Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems The DESERVE Approach

RIVER PUBLISHERS SERIES IN TRANSPORT TECHNOLOGY

Series Editors

HAIM ABRAMOVICH Technion - Israel Institute of Technology Israel THILO BEIN

Fraunhofer LBF Germany

Indexing: All books published in this series are submitted to Thomson Reuters Book Citation Index (BkCI), CrossRef and to Google Scholar.

The "River Publishers Series in Transport Technology" is a series of comprehensive academic and professional books which focus on theory and applications in the various disciplines within Transport Technology, namely Automotive and Aerospace. The series will serve as a multi-disciplinary resource linking Transport Technology with society. The book series fulfils the rapidly growing worldwide interest in these areas.

Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

- Automotive
- Aerodynamics
- Aerospace Engineering
- Aeronautics
- Multifunctional Materials
- Structural Mechanics

For a list of other books in this series, visit www.riverpublishers.com

Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems The DESERVE Approach

Editors

Guillermo Payá-Vayá

Leibniz Universität Hannover Germany

Holger Blume

Leibniz Universität Hannover Germany

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

River Publishers Lange Geer 44 2611 PW Delft The Netherlands

Tel.: +45369953197 www.riverpublishers.com

ISBN: 978-87-93519-14-5 (Hardback) 978-87-93519-13-8 (Ebook)

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/ licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work's Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper.

Contents

Pro	eface	xiii
Lis	st of (Contributors xvii
Lis	st of H	'igures xxi
Lis	st of T	ables xxxiii
Lis	st of A	bbreviations xxxv
1	The	DESERVE Project: Towards Future ADAS Functions 1
	1 1	Project Aim
	1.1	Project Structure
	1.3	DESERVE Platform Design 5
	1.4	The Project Innovation Summary
	1.5	Conclusions

PART I: ADAS Development Platform

2	The to S	DESERVE Platform: A Flexible Development Framework eemlessly Support the ADAS Development Levels	9
	Fran	k Badstübner, Ralf Ködel, Wilhelm Maurer, Martin Kunert,	
	And	ré Rolfsmeier, Joshué Pérez, Florian Giesemann,	
	Guil	lermo Payá-Vayá, Holger Blume and Gideon Reade	
	2.1	Introduction to the DESERVE Platform Concept	9
	2.2	The DESERVE Platform – A Flexible Development	
		Framework to Seamlessly Support the ADAS	
		Development Levels	12
	Guil 2.1 2.2	lermo Payá-Vayá, Holger Blume and Gideon Reade Introduction to the DESERVE Platform Concept The DESERVE Platform – A Flexible Development Framework to Seamlessly Support the ADAS Development Levels	9 12

•	~
V1	Contents
V I	Contentis

	2.3	DESE	RVE Platform Requirements	16
		2.3.1	DESERVE Platform Framework	16
		2.3.2	Generic DESERVE Platform Requirements	
			(Relevant to all Development Levels)	18
		2.3.3	Rapid Prototyping Framework Requirements	
			(Development Level 2)	21
		2.3.4	Additional Requirements for Embedded Multicore	
			Platform with FPGA (Development Level 3)	22
	2.4	DESE	RVE Platform Specification and Architecture	23
		2.4.1	DESERVE Platform Architecture	23
			2.4.1.1 Hardware architecture	25
			2.4.1.2 Software architecture	26
		2.4.2	DESERVE Platform Interface Definition	30
			2.4.2.1 Definition of DESERVE interface	
			architecture	30
			2.4.2.2 Existing ADAS interfaces	32
			2.4.2.3 Definition of next generation interfaces	33
	2.5	Safety	Standards and Certification Concepts	35
		2.5.1	Safety Impact of DESERVE	36
		2.5.2	Functional Safety of Road Vehicles (ISO 26262)	36
		2.5.3	Guidelines Related to ISO 26262	37
		2.5.4	Safety and AUTOSAR	38
		2.5.5	Safety Mechanisms for DESERVE Platform	39
		Refere	nces	43
3	Driv	ver Mod	lelling	45
-	Jens	Klimke	and Lutz Eckstein	
	3.1	Introd	uction	45
	3.2	Driver	Modelling	48
	3.3	Requi	rements for DESERVE	50
	3.4	Generi		52
		3.4.1	Model Structure	52
		3.4.2	Parameter Structure	56
	3.5	Impler	mentation	59
	3.6	Applic	ations in DESERVE and Results	61
	3.7	Conclu	usions and Outlook	62
		Refere	nces	63

~	
Contents	V11
Contentis	V 11

4	Con of M	nponent Iulti-M	t Based Middleware for Rapid Development odal Applications	65
	Gwe	enaël Du	unand	
	4.1	Introd	uction	65
	4.2	Using	a Middleware	65
	4.3	The M	Iultisensor Problem	66
		4.3.1	Knowing the Date and Time of Your Data	67
		4.3.2	Component-based GUI	68
		4.3.3	The Off-the-Shelf Component Library	69
		4.3.4	Custom Extensions	71
		4.3.5	About Performance	71
	4.4	Comp	atibility with Other Tools	72
		4.4.1	dSPACE Prototyping Systems	72
		4.4.2	Simulators	73
		4.4.3	Other Standards	74
	4.5	Conclu	usion	74
		Refere	ences	75
5	Tun	ing of A	ADAS Functions Using Design Space Exploration	77
	Abh	ishek Ra	avi, Hans Michael Koegeler and Andrea Saroldi	
	5.1	Introd	uction	77
		5.1.1	Parameter Tuning: An Overview	77
		5.1.2	Industrial Tuning Applications: Challenges	
			and Opportunities	78
		5.1.3	Model-based Tuning	81
		5.1.4	Model-based Validation	83
	5.2	Demo	nstrative Example	84
		5.2.1	Function: An Overview	84
		5.2.2	Design Variables	85
		5.2.3	Key Performance Indicators (KPI)	88
		5.2.4	Test Maneuver	89
		5.2.5	Test Run Overview	89
		5.2.6	Raw Data Plausibility Check	91
		5.2.7	Meta Modelling	92
		5.2.8	Optimization	95
		5.2.9	Verification	97
	5.3	Model	l-based Validation	98

viii Contents

5.4	Conclusions																				101
	Acknowledgement .	•		•								•						•		•	101
	References	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	101

