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Executive summary

This deliverable report focuses on the final stochastic optimization results obtained within
the EXAscale Quantification of Uncertainties for Technology and Science Simulation (Ex-
aQUte) project. Details on a novel wind inlet generator that is able to incorporate local
wind-field data through a deep-learned rapid distortion model and generates the turbulent
wind data during run-time is presented in section 2. Section 3 presents the results of the
overall stochastic optimization procedure applied to a twisted tapered tower with multiple
design parameters within an uncertain synthetic wind field. Thereby, the significance of
the developed methods and the obtained results are discussed and their integration in
industrial wind-engineering workflows is outlined in section 4.
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1 Introduction

A building’s outer skin does not only serve as the constructional and architectural hull, but
is furthermore the first load-bearing element that is subjected to wind loads under varying
and highly uncertain conditions. The designed building’s orientation and geometry is
often influenced by structural and architectural prerequisites and the principal design
formalism in a very early stages of the planning process. Furthermore, latest trends in the
construction industry point towards more slender and material-efficient buildings, slender
high-rise buildings built from sustainable materials such as timber or recycled concrete
and computer-aided prefabrication in quasi-modular structural elements. This leads to
an increasingly complex and automated planning and construction process, where the
aforementioned prerequisites and choices have an overwhelming impact on the structure,
the construction process and materials, as well as the structural loads that the final
building design needs to sustain due to wind loads.

Engineers and architects are therefore in need of tools, that offer a deep and precise
understanding of how to optimize (a) the overall geometrical design while still taking
numerous side conditions into account, but also (b) secondary load bearing elements,
such as facades, in order to reduce wind load peaks on structural elements and guarantee
a homogeneous load distribution and an efficient material design.

In this scope, the methods developed during the ExaQUte project with regard to
stochastic optimization under uncertainties offer applicable tools for civil engineers to in-
clude shape optimization in the design process and offer Computational Wind Engineering
(CEW) new well-defined tools to strengthen the integration of virtual wind tunnel test-
ing into day to day investigations. The following sections give insight in the developed
methods to include local wind data into CWE application by a data-driven approach and
the showcase the overall stochastic optimization method on a high-rise building.

2 Data driven wind generation model

Our goal is to generate synthetic turbulent inlet conditions, which is an important applica-
tion in computational fluid dynamics as a whole [56]. We choose to follow an established
approach used in the wind engineering industry; see Andre et al. [2], Michalski et al.
[49] and references therein. A contiguous section of spatially correlated turbulence is
transformed into a stationary Gaussian process by identifying the x-component of the
turbulent velocity field with a time axis via the transformation x = Umt. Here, Um > 0
is a mean velocity parameter which directly affects the spatial-to-temporal correlation of
the synthetic turbulent inlet boundary conditions. Then, at each time step t = tk, the
turbulent velocity field U(x)|x=tk/Um is projected onto the inflow boundary of a numer-
ical wind tunnel; see depiction in Figure 1. In this section, we discuss two approaches
to construct the velocity field fluctuations fitting given statistical data. In Section 2.2,
we present a turbulence model for a shear-free boundary layer (SFBL), constructed as
a solution to a stochastic fractional partial differential equation (SFPDE) with imposed
boundary conditions at the solid wall; see [37]. In Section 2.3, we present a data-driven
nonlocal turbulence model for the atmospheric boundary layer in presence of uniform
shear, which uses a neural network to simulate the eddy lifetime; see [38].

Page 7 of 36



Deliverable 7.4

Figure 1: Inlet boundary conditions: projection of the wind onto the numerical wind tun-
nel inlet at each time step. Snapshots of synthetic wind, U(x) = ⟨U(x)⟩+u(x), mapped
onto the inlet boundary in a numerical wind tunnel test of a modern high rise building.
Turbulent inlet fluctuations u(x) are generated using Gaussian model. Then, the large
eddy simulation was performed with the finite element software Kratos Multiphysics [19].

2.1 Synthetic wind velocity field fluctuation

We wish to model turbulent velocity fields U(x) = ⟨U(x)⟩ + u(x) ∈ R3. Here, ⟨U⟩ =
(⟨U1⟩, ⟨U2⟩, ⟨U3⟩) is the mean velocity field and u = (u1, u2, u3) (sometimes also written
(u, v, w)) are the zero-mean turbulent fluctuations. All of the models we choose to consider
for u are Gaussian. That is, they are determined entirely from the two-point correlation
tensor

Rij(r,x, t) = ⟨ui(x, t)uj(x+ r, t)⟩.
When R(r,x, t) = R(r, t) depends only on the separation vector r, the model is said to
be spatially homogeneous. Alternatively, when R(r,x, t) = R(r,x) is independent of the
time variable t, the model is said to be temporally stationary.

Frequently, it is convenient to consider the Fourier transform of the velocity field u.
In such cases, we express the field in terms of a generalized Fourier–Stieltjes integral,

u(x) =

∫
R3

eik·x dZ(k) , (1)

where Z(k) is a three-component measure on R3, and k = (k1, k2, k3) is the wavevector
of magnitude k = |k| (wavenumber). The validity of this expression follows from the
Wiener–Khinchin theorem [45]. Likewise, in the homogeneous setting, we may consider
the Fourier transform of the covariance tensor, otherwise known as the velocity-spectrum
tensor,

Φij(k, t) =
1

(2π)3

∫
R3

e− ik·r Rij(r, t) dr.

Due to the cross-correlation theorem, the velocity-spectrum tensor can also be written

Φij(k) = ⟨ûi(k)ûj(k)⟩, (2)
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where û = (û1, û2, û3) denotes the Fourier transform of u.
Consider three-dimensional additive white Gaussian noise [24, 40] in the physical and

frequency domains, denoted ξ(x) and ξ̂(k), respectively, such that

ξ(x) =

∫
R3

eik·x ξ̂(k) dk =

∫
R3

eik·x dW(k),

whereW (k) is three-dimensional Brownian motion. We assume dZ(k) = G(k) dW (k) =
G(k)ξ̂(k) dk, where G(k)∗G(k) = Φ(k).

Let us begin with a standard form of the spectral tensor used in isotropic stationary
and homogeneous turbulence models, namely,

ΦVK
ij (k) = (4π)−1k−2E(k)Pij(k) . (3)

Here, E(k) is called the energy spectrum function and Pij(k) = δij − kikj
k2

is commonly
referred to as the projection tensor. One common empirical model for E(k), suggested by
Von Karman [60], is given by the expression

E(k) = c20 ε
2/3k−5/3

(
kL

(1 + (kL)2)1/2

)17/3

. (4)

Here, ε is the viscous dissipation of the turbulent kinetic energy, L is a length scale
parameter, and c20 ≈ 1.7 is an empirical constant.

