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Summary

We define stress and strain splittings appropriate to linearly-elastic anisotropic materials with volumetric
constraints. The treatment includes rigidtropic materials, which develop no strains under a stress pattern
that is a null eigenvector of the compliance matrix. This model includes as special case incompressible
materials, in which the eigenvector is hydrostatic stress. The main finding is that pressure and volumetric
strain must be redefined as effective quantities. Using this idea, an energy decomposition that exactly
separates deviatoric and volumetric energy follows.
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1. Introduction

An isotropic solid is called incompressible if it is succeptible only of isochoric motions [1, p. 210]. If the
material is linearly elastic the stress is specified by the strains only up to an arbitrary hydrostatic stress
(pressure). This uncoupling forms the basis of splittings into volumetric and deviatoric strains long used
in the analytical and numerical modeling of those materials.

The concept loses transparency for non-isotropic behavior because changes of shape and volume are
generally coupled. A generalization aimed at linearly elastic anisotropic solids is the rigidtropic model
introduced in [2]: the material is infinitely rigid under a specific nonzero stress pattern. The pattern is
defined by the eigenvector that renders the compliance (strain-stress) matrix singular. If this eigenvector
happens to be hydrostatic stress, it is shown in [2] that the material is isochoric (volume preserving)
under any stress state. This specialization defines an incompressible anisotropic material.

With the generalization in place, useful splittings of stresses, strains and internal energy can be obtained
for the numerical treatment of anisotropic solids with a singular compliance. An auxiliary tool used
in this development is the concept of free-free flexibility and stiffness presented in [3,4]. These two
singular matrices are the Moore-Penrose generalized inverses of each other, which can be expressed as
projected ordinary inverses of modified matrices.

The splittings are worked out first for a general anisotropic material. They are then specialized to the
orthotropic and isotropic cases. The treatment of the isotropic case is included to illustrate the connection
to existing splitting methods.



2. Anisotropic Material

We consider a linearly-elastic anisotropic solid in three dimensions referred to axes {x;}. Stresses o;;
and strains e;; will be arranged as 6-component column vectors constructed from the tensors through the
usual conventions of structural mechanics:

T
G‘:[O’“ g2 033 023 03] 0'12] , e:[e“ €2 €33 2623 2631 2612]T. (1)

The mean normal stress is g, = %(011 + 092 +033). A hydrostatic stress state is defined by 01| = 07 =
033 = 0, others zero. The volumetric strain is e, = ey + €27 + e33.

2.1. Constitutive Equations

The strain-stress constitutive equation is

eyl Cii Cn Ciz Cuu Cis Cig ol
en Cyn Cy Cyu Cys Cy lopy)
e Gz Gy C3s Cye o33

e = = == C . 2
2exp Cis Cys Cus lop%! 7 @
2es Css Csg | | 031
2e3 symm Ces o2

Here C;; are compliance coefficients arranged into the symmetric compliance matrix C. All diagonal
entries C;; are assumed to be nonnegative with a positive sum. The matrix C is called stable, semistable
or unstable if C is positive definite, positive semidefinite, or indefinite, respectively. In the semistable
case it will be assumed that C has a rank deficiency of at most one to simplify the analysis.

The eigenvalues of C are y; fori = 1,2... 6, with v; the corresponding eigenvector normalized to length
/3. (This nonstandard normalization simplifies linkage to the incompressible case.) Accordingly the
spectral decomposition is

C= %Z Vi Vi V'»T, V,-TVj :35,'/', (3)
i=1
where §;; is the Kronecker delta. The eigenvalues are arranged so that y1 = yjuin and ys = Vmax are the
algebraically smallest and largest, respectively. For stable models y; > 0 fori = 1, ...6. For semistable
models y; = 0. Unstable models are not accepted.

If C is stable the ordinary inverse is called E = C™'. This matrix collects the moduli E; ; and relates
stresses to strains: o = Ee. It is called the elasticity or rigidity matrix in the continuum mechanics
literature. If C is semistable (singular) a generalized inverse is defined in Section 2.6.

The Rayleigh quotients of the v; are noted for later use:

T

v; Cv;
i ! 1T

Vi = T = :jvi CV,‘. (4)
vV Vi

2.2. Volumetric Constraints

The volumetric constraints defined in the Introduction are mathematically expressed in terms of C as

Rigidtropic: y1 =0, v >0, i =2,...6. ©)
Incompressible: rigidtropicand Cy; + Cy; +C3; =0, j =1,2,3. (6)
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In both cases
det(C) =0, Cv; =0. @)

If v| is the hydrostatic stressmode [1 1 1 0 0 0] the zero-column-sum condition (6) is verified
and the material is incompressible. In the sequel no particular attention is placed on incompressibility
because it is a subset of the more general rigidtropic model.