PART II: Test Case Functions

6	Dee	p Learning for Advanced Driver Assistance Systems	105
	Flor	rian Giesemann, Guillermo Payá-Vayá, Holger Blume,	
	Mat	thias Limmer and Werner R. Ritter	
	6.1	Introduction	105
	6.2	Scene Labeling in Advanced Driver Assistance Systems	106
	6.3	Convolutional Neural Networks and Deep Learning	107
		6.3.1 Introduction to Neural Networks	108
		6.3.2 Supervised Learning	109
		6.3.3 Convolutional Neural Networks	112
	6.4	CNN for Scene Labeling	115
		6.4.1 Exemplary Network for Scene Labeling	116
		6.4.2 Evaluation	116
	6.5	Hardware Platforms for Scene Labeling	120
		6.5.1 Theoretical Performance Requirements	121
		6.5.2 CPU-based Platforms	125
		6.5.3 GPU-based Platforms	125
		6.5.4 FPGA-based Platforms	125
	6.6	Summary	127
		References	127
7	Rea	Il-Time Data Preprocessing for High-Resolution	
	MIN	MO Radar Sensors	133
	Fran	nk Meinl, Eugen Schubert, Martin Kunert	
	and	Holger Blume	
	7.1	Introduction	133
	7.2	Signal Processing for Automotive Radar Sensors	134
		7.2.1 FMCW Radar System Architecture	134
		7.2.2 Two-Dimensional Spectrum Analysis for Range	
		and Velocity Estimation	138
		7.2.3 Thresholding and Target Detection	139
		7.2.4 Angle Estimation	143
	7.3	Hardware Accelerators for MIMO Radar Systems	145

		7.3.1 Basic Structure of a Streaming Hardware	
			145
		7.3.2 Pipelined FFT Accelerator	146
		7.3.3 Rank-Only OS-CFAR Accelerator	151
	7.4	Conclusion	153
		References	154
0	Salf	Calibration of Wide Pagaline Stance Compres Systems	
0	for	-Campitation of white Dasenne Stereo Camera Systems	157
	Nice	Automotive Applications	137
	NICO	o von Eslaffetsin and Lan Vräger	
	NOTa	Introduction	157
	0.1		157
		8.1.1 Extraction of Image Features	158
		8.1.2 Matching of Image Features	101
	0.0	8.1.3 Extrinsic Online Self-Calibration	161
	8.2	Algorithmic Overview	162
		8.2.1 Survey of Image Features Extraction	162
		8.2.1.1 Detection of features	162
		8.2.1.2 Description of features	167
		8.2.1.3 Characteristics of features	169
		8.2.2 Feature Matching	172
		8.2.3 Survey of Feature-based Self-Calibration	176
	8.3	Extraction of Image Features	177
		8.3.1 Detection of SIFT-Feature Points	177
		8.3.2 Description of SIFT-Image Features	178
	8.4	Matching of Image Features	179
	8.5	Extrinsic Online Self-Calibration	181
	8.6	Application-Specific Algorithmic Parameterization	182
		8.6.1 Decreasing Bit Depth of Input Images for Extraction	
		of SIFT-features	182
		8.6.2 Threshold-based Feature Matching	186
		8.6.3 Parameterization of Matching Methods	188
	8.7	Hardware Based SIFT-Feature Extraction	192
		8.7.1 Challenges of SIFT-Feature Extraction	193
		8.7.2 Existing Systems for Hardware Based SIFT-Feature	
		Extraction	194
	8.8	Conclusion	196
		References	197

x Contents

9	Arbi	tration	and Shar	ing Control Strategies	
	in th	e Drivii	ng Proces	S	201
	Davi	d Gonzá	ález, Joshu	é Pérez, Vicente Milanés, Fawzi Nashashibi,	
	Marg	ga Sáez '	Tort and A	ngel Cuevas	
	9.1	Introdu	iction		201
	9.2	ADAS	Functions	Available in the Market	202
		9.2.1	Longitud	inal Control Systems	203
		9.2.2	Lateral C	Control Systems	207
		9.2.3	Other Co	ontrol Systems	209
		9.2.4	Control S	Solution in ADAS	211
			9.2.4.1	Perception platform	212
			9.2.4.2	Application platform	214
			9.2.4.3	Information Warning Intervention (IWI)	
				platform	214
	9.3	Survey	on Arbitr	ation and Control Solutions in ADAS	215
	9.4	Human	-Vehicle l	nteraction	216
	9.5	Driver	Monitorin	ıg	217
		9.5.1	Legal an	d Liability Aspects	219
	9.6	Sharing	g and Arbi	tration Strategies: DESERVE Approach	220
	9.7	Conclu	sions		221
		Referen	nces		222

PART III: Validation and Evaluation

10 The HMI of Preventing Warning Systems: The DESERVE Approach	227
Caterina Calefato, Chiara Ferrarini, Elisa Landini,	
Roberto Montanari, Fabio Tango, Marga Sáez Tort	
and Eva M. García Quinteiro	
10.1 Introduction	227
10.2 Prevent Imminent Accidents: The Role of Humans,	
the Role of Technology	228
10.2.1 From Passive to Preventive Safety	228
10.2.2 The Role of Driver Model in ADAS Design	230
10.3 HMI Design Flow: The DESERVE Approach	233
10.3.1 Different Approaches in the HMI of the Preventing	
Warning Systems: A State of Art in a Glance	233