Figure 2: Example of Velocity field fluctuations: magnitude for a single realization of the
random field

2.2 A fractional PDE model for turbulent velocity fields near
solid walls

Recall that the Fourier transform of the scalar Laplacian is simply −k2. Likewise, consider
the Fourier transformQ(k) of the curl operator,

∫
R3 ∇×v(r) e− ik·r dr = Q(k)v̂(k), where
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v̂(k) =
∫
R3 v(r) e

− ik·r dr. Observe that

Q(k) = i

 0 −k3 k2
k3 0 −k1
−k2 k1 0


and, moreover, P (k) = k−2Q(k)∗Q(k). Motivated by the decomposition Φ(k) = G(k)∗G(k),
we choose to simply writeG(k) = 1√

4π
k−2E1/2(k)Q(k).Next, recalling dZ(k) = G(k) dW (k),

it immediately follows that

dZ(k) = Q(k)
( 1√

4πk2
E1/2(k) dW (k)

)
.

Integrating both sides with respect to k, we arrive at the expression u = ∇× ψ, with a
vector potential defined

ψ(x) =
1√
4π

∫
R3

k−2E1/2(k) eik·x dW (k) . (5)

2.2.1 A fractional PDE for the velocity fluctuation field

We now proceed to relate the vector potential ψ(x) to the solution of a fractional PDE.
Writing ψ(x) =

∫
R3 e

ik·x dY (k), similar to eq. (1), and rearranging the factors in eq. (5),
leads to

(1 + (kL)2)17/12 dY (k) = c0ε
1/3L17/6 dW (k).

Then, upon integrating both sides with respect to k, we arrive at the fractional PDE

(I − L2∆)17/12ψ = c0ε
1/3L17/6ξ. (6)

This and all future differential equations are only properly understood in the sense of
distributions, yet we continue to use the ”strong form” for readability.

Let us denote by I the identity operator, A = I − L2∆, µ = c0ε
1/3, and α = 17/12.

With these symbols in hand, the derivation above can be summarized as follows:

u = ∇×ψ, where Aαψ = µL2αξ.

In the next section, we extend the simple FPDE model above in order to describe inho-
mogeneous turbulence on bounded domains. This is achieved by both generalizing the
definition of the length scale L and the fractional operator Aα as well as introducing a
physical notion of boundary conditions.

Equation (6) was derived from a very specific form of the energy spectrum function
E(k). Under the same decomposition of the spectral tensor Φ(x) given in eq. (3), a much
more general family of homogeneous and stationary random field models derive from the
following ansatz on the energy spectrum function:

k−4E(k) = µ2 det(Θ̄)2/3γ(1 + k⊤Θ̄k)−2α1(k⊤Θ̄k)−2α2 . (7)

Here, Θ̄ ∈ R3×3 is a fixed symmetric positive definite matrix and α2, α1, γ, and µ are
additional scalar parameters.

Equation (7) is a broad generalization of eq. (4) which replaces E as function of k = |k|
by E as function of k. This flexibility allows us, for example, to consider anisotropic
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effects. Indeed, just as L played the role of a length scale in eq. (4), here, Θ̄ plays the role
of a metric in Fourier space. In addition, observe that if Θ̄ = L2I, where I denotes the
identity matrix, 4α2 = 4− p0, 4α1 = 5/3 + p0, γ = α1 + α2, and µ

2 = Cε2/3, then eq. (7)
reproduces the following common one-parameter homogeneous energy spectrum model
[see, e.g., 52, p. 232]:

E(k) = Cε2/3k−5/3

(
kL

((kL)2 + 1)1/2

)5/3+p0

. (8)

In this scenario, p0 = 4 corresponds exactly to the von Kármán spectrum (4) considered
previously; i.e., α1 = γ = 17

12
and α2 = 0.

As in eq. (5), the vector potential ψ(x) =
∫
eik·x dY (k) can also be written in terms

of a Fourier–Stieltjes integral, weighted by k−2E1/2(k). After rearranging factors, eq. (7)
characterizes the vector potential ψ as the solution of the following fractional stochastic
PDE on R3: (

I −∇ · (Θ̄∇)
)α1
(
−∇ · (Θ̄∇)

)α2ψ = µ det(Θ̄)γ/3ξ. (9)

Two immediate modifications of eq. (9) are now in order. First, we may replace the
constant matrix Θ̄ by a spatially varying metric tensor Θ(x). This change immediately
induces an inhomogeneous turbulence model. Second, we may consider substituting the
white noise random variable ξ for a well-chosen colored noise variable denoted η. Together,
these two generalizations lead to a family of random field models written(

I −∇ · (Θ(x)∇)
)α1
(
−∇ · (Θ(x)∇)

)α2ψ = µ det(Θ(x))γ/3η. (10)

Physically, the metric tensor Θ(x) introduces inhomogeneous and anisotropic diffu-
sion; this corresponds to local changes of the turbulence length scales which may result
from complicated dynamics of interacting eddies. Statistically, it incorporates the possi-
bility for spatially varying correlation lengths and also may contain distortion.

In order to motivate one possible choice of the stochastic forcing term η, note that eq. (8)
can adequately characterize both the energy-containing and inertial subranges, however,
it fails in the dissipative range; namely, where k is large. In order to fit the dissipative
range, one approach is to scale the energy spectrum with a decaying exponential function
[see, e.g., 52, p. 233]:

Eβ(k) = E(k) e−βk,

where β > 0 is a positive constant, usually close to the Kolmogorov length scale. In the
presence of shear, a different time-dependent modification is also natural to consider from
the point of view of rapid distortion theory.

When α2 and α1 are chosen to match the energy spectrum model eq. (8), it is clear
that α2 + α1 = 17/12 is independent of p0. Under this constraint, α2 mainly affect the
behavior of the power spectrum at the origin and, likewise, the large scale structure of
u. In other words, the shape of the spectrum in the inertial subrange is unaffected by
the precise choice of α2 and α1 = 17/12 − α2; only the shape of the spectrum in the
energy-containing range is affected (see Figure 3). An illustration of some energy spectra
possibilities is included in Figure 3.

