi preconditioner performs rather well considering its very low computational costs,
in many cases it may result insufficient. For those cases there exist many other preconditioners, such as

7

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

those based on incomplete factorizations, multi-level approaches, polynomial series or sparse approxi-
mate inverses. A review of many well known and widely used preconditioners may be found in [15].

The problem of such more elaborated preconditioners is that they entail much higher setup costs which,
as has already been discussed, are not affordable in the variable case because of having to rebuild K
at each time iteration to adapt it to the new L̃. Therefore, our proposal basically aims to drastically
reduce the overhead linked to updating these more complex preconditioners while not losing much of
their improved performances.

To do this, let us observe that, specially for very large discontinuities (both in R and Ω):√
Ω̃ L̃
√

Ω̃ =−
√

Ω̃
(

MΩ̃−1Mt
)√

Ω̃'−MMt .

Hence, we propose building more complex preconditioners K = FF t based on the constant discrete
Laplace operator and adapt them to L̃ by combining them with K̃Jac in the following manner:

K̃ := F̃F̃ t , where F̃ :=
√

K̃JacF

thus having (via split preconditioning):

F̃−1L̃F̃−t = F−1
(√

K̃Jac

)−1
L̃
(√

K̃Jac

)−1
F−t ' F−1LF−t

It should be noted that, as K is constant and will only need to be calculated once, then it still results
affordable even if its setup costs are higher. Moreover, it will be based on −MMt only when both R
and Ω are variable and present considerable contrasts. If either R or Ω are constant, then, according to
what was discussed in the previous section, that constant factor will be ignored by K̃Jac and, in order to
attain a better quality preconditioner, will need to be considered by K. Conversely, when either R or Ω
are variable but very smooth (thus having a condition number close to 1 and not affecting noticeably the
spectrum of L̃), that factor could be ignored by both K̃Jac and K, hence not playing any role in F̃ .

On the other side, the derivation of the general preconditioner K̃ has been made in a factored form to
be consistent with the symmetry constraint imposed by CG. Nevertheless, if the variable coefficients
Poisson equation is aimed to be solved using a less restrictive iterative method, then the adaptive version
of a general and non-factored preconditioner K could be directly derived as:

K̃ :=

{
K̃JacK, if left preconditioning
KK̃Jac, if right preconditioning

a formulation that would, additionally, require less extra diagonal matrix products.

A particular example of such adaptive preconditioners could be based on the incomplete Cholesky pre-
conditioner (cf. [15]) that, besides, is perfectly compatible with CG. As its name suggests, it is the result
of performing an incomplete Cholesky factorization under many different possible strategies, such as
imposing a fixed sparsity pattern or applying a certain dropping criterion on the nonzeros. Applying
such preconditioner to L̃ would result into:

KIC := LL̃Lt
L̃

(8)

8

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

being LL̃ and Lt
L̃

the incomplete Cholesky factors of L̃. Clearly, even though an important reduction
in the number of iterations needed to solve Equation 2 should be expected, it would not compensate the
overhead of rebuilding the incomplete Cholesky factors at each time iteration (apart from the overhead of
inverting two triangular matrices at each iteration of the solver). Under these circumstances our adaptive
incomplete Cholesky preconditioner would read:

K̃IC := L̃LL̃t
L, where L̃L :=

√
K̃JacLL (9)

being LL and Lt
L the incomplete Cholesky factors of L according to what was discussed above and elimi-

nating the unaffordable overhead of rebuilding the incomplete factors at each time iteration.

4 NUMERICAL RESULTS

All the preconditioners presented in Section 3 have been implemented on MATLAB and tested for several
ratios and meshes. Before analyzing the iterative solution of the preconditioned variable coefficients
Poisson equation, let us review the spectral properties of the differently preconditioned operators, K−1L̃,
in order to predict the behavior that should be exhibited by our proposals (according to theoretical results
such as the convergence bound for CG given in Equation 4).

In Figure 3 there are shown the spectrums of different versions of K−1L̃ for ratios 102 and 106. Two
immediate conclusions can be drawn from the plots: firstly, that the condition number of the unprecondi-
tioned case, trivially designated as K = I, is a lot higher than for the rest of cases. Indeed, as was already
pointed with respect to Figure 2, with finer meshes this difference would become so large that the result-
ing plot would be badly scaled. Secondly, it is clear that the action of K̃Jac and K̃IC on L̃ is very similar
to that of KJac and KIC, respectively, thus leading to comparable rates of convergence. Unsurprisingly,
the more complex preconditioners based on incomplete Cholesky factorizations, KIC and K̃IC, succeed
on further clustering together the eigenvalues of L̃.