Contents xi

	10.4	HMI Concepts Design	234 235 238 239 240 241 241
	10.6	Recommendations	242
	10.0	10.6.1 Participants	243
		10.6.2 Procedure	244
		10.6.3 Results	244
	10.7	Conclusions	246
		Acknowledgments	247
		References	247
11	Vehi	cle Hardware-In-the-Loop System for ADAS	
	Rom	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier	251
	Nirtu Rom and 2 11.1	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction	251 251
	Virtu Rom and 2 11.1 11.2	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction	251 251 252
	Virtu Rom and 2 11.1 11.2 11.3	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System	251 251 252 254
	Virta Rom and 2 11.1 11.2 11.3 11.4	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation	251 252 254 256
	Virta Rom and 2 11.1 11.2 11.3 11.4	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions	251 252 254 256 256
	Virtu Rom and 2 11.1 11.2 11.3 11.4	ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2	251 252 254 256 256 258
	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5	ain Testing ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2 Software Implementation Experimental Setup	251 252 254 256 256 258 260
	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5 11.6	ain Testing ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2 Software Implementation Experimental Setup Results	 251 251 252 254 256 256 258 260 262
	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5 11.6 11.7	ain Testing ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2 Software Implementation Experimental Setup Results Conclusion and Future Work	 251 251 252 254 256 256 258 260 262 265
	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5 11.6 11.7	ain Testing ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2 Software Implementation Experimental Setup Results Conclusion and Future Work Acknowledgment	251 252 254 256 256 258 260 262 265 266
	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5 11.6 11.7	ain Testingain Rossi, Clément Galko, Hariharan NarasimmanXavier SavatierIntroductionState of the ArtProposed SystemHardware Implementation11.4.1Sensors Stimulation Solutions11.4.2Software ImplementationExperimental SetupResultsConclusion and Future WorkAcknowledgmentReferences	251 252 254 256 256 258 260 262 265 266 267
Inc	Virta Rom and 2 11.1 11.2 11.3 11.4 11.5 11.6 11.7 lex	ain Testing ain Rossi, Clément Galko, Hariharan Narasimman Xavier Savatier Introduction Introduction State of the Art Proposed System Hardware Implementation 11.4.1 Sensors Stimulation Solutions 11.4.2 Software Implementation Experimental Setup Results Conclusion and Future Work Acknowledgment References	 251 251 252 254 256 256 258 260 262 265 266 267 269

Preface

The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012–2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce costs for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI).

This book provides a detailed overview of the different research activities conducted in the course of the DESERVE project. After introducing the aims of the DESERVE project in Chapter 1, selected achievements of the DESERVE project are presented in three different parts. Part I is dedicated to the ADAS development platform developed during the DESERVE project.

- Chapter 2 covers the methodology and concepts that are part of the generic DESERVE platform as the basis and key enabler for the development of new assistance systems. It describes the entire spectrum of aspects, e.g., modularity, interfaces, and standards, to be considered for the use of the DESERVE platform.
- Chapter 3 describes the development of realistic models for driver behavior as part of the DESERVE tool-chain needed for the evaluation of complex ADAS systems and driver-vehicle-environment interactions. The modelling system was used to simulate two different driving scenarios.
- Chapter 4 presents component based middleware, e.g., RTMaps and ADTF, for supporting the developer of complex systems with typical challenges like multi-sensor support, synchronization issues, and modularity. By means of different exemplary applications, in which modules like simulators or prototyping systems are connected to the middleware, the flexibility of the DESERVE tool-chain is demonstrated.

xiv Preface

• Chapter 5 describes a model-in-the-loop approach for tuning ADAS parameters. Using the AVL CAMEO tool, model-based design space exploration and validation of a complex ADAS function is performed.

In Part II, ADAS applications used as test functions in the DESERVE project are explained.

- Chapter 6 presents an application of deep-learning techniques for semantic segmentation of camera images (i.e., Scene Labeling). After explaining the algorithmic basics, an FPGA-based implementation is presented and evaluated.
- Chapter 7 covers a system coupling an FPGA-based signal processing architecture for MIMO radar with a PC-based ADTF data postprocessing. The hardware-software combination maximizes processing performance and minimizes development time of complex systems.
- Chapter 8 describes a design space exploration for online calibration of wide baseline stereo camera systems using sparse feature correspondences in stereo images. Challenges in hardware implementations of feature matching are presented and hardware-specific solutions are discussed.
- Chapter 9 presents a first approach of arbitration and sharing vehicle control between driver and assistance system based on modelling vehicles and driver behavior and intentions. Fuzzy logic techniques are used to implement the control sharing and simulations allow testing of the systems.

Part III covers the validation and evaluation of two exemplary applications of the DESERVE platform.

- Chapter 10 aims at exploring effective design of Human Machine Interface (HMI). During the DESERVE project, in-vehicle HMI solutions for different functions were developed. The HMI design process for an exemplary function is described in this chapter.
- Chapter 11 shows a prototype system for vehicle-in-the-loop testing of ADAS functions that additionally analyzes the energy efficiency of the prototyped system. Combined with multi-sensor simulation, a virtual environment for testing ADAS functions is provided.

Further detailed information about the contributions of DESERVE can be found in the list of project deliverables referenced in each chapter.

This work was supported by the European Commission under the Artemis Joint Undertaking in the scope of the DESERVE project. We would like to

Preface xv

thank all authors and co-authors for their excellent contributions. Special thanks to Matti Kutila for the efficient managing of the complete DESERVE project over three years. Further thanks to Martin Kunert who well-coordinated subprojects and who actively supported our work. Furthermore we want to thank the River Publishers Team, in particularly Mr. Mark de Jongh and Ms. Junko Nakajima for their great support.