2.2.2 Boundary conditions

There are a number of different, equivalent, definitions of fractional operators on R3.
However, moving from the free-space equation eq. (10) to a boundary value problem relies
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Figure 3: The energy spectrum Eβ(k)/µ
2 corresponding to (7) with Θ̄ = L2I. The

sum α2 + α1 is fixed to 17/12, which guarantees the slope k−5/3 in the inertial subrange.
Different values of α2 control the energy-containing range. And the exponent β/L = 10−3

defines the exponential decay in the dissipative subrange.

on heuristics and can be done in a wide variety of ways; each of which may also differ by
the specific definition of the fractional operator being used [44]. As stated previously, in
this work, we choose to only deal with the spectral definition. In this setting, boundary
conditions are applied to the corresponding integer-order operator and then incorporated
implicitly by modifying the spectrum.

Assume that eq. (10) is posed on a three-dimensional simply-connected domain Ω ⊊ R3

with boundary Γ = ∂Ω. We begin with the following heuristically chosen impermeability
condition for the velocity field:

u = ∇×ψ in Ω, u · n = 0 on Γ. (11)

Although more relaxed boundary conditions are also possible, we choose to enforce eq. (11)
via a no-slip condition on the vector potential ψ; specifically,

ψ − (ψ · n)n = 0 on Γ. (12)

It turns out that eq. (12) is not enough to uniquely define ψ on Ω. In fact, the remaining
boundary condition must restrict ψ normal to Γ.

We are somewhat free to select what the remaining boundary condition will be. Both
the Dirichlet-type boundary condition ψ ·n = 0 and the Neumann-type boundary condi-
tion (Θ(x)∇ψ)n·n = 0 are possible candidates which would close the equations. Another
option is to enforce a weighted average of those two boundary conditions. To be more
specific, we may also consider the generalized (homogeneous) Robin boundary condition

κψ · n+ (Θ(x)∇ψ)n · n = 0 on Γ, (13)

where the new model parameter κ ≥ 0 could be inferred from available data. We choose
to close the system with eq. (13) because it is flexible enough to fit a wide variety of
data and simple to implement alongside eq. (12). We note that κ affects the horizontal
velocity near the surface because of its control over the normal component of ψ. Thus, in
the proposed model, κ may be a parameter which distinguishes between different types
of surfaces. We also note that, in the limit κ → ∞, we recover the boundary condition
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ψ · n = 0. Together with eq. (12), it implies the complete Dirichlet boundary condition,
ψ = 0 on Γ. Hereon, we use the notation κ = ∞ to indicate this special limiting scenario.

Thus, the boundary value problem given by eqs. (10), (12) and (13) eventually writes
(
I −∇ · (Θ(x)∇)

)α1
(
−∇ · (Θ(x)∇)

)α2ψ = µ det(Θ(x))γ/3η in Ω,

ψ − (ψ · n)n = 0 on Γ,

κψ · n+ (Θ(x)∇ψ)n · n = 0 on Γ.

(14)

2.2.3 Fitting the Reynolds stress in the boundary layer

Let us consider the inhomogeneous turbulence model eq. (14), with fractional coefficients
corresponding to the von Kármán energy spectrum eq. (4), on the open half space domain
R3

+ = {(x, y, z) ∈ R3 : z > 0}. Based on the supposed absence of shear, we also consider
the following simple diagonal form for the diffusion tensor, in Cartesian coordinates:

Θ(z) =

L1(z)
2 0 0

0 L2(z)
2 0

0 0 L3(z)
2

 .

Defining L(z) = 3
√
L1(z)L2(z)L3(z), the appropriate form of eq. (14) can be written as

follows: 
(
I −∇·(Θ(z)∇)

)17/12
ψ = µL(z)17/6 ξ in R3

+,

κ ψ3 + L3(z)
2∂ψ3

∂z
= ψ1 = ψ2 = 0 at z = 0.

(15)

Both the Robin coefficient κ and an explicit parametric expression for each Li(z) give
rise to a model design parameter vector, say θ. This vector θ may then be subject to
calibration with respect to experimental data.

Various statistical quantities of a turbulent flow field can be measured experimentally.
Near a solid boundary, some of the most important of these quantities are the Reynolds
stresses τij = ⟨uiuj⟩. In order to calibrate the parameters in eq. (15) to Reynolds stress
data τdataij (xl), collected at a number of locations in the flow domain xl ∈ S, we propose
the following optimization problem:

min
θ

J (θ) , where J (θ) =
1

|S|
∑
xl∈S

3∑
i,j=1

(
τij(xl;θ)− τdataij (xl)

)2
. (16)

Here, the design variable θ denotes a coefficient vector taking accounting for all of the
undetermined model parameters present in eq. (14). For instance, we use

θ = (c1,1, d1,1, c3,1, d3,1, . . . , c1,K , d1,K , c3,K , d3,K , κ) ∈ R4K+1,

where ci,k and di,k, i = 1, 3, k = 1, . . . , K, appear in the representation of each Li(z) with
K = 2 terms:

Li(z) = L∞ ·
(
1 +

K∑
k=1

ci,k e
−di,k

z
L∞

)
, (17)

with each di,k ≥ 0, c1,k = c2,k and d1,k = d2,k.
This process of model calibration is important because wall roughness, Reynolds num-

ber, and the nature of the turbulence may affect the near-wall statistics [52] and may be
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(a) Reynolds stress data from
[58] compared with Reynolds stresses
from the calibrated SFBL turbulence
model (15). Observe that the model
is able to closely fit the experimental
data.
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Li(z)/L∞

z/
L

∞

L1(z)

L3(z)

von Kármán model
Parameter Value

c1,1 2.22
c1,2 −2.80
c3,1 5.04
c3,2 −4.33
d1,1 2.78
d1,2 17.38
d3,1 2.17
d3,2 2.55
κ/L∞ 4.02

(b) Optimal diffusion coefficients Li(z) and Robin
constant κ determined by fitting the Reynolds stress
data in fig. 4a. Note that L1(z) = L2(z).

Figure 4: Calibration of the SFBL turbulence model.

incorporated through proper parameter selection. Taking only two terms in each expan-
sion above (K = 2), we arrive through calibration at a statistical model which closely
matches the experimental data found in Thomas and Hancock [58]. Note that with such a
model, L1(z) = L2(z) and each Li(z) exponentially converges to the homogeneous length
scale L∞, as z → ∞, as illustrated in fig. 4b. The exact definitions of the optimized
model parameters used in the results above are stated explicitly in the table in fig. 4b.
The difference between the Reynolds stress profiles in the calibrated model and the cor-
responding experimental data is depicted in fig. 4a. Because this model has many free
parameters which can be calibrated to experimental data, it is much more flexible than
the classical theory proposed by Hunt et al. [26, 27, 29].