0

2000

4000

6000

8000

10000

12000

14000

0 32 64 96 128 160 192 224 256

λ
i/

λ
m

in

i

I
KJac
K̃Jac
KIC
K̃IC

(a) ratio = 102

0

5000

10000

15000

20000

25000

30000

35000

40000

0 32 64 96 128 160 192 224 256

λ
i/

λ
m

in

i

I
KJac
K̃Jac
KIC
K̃IC

(b) ratio = 106

Figure 3: Normalized spectrum of K−1L̃ for K ∈
{
I,KJac, K̃Jac,KIC, K̃IC

}
and applied to the two-fluid test

case. Results obtained on a 16×16 homogeneous mesh.

Finally, we have solved the same version of Equation 2 applied to the evolved two-fluid test case on a

9

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

96×96 homogeneous mesh using either of the preconditioners discussed so far. The different number of
iterations required to converge (up to a relative tolerance of 1.0e−8) are presented in Table 1 for different
ratios. The first column, I, clearly shows how crucial preconditioning L̃ results, specially for higher den-
sity ratios and finer meshes. Moreover, and as we had already predicted, it is clear that K̃Jac constitutes an
excellent alternative to KJac when applied to L̃ and for all the ratios considered, not necessarily extreme.
In addition to K̃Jac, K̃IC succeeds on further reducing the number of iterations with respect to K̃Jac and
KJac, although it must be said that its discrepancy with respect to KIC is slightly higher than that of K̃Jac
with respect to KJac.

In any case, from the results of Table 1 and the convergence plots of Figure 4 we can clearly state that
K̃Jac, despite being a rather simple preconditioner and exactly as KJac, successfully preconditions high-
ratio Poisson equation, while being particularly well-suited for the variable case. On the other side,
K̃IC manages to further improve them both and makes available more complex preconditioners that are
generally unaffordable in the variable case given their excessive update costs.

ratio I KJac K̃Jac KIC K̃IC

1 152 151 152 46 46
102 611 182 183 56 56
104 5774 190 188 97 103
106 61731 288 291 124 136

Table 2: Number of iterations required by preconditioned CG to solve Equation 2 applied to the two-
fluid test case for various preconditioners and ratios on a 96×96 homogeneous mesh with convergence
criterion: |b− L̃xi|/|b|< 1.0e−8.

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

0 50 100 150 200 250 300

|b
−

L̃
x i
|/
|b
|

iteration

I
KJac
K̃Jac
KIC
K̃IC

(a) ratio = 102

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250 300

|b
−

L̃
x i
|/
|b
|

iteration

I
KJac
K̃Jac
KIC
K̃IC

(b) ratio = 106

Figure 4: Evolution of the normalized residual, |b− L̃xi|/|b|, in the solution of Equation 2 applied to the
two-fluid test case for various preconditioners and ratios on a 96×96 homogeneous mesh.

5 CONCLUDING REMARKS

As a conclusion, let us recall that a family of new “adaptive” preconditioners specially designed to suit
variable versions of the Poisson equation with large contrasts in the coefficients has been presented.

10

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

On the one side, its simplest proposal arises as an alternative to the well-known Jacobi preconditioner,
while, on the other, general rules to derive adaptive variants of more complex (and already existing but
not affordable in the variable case) preconditioners are given. Among the characteristics of our different
proposals, it is worth to mention that, even if they are variable and effectively adapted at each time
iteration to the new linear system, they still entail a very low computational cost: their update stage is
rather negligible, while the overhead related to their application comprises, at most, two diagonal matrix
products that, in turn, are a very economical and highly parallelizable operation. Moreover, they do
not require the full variable Laplace operator to be explicitly built and updated, which in highly parallel
executions could represent an unacceptable overhead.

The numerical experiments conducted confirm that our proposals, namely adaptive Jacobi and incom-
plete Cholesky preconditioners, present very similar rates of convergence with respect to their analogues,
thus leading to very important reductions in the number of iterations, specially for higher ratios and finer
meshes, at a much lower computational cost.

As future lines of work, we plan to implement our adaptive preconditioners in real simulation codes
to quantify how their negligible update costs actually translate into an important decrease of the total
execution time of the simulations. More concretely, we aim to implement adaptive Jacobi, incomplete
Cholesky and other adaptive variants of existing preconditioners in combination with HPC2, our in-house
algebraic library for heterogeneous computing (cf. [17]), and analyze their performance and scalability.
Finally, we also plan to study the impact on the quality of our preconditioners of using different face-to-
cell interpolators or of working with variable and highly-stretched meshes. Further possible lines of work
could include the combination of our proposals with deflation techniques and multi-level approaches.