We hope that you will enjoy reading this book.

Guillermo Payá Vayá Holger Blume

March 22th, 2017 Hannover (Germany)

List of Contributors

Abhishek Ravi, AVL List Gmbh, Austria

André Rolfsmeier, dSpace GmbH, Germany

Andrea Saroldi, C.R.F. S.C.p.A, Italy

Angel Cuevas, CTAG – Centro Tecnológico de Automoción de Galicia, Spain

Caterina Calefato, Unimore – University of Modena and Reggio Emilia – Italy

Chiara Ferrarini, Unimore – University of Modena and Reggio Emilia – Italy

Clément Galko, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000 Rouen, France

David González, INRIA, France

Elisa Landini, RE:Lab srl, Italy

Eugen Schubert, Advanced Engineering Sensor Systems, Robert Bosch GmbH, Leonberg, Germany

Eva M. García Quinteiro, *CTAG – Centro Tecnológico de Automoción de Galicia, Spain*

Fabio Tango, CRF – Centro Ricerche Fiat, Italy

Fawzi Nashashibi, INRIA, France

Florian Giesemann, Institute of Microelectronic Systems, Leibniz Universität Hannover, Hannover, Germany xviii List of Contributors

Frank Badstübner, Infineon Technologies AG, Germany

Frank Meinl, Advanced Engineering Sensor Systems, Robert Bosch GmbH, Leonberg, Germany

Gideon Reade, ASL, U.K.

Guillermo Payá-Vayá, Institute of Microelectronic Systems, Leibniz Universität Hannover, Hannover, Germany

Gwenaël Dunand, Intempora, France

Hans Michael Koegeler, AVL List Gmbh, Austria

Hariharan Narasimman, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000 Rouen, France

Holger Blume, Institute of Microelectronic Systems, Leibniz Universität Hannover, Hannover, Germany

Jens Klimke, Institute for Automotive Engineering, RWTH Aachen University, Steinbachstraße 7, 52074 Aachen, Germany

Joshué Pérez, INRIA, France

Lars Krüger, Daimler AG, Vision Enhancement, Ulm, Germany

Lutz Eckstein, Institute for Automotive Engineering, RWTH Aachen University, Steinbachstraße 7, 52074 Aachen, Germany

Marga Sáez Tort, *CTAG – Centro Tecnológico de Automoción de Galicia, Spain*

Martin Kunert, Advanced Engineering Sensor Systems, Robert Bosch GmbH, Leonberg, Germany

Matthias Limmer, Vision Enhancement, Daimler AG, Germany

Matti Kutila, VTT Technical Research Center of Finland Ltd., Finland

Nereo Pallaro, Centro Ricerche Fiat, Italy

Nico Mentzer, *Institute of Microelectronic Systems, Leibniz Universität Hannover, Hannover, Germany*

Nora von Egloffstein, Daimler AG, Vision Enhancement, Ulm, Germany

Ralf Ködel, Infineon Technologies AG, Germany

Roberto Montanari, RE:Lab srl, Italy

Romain Rossi, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000 Rouen, France

Vicente Milanés, INRIA, France

Werner R. Ritter, Vision Enhancement, Daimler AG, Germany

Wilhelm Maurer, Infineon Technologies AG, Germany

Xavier Savatier, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000 Rouen, France

List of Figures

Figure 1.1	The DESERVE V-shape development process	4
Figure 1.2	DESERVE platform concept for speeding	
	up the ADAS function development time	5
Figure 2.1	The DESERVE Platform – the enabler for next	
	generation ADAS systems.	10
Figure 2.2	DESERVE platform enabled design	
-	and development process.	12
Figure 2.3	ADAS development process.	13
Figure 2.4	DESERVE platform framework.	17
Figure 2.5	Perception platform functional architecture	19
Figure 2.6	Application platform functional architecture	21
Figure 2.7	DESERVE IWI platform.	22
Figure 2.8	DESERVE platform (e.g. for development	
	Level 2 – rapid prototyping system based on mixed	
	PC and embedded controller framework)	25
Figure 2.9	DESERVE approach – use of common platform	
	for all ADAS modules.	27
Figure 2.10	DESERVE platform architecture	28
Figure 2.11	Overview on the principles of virtual interaction	
	using the AUTOSAR.	29
Figure 2.12	Message box principle for intra-unit	
-	communication.	31
Figure 2.13	AUTOSAR application software concept.	32
Figure 2.14	Camera Interface (CIF) overview.	34
Figure 2.15	Module interaction implies changes	
	in system behavior.	36
Figure 2.16	SEooC safety mechanisms.	40
Figure 2.17	Top level safety requirements.	41
Figure 2.18	Fault tolerant time interval (FTTI) definition	41
Figure 2.19	Generic elements of safe computation	
-	hardware platform.	42

xxii List of Figures

Figure 3.1	Primary driving tasks which are implemented	
	in the driver model within the DESERVE project	
	separated by longitudinal and lateral control	52
Figure 3.2	Manoeuvres which are implemented in the driver	
	model within the DESERVE project	52
Figure 3.3	Driver model structure in the context of environment	
	and vehicle: the structure includes perception,	
	processing and action blocks including its functional	
	modules and the regarded dynamic	
	information flow.	53
Figure 3.4	Process variables for the four basic driving	
	motivations free moving, following, lane keeping	
	and <i>standing</i>	55
Figure 3.5	Process variables for the three manoeuvres	
	lane change, stopping and Safe Passing	56
Figure 3.6	Sketch of the parameter blocks (brown) and model	
	blocks (blue) of the driver model	57
Figure 3.7	Distribution of lower following time gaps for real	
	drivers (blue bars) and the modelled distribution	
	dependent on a normal distributed need for safety	
	parameter (red line)	58
Figure 3.8	Stateflow model for a two-phase lane change	
	including decision (A), progress control (B)	
	and sequence control (C)	60
Figure 3.9	Trajectories (velocity over x- and y-position) for left	
	turn including the simulation results for different	
	parameter sets. The real driver data is measured	
	on one intersection with 136 different drivers	
T1	during day time	61
Figure 4.1	ADAS function requires many different type	
	of sensor.	66
Figure 4.2	Synchronisation issues.	67
Figure 4.3	The RTMaps Studio.	68
Figure 4.4	Components and interfaces.	69
Figure 4.5	Inspecting data with the data viewer	70
Figure 4.6	Developing a new component.	71
Figure 4.7	dSPACE MicroAutobox and KI Maps Bridge	72
Figure 4.8	ProSivic working together with RTMaps	13