The following example matrix, referred to principal material axes, has the entry pattern appropriate to an
hexagonal (trigonal-pyramidal, rhombohedral) material governed by the Cg symmetry group [1, p. 89]

Cit Gio Cis T Cg 0 12 -6 =12 =7 1 0
Gy Cp = =C 0 -6 12 —-12 7 —-10 0
B Cy; 0 0 0 | -12 -12 48 0 0 0
hex = Cai 0 —2Cis |l =7 7 0 20 0 =20
Cs 2C 10 =10 0 0 20 —14

. Symm 2(C11—-C12) 0 0 0 —20 —14 36 (8)

The set numerical entries are exact integers. The eigenvalues (listed to 6 places if noninteger) are
v1 =0, y, = 1.70838, y3 = 2.30953, y4 = 36.2916, ys = 53.6905 and ys = 54. The compliance (8) is
semistable and rigidtropic. The null eigenvector is v; = w = (1/+/3) [221000], ww=3.

2.3. QRT Materials and the Reference Model

Models that satisfy (7) exactly or to high numerical accuracy are rare if entries come from experimental
data. It is far more common to find “quasi-rigidtropic” (QRT) behavior in the sense that C has a tiny
positive compliance in a stress eigenmode. Mathematically:

v >0, VI < €-Vs, & << 1, &)

Here e, is a preset tolerance, for example 1073, which triggers treatment of the material model as QRT.
Note that the reciprocal 1/, is a spectral condition number. A tiny but negative y; may also occur due
to experimental noise; stabilization of such unstable models is discussed in Section 2.6.

If (9) is verified, one proceeds to compute two auxiliary quantities: the reference rigidtropic model C
and an effective bulk modulus K. These are used to split the constitutive equations and internal energy
in Sections 2.8ff.

The reference rigidtropic model C is that nearest C satisfying (5). But how to define “nearness”? The
answer is not unique. Two methods for constructing C are described below: projection and scaling. The
key relations are summarized in Figure 1.

24. C by Projection

To apply the projection method, compute the eigensystem of C. Pick the smallest eigenvalue y; and
check whether the model classifies as QRT (For a tiny but negative y; see Section 2.6.) Call the associated
eigenvector w = v;,w 7w = 3. Redo the spectral decomposition (3) subtracting off y;:

6
C=C- %ylwwr =Z%y,~v,~v,.T. (10)
i=2

This is called a projection method since it is equivalent to pre- or post-multiplying C by a w-defined
orthogonal projector P:

C=PC=CPP =I-1lww’, P =P (11)
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(a) Projection:
6=PC=C—%—’YIWWT

Cw=Cw=0

(b) Scaling:

C=Cy Cw=0

C=P
A
C(data) C=C

K'=wTCw

A
C

A —
C=C+y,wwl

C (data)
K'=wTCw

Figure 1. Two methods for handling a QRT compliance: (a) projection, (b) scaling.
Starting from the same given C they generally produce different Cs.

where I is the 6 x 6 identity matrix. The effective bulk modulus K is computed as

K" =3y, =wlCw.

(12)

The constitutive meaning of K as ratio of efective pressure to effective volumetric strain is discussed
later after those quantities are introduced.

To build an example QRT matrix, the nonzero entries of the example matrix (8) are perturbed on the
order of 1% by a random number generator. The results of the process is

11.78029 —5.90183 —11.79849 —6.96337
—5.90183  11.93375 —11.82934 7.10696

C= —11.79849 —11.82934  47.38653 0
| —6.96337 7.10696 0 20.0109%4
10.14722  —9.92362 0 0

0 0 0 —19.85809

10.14722 0
—9.92362 0

0 0

0 —19.85809 (13)

20.04357 —13.97715

—13.97715

36.16219

The eigenvalues are now y; = 0.04409, y, = 1.53218, y3 = 2.50946, y4 = 36.2653, ys = 53.2816 and
¥ = 53.6847. The eigenvector corresponding to y; = 0.04409 is

w=v, =[1.20725 1.09464 0.57438 —0.02075 —0.10602 —0.0524471".