2.3 A data-driven nonlocal turbulence model for the atmospheric
boundary layer

It is typically not possible to directly measure a spectral tensor Φij in a shearing flow.
Instead, one often collects the one-point spectra[55]

Fij(k1) =
1

2π

∫ ∞

−∞
Rij(r1, 0, 0) e

− i k1·r1 dr1,

with i, j = 1, 2, 3.
Obviously, the one-point spectra cannot give a complete description of the turbulent

wind field. For this reason, it is necessary to construct physical models which can fit
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these experimental observations. One of the issues in constructing these models is that
turbulence in the atmospheric boundary layer is not spatially homogeneous. Nevertheless,
the common surface layer scaling assumption [34] is that the length scales are proportional
to z and the variances are proportional to u2∗. For instance, after analyzing measurements
taken above flat homogeneous terrain in Kansas, Kaimal et al.[34] proposed taking

k1F11(k1z)

u2∗
= J1(f) :=

52.5f

(1 + 33f)5/3
, (18a)

k1F22(k1z)

u2∗
= J2(f) :=

8.5f

(1 + 9.5f)5/3
, (18b)

k1F33(k1z)

u2∗
= J3(f) :=

1.05f

1 + 5.3f 5/3
, (18c)

where f = (2π)−1k1z, alongside F12 = F23 = 0 and

−k1F13(k1z)

u2∗
= J4(f) :=

7f

(1 + 9.6f)12/5
. (18d)

In section 2.3.3, we will use these equations as filtered measurement data for benchmarking
the DRD model.

2.3.1 Rapid distortion

The rapid distortion equations [see, e.g., 28, 52, 59] are a linearization of the Navier–
Stokes equations in free space which holds when the turbulence-to-mean-shear time scale
ratio is arbitrarily large. To write them, we must first define the average total derivative
of the turbulent fluctuations, namely

D̄ui
D̄t

=
∂ui
∂t

+ ⟨Uj⟩
∂ui
∂xj

.

With this definition in hand, the rapid distortion equations are

D̄ui
D̄t

= −ui
∂⟨Uj⟩
∂xi

− 1

ρ

∂p

∂xi
, (19a)

1

ρ
∆p = −2

∂⟨Ui⟩
∂xj

∂uj
∂xi

, (19b)

where ρ and p stand for the mass density and the hydrostatic pressure, respectively.
With the uniform-shear mean profile ⟨U⟩ = (A+Bz, 0, 0), the solution can be written

in terms of an evolving wavevector k(t) = (k1(t), k2(t), k3(t)) and a non-dimensional
time parameter τ = Bt. For greater perspective, we begin with the general case where
∂⟨Ui⟩/∂xj is a constant tensor.

First, we define the rate of change of each frequency k(t) as follows:

dki/dt = −kj∂⟨Uj⟩/∂xi. (20)
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We then have the following Fourier representation of the average total derivative of u:

D̄ui
D̄t

=

∫
R3

eik·x
((

∂

∂t
+

dkj
dt

∂

∂kj

)
dZi(k, t)

)

=

∫
R3

eik·x
(
D̄ dZi(k, t)

D̄t

)
.

(21)

With these expressions, the Fourier representation of eq. (19) amounts to

D̄ dZj(k, t)

D̄t
=
∂Uℓ

∂xk

(
2
kjkℓ
k2

− δjℓ

)
dZk(k, t) , (22)

which must be accompanied by the initial state dZ(k(0), 0) = dZ0(k(0)). From now on,
we use the notation k0 = k(0) = (k10, k20, k30) to denote the initial wavevector.

In the uniform shear scenario ⟨U⟩ = (A + Bz, 0, 0), the solution to eq. (22) may be
written as follows:

dZ(k(t), t) =Dτ (k) dZ(k0, 0), (23)

where

Dτ (k) =

1 0 ζ1
0 1 ζ2
0 0 ζ3

 , k =

 1 0 0
0 1 0
−τ 0 1

k0.
In the expression for Dτ (k), the non-dimensional coefficients ζi = ζi(k, τ), i = 1, 2, 3, are
defined

ζ1 = C1 − C2k2/k1, ζ2 = C1k2/k1 + C2, ζ3 = k20/k
2,

where k0 = |k0| and

C1 =
τk21(k

2
0 − 2k230 + τk1k30)

k2(k21 + k22)
,

C2 =
k2k

2
0

(k21 + k22)
3/2

arctanx

∣∣∣∣k30/
√

k21+k22

k3/
√

k21+k22

.

All that is left is to set the initial state dZ(k0, 0) = dZ0(k0). We define the initial
state to be a Gaussian random field,

dZ0(k0) = G0(k0) dW (k0), (24)

with G0(k0) induced by the isotropic spectral tensor (3) as follows,

G0(k0)G
∗
0(k0) = ΦVK(k0).

We have now uniquely defined Φ(k, τ). First, following from section 2.1 and eqs. (23)
and (24), we may write û(k) = Dτ (k)G0(k0) ξ̂(k0). Second, by eq. (2) and the identity〈
ξ̂iξ̂j
〉
= δij, we have that

Φ(k, τ) =
〈
û(k)û∗(k)

〉
= Dτ (k)G0(k0)

〈
ξ̂(k0) ξ̂

∗(k0)
〉
G∗

0(k0)D
∗
τ (k)

= Dτ (k)G0(k0)G
∗
0(k0)D

∗
τ (k)

= Dτ (k) Φ
VK(k0)D

∗
τ (k).
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2.3.2 Neural network model for the eddy lifetime

The spectral tensor Φ(k, τ) characterizes a time-dependent family of anisotropic covari-
ance kernels which are stretched in the direction of the constant mean shear. One flaw in
this model is that physical eddies will break apart after a certain amount of distortion.

An important extension of the rapid distortion model involves replacing the distortion
parameter τ by a wavenumber-dependent eddy lifetime function τ(k). The benefit of
this substitution is two-fold: not only does it produce a stationary (time-independent)
spectral tensor Φ(k, τ(k)), but it provides a mechanism to recover missing physics which
are neglected in the original modeling assumptions.