List of Figures xxiii

Figure 5.1	Separation of software and tuning parameters	
-	in a control unit.	78
Figure 5.2	History of powertrain tuning (calibration)	78
Figure 5.3	Illustration of a generalized development	
	environment and manual tuning process	80
Figure 5.4	Model-based tuning task illustrated.	81
Figure 5.5	Velocity profiles for a sample test run using	
	the control function.	84
Figure 5.6	Function developed using IPG carmaker	
	and MATLAB simulink.	85
Figure 5.7	Function overview.	86
Figure 5.8	Illustration of the kinematic variables A_MAX	
	and J_MAX	86
Figure 5.9	Illustration of the design variable (variation)	
	J_HOR	88
Figure 5.10	Key performance indicators.	89
Figure 5.11	IPG Carmaker test environment	90
Figure 5.12	Test run overview illustrating the work flow	90
Figure 5.13	Left image illustrates the test preparation window	
	while the right image illustrates the test	
	run window	91
Figure 5.14	Checking for outliers in the measured variables	92
Figure 5.15	Check of DoE design and the boundaries	
	of variation parameters	93
Figure 5.16	Figure depicting the quality of empirical	
	modeling.	93
Figure 5.17	Intersection plot highlighting the influence	
	of each variation on the output variables	
	and their interaction.	94
Figure 5.18	Optimization setting window in AVL CAMEO	95
Figure 5.19	Trade-off plot between comfort and speed	96
Figure 5.20	Sporty mode vs comfort mode	97
Figure 5.21	Verification plot to see how well the measured	
	results from the verification run fit the model	
	results.	98
Figure 5.22	Digitized road used for the validation run	99
Figure 5.23	Measurements comparison when run on comfort	
	mode (in blue) and sporty mode (in red)	100
Figure 6.1	Model of an artificial neuron.	108

xxiv List of Figures

Figure 6.2	Exemplary activation functions used in neural	
	networks.	109
Figure 6.3	Example of a fragmentation after a 2×2 pooling.	
	The naïve approach would only produce the bright	
	pixels, while an overlapping pooling produces	
	all other possible pixels (purple, green, and blue).	
	These pixels must be reordered to be able to correctly	
	continue with the forward propagation of the neural	
	network	114
Figure 6.4	The complete processing chain from input image	
	to a scene labeled image is displayed. After building	
	an image pyramid of 3 layers and the local	
	normalization every scale is fed to its own processing	
	chain. This produces 6 class membership probability	
	maps. They can be interpreted and augmented	
	as seen in the output image	116
Figure 6.5	The image pyramid construction layer produces	
C	3 scales that are locally normalized in 15×15	
	windows. Every scale is propagated independently.	
	There are in total 2 convolution layers with $16 \times 7 \times 7$	
	filter kernels using the ReLU activation function.	
	After activation a 2×2 max-pooling is performed	
	followed by a fragmentation in the first pooling	
	laver. A second fragmentation is not necessary since	
	the second pooling layer is followed by	
	a defragmentation. The small scaled feature maps	
	are sampled up and fed to a classification layer, being	
	a $6 \times 1 \times 1$ convolution layer. Finally, a pixel	
	wise softmax is applied.	117
Figure 6.6	Displayed are the learn curves of three different	
8	network topologies. Each topology was trained	
	three times and the learn curves were averaged.	
	The averaged learn curves are displayed as solid	
	lines while the standard deviation for 50 epochs	
	is displayed as the area around the lines.	118
Figure 7.1	FMCW ramp waveform shown as frequency	110
	over time f(t). The solid line represents	
	the transmitted signal (TX) while the dashed line	
	is the received signal (RX)	135
		155

List of Figures XXV

Figure 7.2	Chirp-sequence modulation.	136
Figure 7.3	Possible MIMO antenna array design: The physical	
-	receiver array (blue) is extended by several virtual	
	antennas (red squares) due to the second	
	transmitter TX $\hat{2}$.	137
Figure 7.4	CA-CFAR sliding window implementation	139
Figure 7.5	Rank-only OS-CFAR implementation.	141
Figure 7.6	Additive white Gaussian noise model.	143
Figure 7.7	Histogram of a noise measurement showing	
8	the chi-squared distribution before and after NCI.	143
Figure 7.8	Uniform linear antenna array with spacing	
8	d and resulting steering vector $\boldsymbol{v}(\alpha)$.	144
Figure 7.9	Architecture of a streaming hardware accelerator.	145
Figure 7.10	Radix-2 FFT implementation based on a multi-path	
8	delay commutator (MDC) pipeline.	146
Figure 7.11	Radix-2 FFT implementation based	
8	on a SDF pipeline.	147
Figure 7.12	Effects of different word lengths on the amount	
0	of quantization noise.	150
Figure 7.13	Architecture of the rank-only OS-CFAR	
C	accelerator.	152
Figure 7.14	Resource usage against number of channels	
	for a constant window size (128 cells)	152
Figure 7.15	Resource usage against window size for different	
_	number of channels.	153
Figure 8.1	Algorithmic overview. Input of the processing chain	
	is a stereo image pair, in which sparse pixel	
	correspondences are extracted for online camera	
	calibration. After the calibration, rectification	
	is performed as a preprocessing step for disparity	
	estimation	158
Figure 8.2	Left (top) and right (bottom) image from a stereo	
	camera system showing detected SIFT-image	
	features. Detected feature points of the left/right	
	image are displayed in red/green, matches	
	are displayed in blue. Scale and rotation	
	of the SIFT-features are illustrated by the circle	
	properties	159