ACKNOWLEDGMENTS

Àdel Alsalti-Baldellou, F. Xavier Trias and Assensi Oliva have been financially supported by a compet-
itive R+D project (ENE2017-88697-R) by the Spanish Research Agency. Àdel Alsalti-Baldellou is also
supported by predoctoral grants DIN2018-010061 and 2019-DI-90, given by, respectively, the Spanish
Ministry of Science, Innovation and Universities (MICINN) and the Catalan Agency for Management of
University and Research Grants (AGAUR).

REFERENCES

[1] M. S. Dodd and A. Ferrante, “A fast pressure-correction method for incompressible two-fluid
flows,” Journal of Computational Physics, vol. 273, pp. 416–434, 2014.

[2] D. Pasetto, M. Ferronato, and M. Putti, “A reduced order model-based preconditioner for the ef-
ficient solution of transient diffusion equations,” International Journal for Numerical Methods in
Engineering, vol. 109, pp. 1159–1179, feb 2017.

[3] C. Vuik, A. Segal, and J. Meijerink, “An Efficient Preconditioned CG Method for the Solution of a
Class of Layered Problems with Extreme Contrasts in the Coefficients,” Journal of Computational
Physics, vol. 152, pp. 385–403, jun 1999.

[4] R. K. Coomer and I. G. Graham, “Massively parallel methods for semiconductor device modelling,”
Computing, vol. 56, pp. 1–27, mar 1996.

11

Àdel Alsalti Baldellou, F. Xavier Trias, Andrey Gorobets and Assensi Oliva

[5] I. G. Graham and M. J. Hagger, “Unstructured Additive Schwarz–Conjugate Gradient Method for
Elliptic Problems with Highly Discontinuous Coefficients,” SIAM Journal on Scientific Computing,
vol. 20, pp. 2041–2066, jan 1999.

[6] C. Vuik, A. Segal, L. El Yaakoubi, and E. Dufour, “A comparison of various deflation vectors
applied to elliptic problems with discontinuous coefficients,” Applied Numerical Mathematics,
vol. 41, no. 1, pp. 219–233, 2002.

[7] J. van der Linden, T. Jönsthövel, A. Lukyanov, and C. Vuik, “The parallel subdomain-levelset
deflation method in reservoir simulation,” Journal of Computational Physics, vol. 304, pp. 340–
358, jan 2016.

[8] G. Diaz Cortes, C. Vuik, and J. Jansen, “On POD-based Deflation Vectors for DPCG applied to
porous media problems,” Journal of Computational and Applied Mathematics, vol. 330, pp. 193–
213, mar 2018.

[9] B. Aksoylu, I. G. Graham, H. Klie, and R. Scheichl, “Towards a rigorously justified algebraic pre-
conditioner for high-contrast diffusion problems,” Computing and Visualization in Science, vol. 11,
no. 4-6, pp. 319–331, 2008.

[10] A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of Computation,
vol. 22, no. 104, pp. 745–745, 1968.

[11] R. Témam, “Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des
pas fractionnaires (II),” Archive for Rational Mechanics and Analysis, vol. 33, pp. 377–385, jan
1969.

[12] N. Valle, F. Trias, and J. Castro, “An energy-preserving level set method for multiphase flows,”
Journal of Computational Physics, vol. 400, p. 108991, jan 2020.

[13] F. Trias, O. Lehmkuhl, A. Oliva, C. Pérez-Segarra, and R. Verstappen, “Symmetry-preserving dis-
cretization of Navier-Stokes equations on collocated unstructured grids,” Journal of Computational
Physics, vol. 258, pp. 246–267, feb 2014.

[14] R. W. Verstappen and A. E. Veldman, “Symmetry-preserving discretization of turbulent flow,” Jour-
nal of Computational Physics, vol. 187, no. 1, pp. 343–368, 2003.

[15] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, vol. 56. Cambridge
University Press, apr 2003.

[16] A. van der Sluis and H. A. van der Vorst, “The rate of convergence of Conjugate Gradients,” Nu-
merische Mathematik, vol. 48, pp. 543–560, sep 1986.

[17] X. Álvarez-Farré, A. Gorobets, and F. X. Trias, “A hierarchical parallel implementation for het-
erogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers,”
Computers & Fluids, vol. 214, p. 104768, jan 2021.

12