Various eddy lifetime models have been proposed in the literature [17, 43, 47], each
of which involves restricting the eddy lifetime τ to a radial function of the wavevector,
τ = τ(k). For instance, a widely used radial function is presented in [47] and results
in a spectral tensor model which was subsequently standardized by the IEC [30]. In
this approach, the destruction of an eddy with size k−1 is assumed to be mainly due to
eddies of comparable or smaller size. Thus, the square of the characteristic velocity of all
influential eddies is given by

∫∞
k
E(p) dp. By matching units, the eddy lifetime τ may be

proportional to a length scale divided by a velocity , e.g.,

τ ∝ k−1

[∫ ∞

k

E(p) dp

]− 1
2

. (25)

After substituting eq. (4), this expression results in

τ IEC(k) =
TB−1 (kL)−

2
3√

2F1(1/3, 17/6; 4/3;−(kL)−2)
, (26)

where 2F1(a, b; c;x) denotes the hypergeometric function, and the time scale T is a free
parameter. To facilitate an accurate comparison to this model in Section 2.3.3, we point
out that

τ IEC(k) ∝
{
k−1 for k → 0,

k−3/2 for k → ∞.

Substituting eq. (26) into the rapid distortion spectral tensor, results in the Mann
uniform shear model,

ΦIEC(k) = Φ(k, τ IEC(|k|)). (27)

Expanded formulas for ΦIEC(k) can be found in [30, 47].
Given the anisotropic nature of shear flow, it is natural to expect that the lifetime

of an eddy could depend on its initial spatial orientation. However, it is also clear that
this dependence should satisfy some basic physical conditions. For instance, owing to
translational symmetry of the flow in the transversal direction (y-axis), we expect τ(k) to
be an even function of k2. We note that this restriction guarantees that the transversal
components of the one-point cospectra, F12 and F23, vanish; cf. eq. (18).

We now propose a method to discover complete wavevector eddy lifetime functions
τ(k) from measured data. Our approach involves writing τ(k) as a feedforward neural
network with the wavevector k as input. Then, learning its parameters by fitting the
one-point spectra data, we identify the function τ(k) as well as the complete spectral
tensor model.
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Aside from physical symmetries, the eddy lifetime must satisfy certain asymptotic
behavior in the limits k → 0 and k → ∞. To this end, we first rewrite the eddy lifetime
function as follows:

τ(k) =
T |a|ν− 2

3

(1 + |a|2)ν/2 , a = a(k), (28)

where T is characteristic timescale, ν is a tunable exponent, and a is a intermediary
variable, which we refer to as the “augmented” wavevector. We will define a(k) in terms
of a neural network a = O(k) in both limits k → 0 and k → ∞. Therefore, the form of
the fractional exponents in (28) will allow us to control the asymptotic behavior of τ(k).
This is important since the asymptotic slopes are objects of discussion in the literature.
Thus, while the slope at zero is controlled by ν, the well-known slope at infinity,[41, 47, 52]
k−2/3, is recovered for any value of ν.

We define
a(k) := abs(k) + NN(abs(k)). (29)

Here, abs(·) denotes the element-wise absolute value and NN(·) is a fully-connected mul-
tilayer perceptron, namely

NN(y) := WnReLU ◦ · · · ◦ ReLU ◦W1y, (30)

where ReLU(·) stands for the rectified linear activation function and Wj, j = 1, . . . , n,
are dense matrices (no bias terms). The choice of a ReLU function is motivated by the
requirement that NN(0) = 0, thus, a(0) = 0. Other activation functions, such as the
softplus activation function will not guarantee this property.

Note that taking the absolute value of the first argument in eq. (29) provides a reflec-
tion symmetry in τ(k) with respect to each Cartesian axis. This is obviously more than
necessary to satisfy symmetry in the k2-component. Our experience has shown that that
there is no benefit to the accuracy of the model, when fitting one-point spectra data, if
we relax the symmetry the k1- and k3-components.

We use one input and one output layer, each of size 3, accompanied by n− 2 hidden
layers of size m. In other words, W1 ∈ R3×m, Wj ∈ Rm×m, j = 2, . . . , n − 1, and Wn ∈
Rm×3, whose sum total of entries constitute a new vector of learnable parameters θNN.
Note that if any Wj = 0, j = 1, . . . n, then NN = 0. This forces the magnitude of the
augmented wavevector to agree with the true wavenumber, |a| = k. From this point-of-
view the neural network acts in a way like a piecewise-linear perturbation of the original
wavevector.

Once the eddy lifetime function eq. (28) has been substituted into the rapid distortion
model Φ(k, τ), we arrive at the DRD spectral tensor model:

ΦDRD(k,θ) := Φ(k, τ(k)), (31)

where the vector of all learnable parameters, i.e.,

θ = {C,L, T, ν,θNN}, (32)

consists of the spectrum amplitude C := c20 ε
2/3/u2∗, the characteristic length and time

sales, L and T , respectively, the exponent ν and the weights θNN of the neural net-
work (30).
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2.3.3 Fitting the one-point spectra

In this section, we discuss various aspects of the model regression problem which calibrates
the eddy lifetime τ(k) together with the other free parameters in the DRD model eq. (32).
More specifically, we document the problem formulation, state important details from our
implementation,[36] and summarize our results.

Let us consider the one-point spectra eq. (18) on the interval D = [0.1, 100]. We wish
to find the model parameters θ which best fit this data. To set the stage, define

F̃ij(k1;θ) =

∞∫
−∞

∞∫
−∞

ΦDRD
ij (k,θ) dk2 dk3, (33)

and
J̃i(f ;θ) = C k1F̃ii(k1z;θ), i = 1, 2, 3, (34)

and J̃4(f ;θ) = C k1F̃13(k1z;θ), where f = (2π)−1k1z. Note that the learnable magni-
tude C involves the constants c20 ε

2/3 and u2∗.
To find the optimal parameter vector θopt, we solve the optimization problem

min
θ

{
MSE[θ] + αPen[θ] + β Reg[θNN]

}
, (35)

where α, β ≥ 0 and each function MSE[θ], Pen[θ], and Reg[θNN] is defined as follows.
The mean squared error is defined as

MSE[θ] :=
1

L

4∑
i=1

L∑
j=1

(
log |Ji(fj)| − log |J̃i(fj,θ)|

)2
, (36)

where L is the number of the data points fj ∈ D. The data Ji(fj) is evaluated using the
Kaimal spectra (18a)–(18d). The penalization term is defined as

Pen[θ] :=
1

|D|
4∑

i=1

∥∥∥∥∥∥ReLU
∂2 log

∣∣∣J̃i(·,θ)∣∣∣
(∂ log k1)2

∥∥∥∥∥∥
2

D

, (37)

where |D| = ∥1∥D and the norm ∥·∥D is defined

∥g∥2D :=

∫
D
|g(f)|2 d(log f). (38)

This term penalizes the curvature of the log-spectra in order to obtain convex curves
and to minimize oscillations, thus protecting against overfitting. Associating θNN with a
vector (θ1, . . . , θN) ∈ RN , we write

Reg[θNN] :=
1

N

N∑
i=1

θ2NN,i, (39)

where N denotes the total number of weights of the neural network eq. (30). The term
accelerates convergence and also helps to avoid overfitting.
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The model regression problem eq. (35) is implemented and solved using the PyTorch
package [50]. In particular, we use a full-batch L-BFGS optimization algorithm with the
strong Wolfe line search method and learning rate equal to 1. We use n = 2 hidden layers
of size m = 10 and begin by using the penalty and regularization parameters α = 1 and
β = 10−5, respectively.