xxvi List of Figures

Figure 8.3	Detection of edges and corners by image gradients.	
	The blue circle shows a possible feature point,	
	surrounded by a local neighborhood. (a) Low image	
	gradients in two spatial directions represent texture	
	free image areas. (b) A high image gradient	
	in one spatial direction indicates a possible edge,	
	(c) in two spatial directions a possible corner	163
Figure 8.4	Intensity comparisons of pixel, which are located	
	on a Bresenham Circle. The central pixel	
	is determined as a corner if a certain number	
	of continuous pixel intensities is brighter or darker	
	than the central pixel. This is combined	
	with an adoptable threshold to avoid	
	instabilities	164
Figure 8.5	Detection of corners of different image scales.	
	With strongly different object sizes in the image,	
	a corresponding corner is not detectable (red circle),	
	but by a repeated image scaling	164
Figure 8.6	Blob detector. The detected blobs are displayed	
	as red circles. The blob's size is displayed	
	as the diameter of the circle.	165
Figure 8.7	Blob detection based on circular image region	
	for a scene with a large viewpoint change. The region	
	on which the blob feature extraction is based only	
	partially covers the corresponding region	
	and thus, will lead to non-matching image	
	features	165
Figure 8.8	Affine-Invariant Interest Point Detection.	
	The circular point neighborhood is replaced	
	with an ellipse in order to achieve independent	
	orthogonal varying detection scales for interest point	
	detection. Before applying a detection algorithm,	
	the local neighborhood is affine normalized, which	
	results in a circular neighborhood and a transformed	
-	image patch.	166
Figure 8.9	Sampling grids for generating different descriptors:	
	(a) SIFT, (b) Shape Context, (c) DAISY	167
Figure 8.10	Sampling pattern. (a) BRISK descriptor, (b) FREAK	
	descriptor. Sampling patterns define	

List of Figures xxvii

	a set of sampling locations (blue circles),	
	of whose image information is smoothed	
	with spatial-dependent filter kernels (red circles).	
	Out of the sampling pattern the sampling pairs	
	for the binary tests for the descriptor generation	
	are selected	168
Figure 8.11	Two variations of sampling pairs of the FREAK	
	descriptor. A fixed combination of sampling	
	locations is selected as descriptor specific sampling	
	pairs, with which the binary tests for the descriptor	
	generation is performed.	169
Figure 8.12	Rotation invariance is achieved by rotating	
	the sampling grid by the main orientation	
	before extracting the descriptor	170
Figure 8.13	Scale-space. An input image is down sampled	
	to achieve multiple scales of the image. On each	
	scale, feature candidates are found, whereas	
	repeated candidates are removed. The scale	
	with the highest information content	
	for the feature candidate is selected	
	as the feature scale	170
Figure 8.14	Multi-scale approach for blob detection.	
	The same blob with differing scales	
	in two images and the related response	
	(normalized Laplacian of Gaussian)	
	over scales is shown. The scale	
	with the highest information content	
	is chosen as a blob.	171
Figure 8.15	Image pyramid. The scale-space is constructed	
	by different octaves, which consists of multiple	
	intervals. Each interval indicates a specific	
	variant of the used Gaussian kernel. In order	
	to approximate the Laplace scale-space,	
	the Difference of Gaussian	177
F' 0 1 (1s determined.	1//
r igure 8.16	Generation of feature descriptor. The local	
	neighbornood is subdivided into independent	
	subregions, which are combined into individual	
	mistograms. After a weighting and smootning,	

xxviii List of Figures

	the feature descriptor is generated by concatenating	
	the single histograms to as a resulting feature	
	vector	178
Figure 8.17	Extracted SIFT-features with exemplary	
	geometry-based restriction of matching	
	candidates. By restricting possible matching	
	candidates geometrically, the problem	
	size is significantly reduced.	179
Figure 8.18	Exemplary results of feature matching. The left	
0	and right stereo images are overlaid; features	
	of the left/right image are displayed in red/green.	
	Correct matches are depicted in vellow: false	
	matches are shown in blue. The upper image shows	
	the results of the initial brute force matching.	
	whereas the lower image shows the results	
	of the enhanced matching process.	180
Figure 8.19	Verification of match positions with disparity maps.	
0	For rectified images, the horizontal difference	
	of feature positions of a corresponding pixel pair	
	equals the related value of the disparity map.	
	With this technique, it is possible to validate	
	resulting matching lists for datasets with ground	
	truth disparity maps.	183
Figure 8.20	Comparison of the resulting SIFT-features of the left	
0	input image for 12 bpp images and 8 bpp images.	
	In the 12 bpp input image, an overall number	
	of 1,069 features have been detected, whereas	
	in the 8 bpp input image 1,056 features have been	
	determined. A subset of 1,045 features (97.8%)	
	is identical in both images (blue). There are	
	14 (1.3%) exclusive 8 bpp feature positions	
	(red) detected and 24 (2.2%) exclusive	
	12 bpp feature positions (orange).	185
Figure 8.21	Comparison of the resulting pixel correspondences	
0	for the 8 bpp and 12 bpp input images.	
	In the 12 bpp input image, an overall number	
	of 611 pixel pairs has been detected, whereas	
	in the 8 bpp input image 608 correspondences	
	have been determined. A subset of 587 pairs (96.1%)	