The projected reference model is

11.75887 —5.92125 —11.80868

—-5.92125 1191614 —11.83858

C=C=Lyww = —11.80868 —11.83858  47.38169
3 6.96300 7.10729 0.00018
10.14910 —9.92191 0.00089

0.00093 0.00084 0.00044

—6.96300
7.10729
0.00018

20.01094

—0.00003

—19.85810

(14)
10.14910  0.00093
—9.92191  0.00084
0.00089  0.00044

—0.00003 —19.85810

20.04340 —13.97723

—13.97723  36.16215
15)

The eigenvalues of (15) are the same as those of C except for y; = 0. The eigenvectors do not change.
The effective bulk modulus is K = 1/(3y1) = 1/(wTCw) = 7.56067.
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25. € by Scaling

Projection preserves eigenvectors (and all eigenvalues but ;) but generally changes all entries of C as
can be observed comparing (15) to (13). Ocassionally it is desirable to keep the same diagonal entries
or to preserve zero off-diagonal entries resulting from material symmetries known a priori.

In the scaling procedure the off-diagonal entries of the upper 3 x 3 minor are multiplied by (1 + x),
where x is a real parameter:

Cn (1+)Cn (I+x)Ci3 Cuy Cis Cis
Cx (I14+x)Cy;3 Cu Cis Cy
Cs3 Cys C3s Csg

C; = . 16
% Cas Cys Cug 16)
Css Cse
symm Ces

Expand det(C,) as a polynomial in x. Solve det C, = 0 for the smallest real root x. Apply x to C,
to get C = C;. Although scaling keeps diagonal entries invariant and preserves zero off-diagonal ones,
it will generally change all eigenvalues and eigenvectors. Hence it is necessary to redo the eigensystem
analysis to get the spectral decomposition

6
CZ%Z-i‘—/i‘—’iy Vi vi =3. amn

Verify the rigidtropy and stability conditions: y, =0, >0fori =2,...6. If C is unstable the
projection method should be used as fall-back. If C is semistable, pick w = v;. The effective bulk
modulus is computed via the Rayleigh quotient of w on the original C:

wlCw

K1'=3 =wlCw. (18)

wlw
Why not scale all off-diagonal entries? The answer is that scaling is only recommended when rigidtropy
is associated with lateral contraction (Poisson) effects controlled by Ci,, Cy3 and Cy;, so it is applied
where it is most effective. For instance the null eigenvector w of the exact rigidtropic example compliance
(8) has zeros in the last 3 components, while in the QRT perturbed matrix (13) those are very small.

To scale (13), entries Cy, Ci3 and C33 are multiplied by (1 4+ x). The determinant equation det C, =0
has three roots: x; = —3.00511, x» = —0.467716 and x; = 0.002822. Pick ¥ = x3 as that closest to

zero, and substitute x to get

11.78029  —5.91849 —11.83179 —6.96337 10.14722 0
—5.91849 11.93375 —11.86272 7.10696  —9.92362 0

¢ = —11.83179 —11.86272  47.38653 0 0 0 (19)
—6.96337 7.10696 0  20.01094 0 —19.85809
10.14722  —9.92362 0 0  20.04357 —13.97715
0 0 0 —19.85809 —13.97715  36.16219

This has eigenvalues y; = 0, y, = 1.54084, y3 = 2.50934, y4 = 36.273, ys = 53.3091 and y5 = 53.685.
The null eigenvector w = v, is

w=v; =[1.20524 1.09659 0.57545 —0.02113 —0.10313 —0.05146]". (20)

The effective bulk modulus is K = 1/(w” Cw) = 7.55588. Comparing with the results of the projection
method the answer are very similar. The main visible difference between the reference models (15) and
(19) is that zero entries are exactly preserved in the latter.
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2.6. Recommendations on VMethod Selection

Figure 1 graphically depicts both methods. Projection has the important advantage of being observer
invariant since it works with the spectrum of C. If C is stable, C is guaranteed to be semistable since y,
through ys are unchanged. Scaling would produce different results as axes {x;} are rotated; moreover it
may be necessary to extend the (1 4 x) factors to all off-diagonal components. For this reason scaling
should be restricted to models satisfying three conditions:

o  The projection method would erase zeros entries that should be preserve to express sysmmetries
e  Rigidtropy is due to lateral contraction (Poisson) effects governed by C;, C|3 and C»;
o  Preservation of zero entries is important

Although the presumption (9) excludes QRT unstable models, in practice discovering a tiny but negative
y1 is as likely as having a positive value. Experimental noise coupled to preselection of symmetry groups
may cause that to happen. The good news is that projection and scaling are unaffected by the sign of y;:
if negative the computation of C can be viewed as a model stabilization step.