The integrals in (33) are truncated and approximated using the trapezoidal quadrature
rule on a logarithmic grid from 10−3 to 103 with 100×100 nodes spanning the frequencies
k2 and k3. The second derivative in (37) is approximated with central finite differences.
And the norm eq. (38) is approximated using the trapezoidal rule.

The IEC-recommended spectral tensor model eq. (27) is calibrated in [48] to fit the
Kaimal spectra. [33, 34] In our notation, its three free parameters are L, T , and C. We
use the fitted values from [48], i.e., L = 0.59, T = 3.9, C = 3.2, to compare against the
DRD model.

In our first experiment, we fix the exponent ν = −1
3
. This is done so that τ(k) matches

the slope of τ IEC as k → 0; in other words, so that

τ(k) ∝ τ IEC(k) ∝ k−1 for k → 0.

We then set the initial scales of the DRD model to, L = 0.59, T = 3.9, C = 3.2 and
initialize the weights θNN with random values drawn from additive Gaussian white noise
with variance 1 × 10−2. We consider the range D = [0.1, 100] and sample the data
points fj ∈ D using a logarithmic grid of Nnodes = 20 nodes. The result of fitting the
Kaimal spectra can be seen in Figure 5b. This can be compared to the best fit produced
by eq. (27), depicted in Figure 5a. We observe that the DRD model presents a much better
fit than the Mann uniform shear model, by a clear order of magnitude. In Figure 6, we plot
the convergence of the mean squared error (36) throughout the optimization procedure.
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(a) IEC 61400-1 model.
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(b) DRD model with ν = −1
3 (fixed).

Figure 5: Comparison of the spectral models fitting the Kaimal spectra.

In our second experiment, we proceed by fitting a perturbation of the Kaimal spec-
tra with multiplicative log-normal noise. Note that in this case, the use of the penalty
term (37) is important to avoid overfitting the noisy data. On the other hand, the reg-
ularization term must be tuned to avoid local minima of the loss function eq. (35). For
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Figure 6: Convergence of the mean squared error (36) during training to fit the one-point
spectra in Figure 5b. The accuracy is more than an order of magnitude better than the
IEC 61400-1 model, which achieves the fit shown in Figure 5a.

best results, we increase the regularization parameter to β = 10−2. All other parameters
are left unchanged.

In this example, we illustrate the possibility of learning the slope of the eddy lifetime
function in the energy-containing subrange. More specifically, we now suppose that the
exponent ν is a learnable parameter, and we aim to calibrate it in addition to the re-
maining model parameters. To this end, we consider the extended range D = [0.01, 100],
discretized with a logarithmic grid of Nnodes = 40 nodes. It is necessary to extended the
range of the the data into low wavenumbers, in order to get an accurate estimate of ν.
Our results are shown in Figure 7. Here, we see a good fit to the data. The calibrated
slope is given by ν = −0.55.
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Figure 7: Fitting a noisy Kaimal spectra with the DRD model.
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3 Stochastic optimization of twisted tapered tower

3.1 Introduction and motivation

Wind-induced lateral loads are a significant design consideration for super tall buildings.
Designing these super tall buildings only based on design codes [1, 4] is not recommended,
and detailed investigations are required for tall buildings. This aspect is of particular
interest when the geometry of the building is nonstandard in nature. Over the past few
decades CWE has matured such as to predict the pressure field and other wind behavior
around a structure accurately [3, 11, 51].

Many mitigation strategies are developed and widely used in practice to reduce the
wind action on the structure. Modification in geometric parameters of the building shape
is effective in reducing the wind loads on tall buildings. These local or global geometric
modifications can significantly reduce the total force and moments in the tall building.
Providing openings in the building [20], corner modifications [14], twisting [21], tapering
and stepping [31] are used in practice.The various mitigation strategies are summarized
in [5]. CWE tools provide an environment to combine it with existing optimization strate-
gies. Elshaer [21] presented one such optimization framework for determining the optimal
shape of tall buildings under wind loads using CWE. A Neural network-based genetic
algorithm is used for the optimization. However, the optimization considered was deter-
ministic. A framework for optimization of building geometries considering the uncertain-
ties of the incoming wind and terrain conditions is presented here. The global geometric
parameters are optimized to reduce the total reaction of the building towards incoming
uncertain wind flow. Considering the uncertainties in the wind inlet, various stochastic
optimization strategies may be employed. Optimization of the mean, optimization based
on the robust mean and standard deviation [22] or reliability-based optimization [25] may
be employed. Rockafellar et al. [54] proposed the risk-averse optimization by conditional
value at risk [53]. A risk-averse optimization is also employed in the current study, and
the results are presented in this report.

The geometry of the building is motivated by the absolute world tower. This report
is complementary to Deliverable 6.5 [7] and Deliverable 6.4 [6] . These reports may be
referred to for a more theoretical formulation of the optimization problem and the method
in detail.

3.2 Modelling of the wind flow around the building

Figure 8 shows the adopted CFD domain and boundary conditions. The global geometric
modifications are taken into account in the current optimization study. The building has
an elliptical cross-section with an sdome at the top. Two global geometric parameters
affect the building geometry. Two global geometric modifications are considered as the
tapering and twisting of the geometry along with the height. The design parameters
considered are hence the minor diameter at the top and the twisting of the top cross-
section with respect to the base to the building.