List of Figures xxix

is identical in both images (blue lines).	
Furthermore, there are $23 (3.8\%)$ exclusive	
8 bpp pairs (red lines) and 24 (3.9%)	
exclusive 12 bpp pixel correspondences	
(orange lines).	185
Histogram of random generated SIFT-descriptor	
distances of an idealized NNB feature matching.	
The right distribution with mean μ_2 displays the	
distances of wrong matches, whereas the left	
distribution with mean μ_1 illustrates the correct	
matches	186
Histogram of descriptor distances for a NNB	100
SIFT-feature matching with the extracted threshold	
according to Otsu Distances of correct/wrong	
matches are displayed in blue/orange. The complete	
distribution is shown in purple	187
Histograms of descriptor distances for different	107
NNR feature matching case studies	
with the extracted threshold according to Otsu	
Distances of correct/wrong metabos are dignleyed	
in blue/orange. The complete distribution	
is shown in purple. Due to different descriptors	
and resulting metabing distances, various	
and resulting matching distances, various	
axis scales for clear presentation	100
are used.	189
Exemplary histogram for the distribution	
of matching candidates for the geometry-based	
feature matching (see Table 8.4). The average	
number of candidates is / candidates	100
per matching event.	190
Rates of disparity verified pixel correspondences	
for different offsets ε and three matching methods.	
For all methods, the rate of correct matches runs into	
saturation. The NNB matching method performs	
best over all offsets ε. (TB: Threshold-Based	
Matching; NNB: Nearest-Neighbor-Based	
Matching; NNDR: Nearest-Neighbor Distance	
Ratio Matching).	192
	is identical in both images (blue lines). Furthermore, there are 23 (3.8%) exclusive 8 bpp pairs (red lines) and 24 (3.9%) exclusive 12 bpp pixel correspondences (orange lines)

xxx List of Figures

Break down of SIFT-feature extraction into four	
algorithmic steps and relating qualitatively quota	
of control complexity and complexity (i.e., regular	
arithmetic).	193
ACC Systems.	204
Stages on the longitudinal control of the vehicle	205
CSW system.	206
TSR system.	206
LDW system.	208
BSD/LCA system.	208
Top view of a parking assistance system	210
Aided park system.	210
Automatic park systems.	211
DESERVE platform.	212
DESERVE platform framework.	213
SAE J3016 standards of driving automation levels	
for on-road vehicles.	215
Arbitration and control sharing application:	
General diagram.	220
Total number of fatalities in road traffic accidents	
in Europe	229
Holistic HMI concept, that shows: IPC display 12";	
SW commands; left stalk commands; buttons;	
knobs	236
Holistic HMI layout.	236
Holistic HMI layout with the user menu	
in the central area	237
Holistic HMI layout with the lane change assist	
in the central area	237
Holistic HMI layout with the rear view camera	
in the central area	237
Holistic HMI layout with the night vision system	
in the central area	238
(A-B-C-D) Holistic HMI left area with: lane	
departure warning, collision warning, Rear	
approaching vehicle system, pedestrian	
safety system.	238
	Break down of SIFT-feature extraction into four algorithmic steps and relating qualitatively quota of control complexity and complexity (i.e., regular arithmetic).ACC Systems

Figure 10.9	Immersive HMI concept shows: 3,5" IPC display;	
	touch display 8,5" in the dashboard; head-up	
	display for the windscreen; SW commands;	
	left stalk commands; buttons; knobs	239
Figure 10.10	Immersive HMI concept: instrument panel	
	cluster display.	239
Figure 10.11	Immersive HMI concept: dashboard	
	display	240
Figure 10.12	Immersive HMI concept: head-up display	
	details	240
Figure 10.13	Smart HMI concept	241
Figure 10.14	Smart HMI concept: Nomadic device with night	
	vision system.	241
Figure 10.15	Radar chart summarizing HMI evaluation	
	for the 6 HMI concepts. Bis concepts are concept	
	1, 2, 3 with implicit drowsiness	243
Figure 10.16	Proposed change to create the final DESERVE	
	HMI concept.	245
Figure 10.17	Final DESERVE HMI concept: warning area	245
Figure 10.18	Final DESERVE HMI concept: rear	
	view camera	245
Figure 10.19	Final DESERVE HMI concept: navigation	246
Figure 11.1	Overview of the SERBER VeHIL system	254
Figure 11.2	Block diagram of the SERBER system	258
Figure 11.3	Sample video output of Pro-Sivic	259
Figure 11.4	RTMAPS diagram of the system (extract)	260
Figure 11.5	Mobileye 560 aftermarket vision-based ADAS	261
Figure 11.6	RTMAPS diagram of the V2V task	261
Figure 11.7	The Biocar test vehicle on the Horiba chassis	
	dynamometer	262
Figure 11.8	Overview of the urban environment	
	in Pro-Sivic.	263
Figure 11.9	Inner view of the vehicle	264
Figure 11.10	Lane departure warning triggered.	264
Figure 11.11	V2V Communication HMI	265