2.7. The Stress-Strain Matrices

From now on a compliance that exactly satisfies (5) will be called C. This has the spectral decomposition
(17). This matrix generally comes from adjusting a QRT compliance C by one of the methods discussed
in the three previous sections. The null eigenvector of C is always called w for brevity:

Cw=0, w=[w w ws wy ws wg]’, ww=3. 21)

The projected elasticity matrix is defined as the Moore-Penrose generalized inverse of C:
- B i 6.1
E=P(C+iwn")" = ;Z =iV,  P=I-}ww’ (22)

The w used above is always the null eigenvector of the singular compliance. These expressions follow
from the theory of the free-free flexibility developed in [3,4]. Matrix E is symmetric, singular and
positive semidefinite with null eigenvector w: Ew = 0. It verifies EC = CE = P. Relation (22) persists
if C and E are switched and 1/; replaced by ;.

As an example let us compute the E of (8), for whichw? =[2 2 1 0 0 0] //3:

4891 —4829 —124 3402 —4860 0
—4829 4891 —124 —-3402 4860 0

_ 1 124 —124 496 0 0 0
M lwwT Ty-1 _

Biex = (I=3wW)(Crex tWW)™ = 35025 | 3402 —3402 0 8748 0 4860

_4860 4860 0 0 8748 3402

0 0 0 4860 3402 4860

. (23)
As a visual check, the pattern of zero entries is exactly that of Cj.,. Furthermore E44 = %(E u—Ep),
Es = —E s, etc., as appropriate for the hexagonal symmetry group [1, p. 89]. The ordinary inverse of
Cj.x does not exist.

For future use define . A )
C:C—i—%K“wwr, E=E+ Kww’. (24)
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These have the useful properties
EC=CE=1 Cw=1k"'w, Ew=3Kw, C=PC=CP, E=PE=EP. (29

Of course E blows up as K — co but this matrix is never assembled as such; it is a convenient “splitting
tool” in the spirit of the delta function, which works behind the scenes and disappears once done.

If the projection method is used to get C, matrices C and E reduce to C and E, respectively.

2.8. Effective Pressure and Volumetric Strain

Define effective pressure p and effective volumetric strain 6 as

W

T 1
w' o = 3 (w101 + w202 + W3033 + We023 + w5031 + Weo12),

" 26)
8 =wle=wer + wren + wsess + 2waex + 2wses; + 2wees.
The ratio of p to 6 is called the effective bulk modulus:
p =Ko, 6=K"'p. 27

The proof that K~! = w’ Cw is given in Section 2.10.

For the incompressible specializationw =[1 1 1 0 0 0]7. In this case p and 8 reduce to the
mean normal stress and usual volumetric strain, respectively:

p=1wlo=j0n+om+on)=0, O=we=e;+enteyn=e, (28)

Incompressibility may be also characterized by & = divu = du;/dx; = 0 for any admissible motion,
where u = [ u; u3]7 is the displacement field.

2.9. Stress-Strain Splitting

The definitions (26) are used to introduce effective deviatoric stresses s;; and deviatoric strains e;; by
s=o0—Wwp, g=e—iwo, (29)
in which the vector arrangements mimic those of (1):
s=[su 52 s; s» su sl g=[gn g &n 28 2gu 2gnl", (30)
The key decoupling relations that follow from this definition are
wls =0, wlig =0. (31)
From these easily follow the projective properties
s=Po, g =Pe, sTe=s"g, gls=glo, (32)

where P =1 — %wwr.



2.10. QRT Constitutive Equations

To derive the split constitutive equations of a QRT material, e = Co is replaced by e = Co. The
splitting (29) and the bulk equation (27) are introduced, and the decoupling relations (31)-(32) used:

e=Co=(C+ %K'IWWT)(S +wp) =Cs + %wK“'p =g+ %WQ. (33)
Identifying gives g = Cs. To work out the inverse relation, o = Ee is replaced by o = Ee and use

made of (25):
a:ﬁe:(E—i—waT)(gﬁ—%wB):Eg+wK9:s+wp. (34)

Identifying gives s = E g. Summarizing, the split constitutive equations for finite K are
g=Cs=Co, s=Eg=Ee, 6=K'p, p=Ko. (35)
and in terms of total strains and stresses
e=Cs+ %wK_lp =Co+ %wK‘lp, o =}_‘3g+wK6 =Ee+ wko. (36)

If the material is exactly rigidtropic, K — oo, in which case (35) collapse to e = Cs,s = Ee, 6 = 0,
and the effective pressure p is completely decoupled from deformations.