Table 1 tabulated the fluid properties and the dimensions of the building for the initial
design configuration. The initial top cross-section is circular with a diameter of 30m. The
Reynolds number for the problem is computed, and it shows that the problem at hand is
highly turbulent. The incompressible Navier-Stokes equation is used to model the wind
flow around the building as in Equation (40)
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Figure 8: Details of the fluid simulation, domain and boundary conditions

Table 1: Fluid properties and building details

Quantity Value Unit

Density 1.225 kg/m3

Viscosity 1.507E-5 m2/s
Dynamic viscosity 1.846E-5 Ns/m2

Reynolds number 9.7E7
Characteristic length 45 m
Height of the building 180 m
Major base diameter 45 m
Minor base diameter 30 m
Major diameter at top (initial) 30 m
Minor diameter at top (initial) 30 m
Angle of twist (initial) 65 ◦

∂u

∂t
+ u · ∇u− ν∆u+∇p = f on Ω , t ∈ [0, T ]

∇ · u = 0 on Ω , t ∈ [0, T ] ,
(40)

where u is the velocity, p is the pressure, ν is the kinematic viscosity, f is the body forces,
Ω is the domain and [0, T ] is the time window.

The wind flow around the building is simulated in Kratos Multiphysics solver .A vms
formulation from [18] is adopted for the flow solver. The fluid domain is modeled with
fractional step elements.

Within this work, the geometry subject to shape optimization encounters shape up-
dates at each of the optimization steps. This renders the deployment of mesh moving
CFD approaches not optimal since the geometry updates might be large enough to dis-
tort the fluid elements to such an extent that the results are meaningless. Therefore a
remeshing approach is adopted for the current study to generate the bodyfitted meshes
automatically. MMG remesher is used for the remeshing of the fluid domain.
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The geometry is meshed with different refinement zones and the details of the adopted
initial mesh is shown in figure 9. This initial mesh is used for all the optimization steps
and UQ samples.

Full domain

Section at height of 120m

Figure 9: Details of the adopted mesh for the simulation

3.3 Quantities of Interest

The quantities of interest considered in the current study are the forces and base moments
as elaborated in Deliverable 6.4[6] . The quantities of interest are the total reaction
force FX(t), FY (t), FZ(t) in all the three directions and the moment of the forces at the
base. These quantities are of particular interest for the design of the foundation and the
structural system of the building. By reducing these global values a reduction in total
cost of the building can be achieved. These quantities of interest are minimized with the
angle of twist and tapering as design parameters.

3.4 Uncertainties in the incoming wind

Here, a physical model for uncertainty quantification in wind engineering is elaborated.
As is typical in the wind engineering community, we model the natural wind effects in
the atmospheric boundary layer by decomposing the incoming velocity field, u = u+u′,
into its stationary mean profile u and its unsteady turbulent fluctuations u′. Under the
assumptions of neutral stability, homogeneous roughness, the mean velocity u = u(z) can
be modeled by the following logarithmic profile [35]:

u =
u∗
κ

ln

(
z

z0
+ 1

)
e(θ) , (41)

where κ ≈ 0.41 is the von Karmán constant.
Each of the parameters u∗, θ, and z0 in eq. (41) are random variables. It is often

assumed that the friction velocity, averaged over all angles θ, obeys a Weibull distribution,
Wieb(λ, k), with scale λ and shape k [35]. Likewise, statistic models for the wind angle θ

Page 24 of 36



Deliverable 7.4

are often constructed using a mixture of von Mises distributions [15, 23]. Models for the
friction velocity are not so well-studied. In this work, we assume that z0 ∼ Unif(zL, zU),
where zL and zU are positive constants inferred from the engineering codebook [32].

If u∗, θ, and z0 are not independent random variables, because of nearby geographic
features or persistent weather patterns. For example, consider the wind rose on the left-
hand side of Figure 10, which indicates a strong dependence between u∗ and θ in field
measurements in Basel, Switzerland. In this work, we take care to use an empirical mul-
tivariate joint distribution to describe the dependence between these two variables. Rela-
tionships between z0 and θ have been studied [35], but field data is less widely available
to use in practice. Therefore, we take on the modeling assumption that z0 is independent
of both u∗ and θ.

3.5 Wind rose models

In this work, we use an empirical copula-based model to replicate the dependence between
the random variables u∗ and θ. In particular, we use a dataset of mean wind velocities
and directions collected at 10m above ground in Basel, Switzerland, from 2010-01-01 to
2015-12-31,1 to construct our model; cf. Figure 10. Note that u∗ = κ∥u(z)∥/ ln(z/z0+1),
therefore, a copula model based on θ and the mean wind speed at a specified height z,
namely ∥u(z)∥, can also be used to characterize the relation the bivariate distribution of
θ and u∗.

Figure 10: Wind Rose

Modeling turbulent fluctuations with physical wind gust statistics is significantly more
challenging than modeling the mean profile. In this study, we choose to model the velocity
fluctuations using the atmospheric boundary layer turbulence model proposed in [47, 48]
and elaborated in detail in Deliverable 7.3 [10] . It is a widely used model for synthetic
wind generation in the atmospheric boundary layer; see, e.g., [2, 30, 49]

1Available for free at https://www.meteoblue.com.
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3.6 Optimization problem

For notational simplicity, Let F (x) denote the mean optimization problem. At each design
iterate xk, we choose to approximate F (x) with a sample average approximation; this is
one of the more common procedures used in stochastic optimization [39].

Fix T > 0 and let F (i)(x) = ⟨f(x;ω(i), ξ(i))⟩T . For each design xk in the optimization
loop, denote

FSk
(xk) =

1

|Sk|
∑
i∈Sk

F (i)(xk) , (42)

where each sample (ω(i), ξ(i)) in the sample set Sk satisfies ū(i) > VaR0.95(ū). In order
to ensure that the samples in Sk follow the correct conditional distribution, we draw
each ξ(i) independently, but only populate Sk with the samples satisfying the constraint
ū > VaR0.95(ū).

The gradient of each accepted sample,∇F (i)(xk), can be computed via finite differences
in the design variable x ∈ Rd. In particular, for each sample i ∈ Sk, this involves d + 1
numerical tunnel simulations. Due to the chaotic nature of the flow, an accurate gradient
for an individual sample requires a long time interval [42], the exact length of which is
problem-dependent. In addition, special care must be taken to select an appropriate finite
difference increment in each component of design space.