List of Tables

Table 1.1	Scientific and technical objectives	2
Table 5.1	Range of variation parameters used	
	in the tuning task	88
Table 5.2	Variations values for comfort and sporty mode	96
Table 6.1	The confusion matrix of topology 3-2-32	
	and the respective FNR, FPR and IU for each class.	
	The classes are background (Bg), road (Rd),	
	vehicle (Veh), sky, vulnerable road users (VRU)	
	and infrastructure (Inf). Each cell shows	
	the percentage (from all pixels in the dataset)	
	of actual class (row) predicted as class (column)	118
Table 6.2	Displayed are the measures Accuracy (ACC), mean	
	Intersection over Union (mIU), Matthews Correlation	
	Coefficient (MCC) and mean False Negative Rate	
	(mFNR) for 3 topologies	120
Table 6.3	Input image sizes for three different scales	
	in the exemplary convolutional neural network	123
Table 6.4	Number of operations for the exemplary	
	convolutional neural network	123
Table 6.5	Comparison of different implementations	
	of convolutional neural networks on different	
	platforms	124
Table 7.1	Resource usage of different pipelined FFT	
	implementations	147
Table 8.1	Overview of feature detectors	172
Table 8.2	Overview of feature descriptors	172
Table 8.3	Numbers of extracted SIFT-features and detected	
	matches for 8 bpp input images and 12 bpp images.	
	The number of the geometry-based (GB)	
	nearest-neighbor distance ratio matches (NNDR)	
	drops significantly but ensures a high explicitness	
	of matches. The algorithmic parameters of the	

xxxiv List of Tables

	SIFT-feature extraction of the two test cases	
	are adjusted in order to extract a similar number	
	of features, which lead to an identical number	
	of verified matches	184
Table 8.4	Results for a SIFT-feature matching for a global	
	matching and a geometry-based feature matching.	
	The window size for the geometry-based feature	
	matching is $+/-4$ pixel in y-direction	
	and $+100/-4$ pixel in x-direction	190
Table 8.5	Results of disparity verified feature correspondences	
	for different combinations of global and spatial	
	restriction matching methods. In addition to a high	
	rate of correct matches, a minimal number of pixel	
	correspondences has to be given for a reliable	
	subsequent image processing. The total numbers	
	of detected matches for selected algorithmic	
	combinations are given in brackets. The number	
	of correct matches and wrong matches do not result	
	in 100% because of missing values in the ground truth	
	disparity maps. Those values are skipped	
	for evaluation	191
Table 8.6	Overview of existing systems for SIFT-feature	
	extraction	194

List of Abbreviations

Anti-lock Breaking System
Adaptive Cruise Control
Advanced Driver Assistance Systems
Analog-to-digital converter
Automatic/Autonomous Emergency Braking
Autoregressive
Application-Specific Integrated Circuit
Application-Specific Instruction-Set Processor
Average
German Federal Highway Research Institute
Bit per pixel
Binary Robust Independent Elementary Features
Binary Robust Invariant Scalable Keypoints
Blind Spot Detection
Cell-averaging constant false alarm rate
Controller Area Network
Code division multiple access
Center Surround Extremas
Constant false alarm rate
Carmaker for simulink
Collision Mitigation by Braking
Complementary Metal-Oxide-Semiconductor
Convolutional Neural Network
Customized Output Range
Central Processing Unit
Conditional Random Field
Cell under test
Name of a feature descriptor
Driver assistance systems
data base CAN
Decimation-in-frequency

DMA	driving monitoring automotive
DOA	Direction of arrival
DoE	Design of Experiment
DoG	Difference of Gaussian
DRAM	Dynamic random-access memory
ECU	Electronic Control Unit
ESC	Electronic Stability Control
ESPRIT	Estimation of signal parameters via rotational invariant
	techniques
FAST	Features from Accelerated Segment Test
FCW	Frontal Collision Warning or Forward Collision Warning
FDM	Frequency-division multiplexing
FFT	Fast Fourier transform
FIR	Finite impulse response
FMCW	Frequency-modulated continuous-wave
FN(R)	False Negative (Rate)
FP(R)	False Positive (Rate)
FPGA	Field-Programmable Gate Array
fps	Frames per second
FREAK	Fast Retina Keypoint
GB	Geometry-based
GOPS	Billion Operations Per Second
GPGPU	General Purpose Graphics Processing Unit
GPP	General Purpose Processor
GPU	Graphics Processing Unit
HD	High-definition, 1280×720 pixel
HiL	Hardware in the Loop
HMI	Human-machine interface
HW	Hardware
I/O	input/output
I2C	Inter-Integrated Circuit
IMU	Inertial measurement unit
IU	Intersection over Union
IWI	information-warning-intervention
KD-Tree	K-dimensional tree
KPI	Key Performance Indicator
LCA	Lane Change Assistant
LDW	Lane Departure Warning

LKA	Lane Keeping Assistance
LoG	Laplacian of Gaussian
LSB	Least significant bit
LUT	Lookup table
MCC	Matthews Correlation Coefficient
MDC	Multi-path delay commutator
MiL	Model in the Loop
MIMO	Multiple-input multiple-output
MLP	Multi Layer Perceptron
MOPS	Million Operations Per Second
MUSIC	Multiple signal classification
NCI	Non-coherent integration
NHTSA	National Highway Traffic Safety Administration
NMEA	National Marine Electronics Association
NNB	Nearest-Neighbor-Based
NNDR	Nearest-Neighbor Distance Ratio
OpenCL	Open Computing Language
OpenGL	Open Graphics Library
ORB	Oriented FAST and Rotated BRIEF
OS-CFAR	Ordered-statistic constant false alarm rate
PCA	Principal Component Analysis
PID	proportional, integral, derivative controller
QVGA	Quarter Video Graphics Array, 320×240 pixel
RCS	Radar cross-section
RDE	Reak Driving Emissions
ReLU	Rectifier Linear Unit
RMS	Root Mean Square
RPM	Revolution per minute
RTSP	Real Time Streaming Protocol
SAE	Society of Automotive Engineers
SDF	Single-path delay feedback
SIFT	Scale-Invariant Feature Transform
SIP	Session Initialization Protocol
SLA	Speed Limit Assistant
SNR	Signal-to-noise ratio
SoP	Start of Production
SQNR	Signal-to-quantization-noise ratio
SRAM	Static random-access memory

xxxviii List of Abbreviations

- Speeded Up Robust Features Software SURF
- SW
- TB Threshold-Based
- Time-division multiplexing TDM
- True Positive TP
- Unit Under Test UUT
- VGA Video Graphics Array, 640×480 pixel