Once each of the individual gradients ∇F (i)(xk) have been estimated, the sample
average gradient,

∇FSk
(xk) =

1

|Sk|
∑
i∈Sk

∇F (i)(xk) , (43)

may be formed as an approximation of the true gradient of F (xk). The first-order method
we rely on in our work to arrive at the next iterate xk+1 is simply the traditional gradient
descent strategy

xk+1 = xk − αk∇FSk
(xk), αk > 0 . (44)

Our approach to the selection of the sample space size |Sk|, at each iterate, is determined
adaptively base on an a posteriori estimate of the statistical error. In particular, the size
of the sample space to grow as the optimal solution is converged upon. This strategy,
which is outlined in the next subsection, has been shown to significantly reduce the cost
in stochastic gradient descent [12, 13, 16]. The adaptive sampling is explained in details
in deliverable 6.5[7] .

The expensive computation are run on Karolina super computer of the IT4Innovations
cluster located in Ostrava, Czech Republic. PyCOMPSs [9, 46, 57] is the framework used
for parallel computing.

3.7 OUU workflow

Within this work, the geometry subject to shape optimization encounters shape updates
driven by the gradient-descent optimization algorithm employed. The adopted stochastic
optimization workflow is detailed in this section. The optimization tries to minimize the
observable of the selected QoI by looking for the best design parameters while considering
the uncertainty from the incoming wind. The design parameters might also have some
constraints from the architects and designers.
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Figure 11: Details of the OUU workflow adopted

The OUU workflow begins by defining the objective function, design parameters, and
uncertain input parameters. The objective function is the stochastic quantities of the
QoI like the mean, mean + sd, CVAR, etc. The objective function value depends on
the geometry of the building, which depends on the design parameters. The building
geometry is parameterized to have the design parameters as the inputs. The background
CFD mesh is remeshed to capture the new geometry and create the new body-fitted mesh.

In cases where the angle of arrival of the wind is also an uncertain input parameter,
each uncertainty quantification samples require remeshing of the domain. The objective
function is obtained by running the CFD simulations. The 3D CFD simulations are
expensive, and an adaptive sampling strategy is adopted in the stochastic optimization
workflow.

A finite-difference approach is used to compute the sensitivities. Since the number of
design parameters is lower, the additional computations required for the sensitivities are
not massive. Multiple evaluations of the CFD is required for each optimization step. It
is realized by parallel evaluation of the samples. The QoI and Gradients are fed into the
stochastic gradient descent optimizer. A gradient descent algorithm with fixed step sizes
is adopted in the workflow. The optimization algorithm requires multiple iterations until
it converges to the final design. The details of the optimization workflow are summarized
in Figure 11.

3.8 Results

The optimization workflow is used for the stochastic optimization of the twisted tapered
building until the optimization converges. Two stochastic optimization problems are
carried out, One with the mean of the base moment as objective function and the other
as the CVaR 90 of the base moment as objective function. Both problems were started
from the same initial design. The initial design is a circular cross-section of 30m at the
top with angle of twist of 65 degrees. Both the problem converges at 25 and 26 iterations,
respectively. The initial and the final design of the building can be seen in Figure 12. It
can be observed that the mean and CVaR optimization problem has converged two local
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Figure 12: Shapes of the optimization results

minima, showing a difference in the final geometry. Figure13a and Figure 13b show the
progress of the optimization at each steps. The top cross-section is shown.

The risk-neutral candidate design is shown in 14. The improvement in the objective
function is illustrated in the figure. It can be seen that the objective function improves by
7% for the mean optimization problem. The plot also showcases the number of samples
required for each of the optimization steps. The performance of the adaptive sampling
strategy is illustrated here. As we approach the optima, an accurate estimate of the objec-
tive function is made. The two design parameters that are considered for the optimization
are also shown in the figure. The top cross-section becomes more tapered and aligns to
reduce the wind effects on the building. The tapering of the cross-section is found to
reduce the wind loading. The Twisting is not prominent as the tapering. However, they
also converge with the optimization steps.

The risk-averse candidate design is shown in 15. The improvement in the objective
function is illustrated in the figure. The objective function improves by 15%. The reduc-
tion is more compared to the mean optimization problem presented earlier. The number
of samples at each of the optimization steps also increases with optimization steps. When
compared to the mean optimization problem, the number of samples is almost three times.
This is expected as more samples are required to estimate the tail of the objective func-
tion. The shape change in the two objective functions is more than that of the mean
optimization problem. The QoI is clearly not symmetrical, and hence a mean and std,
which is a symmetric measure of the risk, may not best the idea for such a problem.

The optimization results clearly indicate that the twisting and tapering are efficient
strategies for reducing the wind effects on the structure. Also, the effect of uncertainties
is considered during the optimization procedure. The optimization strategies presented
in deliverable 6.5[7] are demonstrated for the wind flow problem.
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Figure 13: Shape at the top of the building for each optimization steps.
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4 Engineering Evaluation of OUU results

The stochastic optimization of the tapered and twisted tower explicitly prove the appli-
cability of the developed methods of the ExaQUte project and, in particular, the Work-
packages 6 and 7. From an engineering and architectural point of view, the depicted
OUU workflow, compare Figure 11, is especially suited to be integrated into preliminary
design studies and early planning stages, where main decisions regarding the building’s
shape and primary load bearing structure are defined (integration of the OUU workflow
at str.ucture GmbH is part of the exploitation plan, cf. Deliverable 8.4).

A very promising perspective for the application of the OUU strategy is also given in
later stages of the design and construction process, especially for tall high-rise buildings.
Local shape changes, e. g. including openings or corner modifications within a chosen
curved facade system, cf. [8], that have a major impact on the wind loads, can thereby be
determined such that these wind loads are reduced. It should again be noted, that due
to the incorporation of the stochastic approach that includes uncertain wind fields, the
developed methodology is superior to existing commercial shape optimization tools, that
primarily treat shape optimization for single, in most cases static load cases.

Looking at a wider context, there are numerous fields, where the stochastic optimiza-
tion results can play an important role. A key area is given in modern data-based urban
planning. Due to the rising availability of local climate and wind data in and around
cities, urban planers and decision takers are increasingly interested in modelling tech-
niques that predict varying wind flow and temperature conditions within urban areas.
Interests lie in the microclimate evaluation in early preliminary urban planning but also
during redensification measures in densely populated areas.

A transfer of the stochastic shape optimization technique towards optimising e. g.
steady wind flow in zones for fresh air supply while varying the building’s height as
optimisation parameters poses an interesting future field of application, where the derived
derivations and hypotheses still hold for the highly uncertain conditions. Furthermore, the
optimised data-driven wind field generation enables the consideration of local wind data
into the simulation environment and is a key aspect for the acceptance and the permanent
adoption of computer-aided wind engineering in local communities and stakeholders.
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