We can now show that K ~! = w” Cw as follows. For the projection treatment of a QRT model:
% p %wTa' %wro' _ §IWT(5 + wp) . p 1 B 1 37)
6 wle  wlCo wI(C+ 171wwl)(s + wp) " 3yp 3 wiCw'

If C is obtained by scaling, K~' = w” Cw is simply a definition suggested by the Rayleigh quotient
approximation properties. It is easily verified that for an isotropic material of elastic modulus £ and
Poisson’s ratio v, K reduces to the ordinary bulk modulus %E /(1 —2v) for any v.

2.11. Energy Splitting
Insertion of (29) into the internal energy density U = %UTe produces an exact split into deviatoric and
volumetric energies
W =2y +2U, =s"g+ pd =s"e+ pd =o'g+ pé, (38)
in which the last two transformations follow from (32). Substitution of the constitutive equations (35)
or (36) and use of orthogonality conditions permits selective eliminations. For example
2

Wy =sTe=s"Cs=0c"Co=gEg=e’Ee, 2U,,=p9=1—])<—=K@. (39

InJ{ , deviators g may be replaced by e as in s g = s”e, etc., as per (32). Likewise s can be replaced by
oasins’g= olg, etc. In displacement FEM formulations it is often convenient to use total strains.

In exact rigidtropy the volumetric energy vanishes.



3. Isotropic Material

The foregoing derivations are specialized to isotropic linear elasticity to illustrate connections to con-
ventional splitting methods. The strain-stress relations are

€11 1 —v —v 0 0 0 a1
€2 1 =] 0 0 O (op))
. €33 _ i 1 0 0 0 J33 _
*Tl2en | T E 20+v) 0 0 g | = (40)
2e3 2(1 +v) 0 a31
2epn symm 2(1 4+v) o2

where E is the elastic modulus and v is Poisson’s ratio. The determinant of C is 8(1 4 v)*(1 — 2v)/ES.

For nonnegative v this vanishes for v = % Ordinary inversion of (40) yields

ol 1 —v v v 0 0 0 el
o 1—v v 0 0 0 exn
1—v 0 0 0

033 | _ €3 | _

o | = B La—2v) 0 0 Sy | =T

031 11 —-2v) 0 2e3

o12 | symm %(1 —2v) | L2ep

(41)

where £, = E/((1 — 2v)(1 + v)). Coefficient E, “blows up” if v — % This is a well known

problem in the numerical analysis of such models by displacement-based finite element methods. For
this application it has been addressed by splittings into deviatoric stresses and pressure since the mid
1960s [5].

Let C be C evaluated at v = % This matrix projects any o onto the space of traceless (divergence free)
strain tensors. The null eigenvector of C is

w=[l 1100 0] (42)

This represents hydrostatic pressure; consequently rigidtropic and incompressible models coalesce. In
fact, (42) is an an eigenvector of the compliance matrix (40) for any v. It is easily verified that

3 (1-2v)

T'Cw= K 43
w' Cw I (43)

K~! exactly for any v. The orthogonal

where K is the conventional bulk modulus. Hence y; = %

projector P is
2 -1 -1 -1 =1 —1
-1 2 -1 -1 -1 -1
-1 -1 2 -1 -1 -1

T_1

P =0l el = 2 =d = e
-1 -1 -1 -1 2 —1
-1 -1 -1 -1 -1 2

9



The generalized inverse of C defined by (22) becomes

4 -2 -2000
-2 4 -2000
- - 4 E|-2-2 4000 2(1+v) 2(1 +v)
— S _ .
E=PC+ww)" =31 § o 0300|= 3 PE = 3 EP, (45)
0 0 0030
0 0 0003

E projects any strain e onto the space of traceless stress tensors. Since all relations survive if Cand E
are interchanged, they are dual of each other. In particular, exchanging C and E in (45) recovers C as
expected:

2 -1-1000
-1 2 -1000
= - 1 1-1 -1 2000 3 3
C: T_l:—— =—————P e UREEE— .
PE+wI =221 70 0 0600 | Tt “O
0 0 0060
0 0 00O0G6G

The mean-deviatoric splitting of strains and stressesisoc =s+wpande = g + %w 6, with

p= %wTU = %(Uu top+oy), O=we=e+eptes, p=K0. (47

Here s and g are the deviatoric stresses and strains arranged as per (30), p is the mean normal stress and
6 the conventional volumetric strain. The induced decomposition of the constitutive relations reads

e=Co=Cs+wiK™'p=Cs+3wo, c=Ee=Eg+wKd=Eg+wp. (48)
The deviatoric constitutive equations reduce to

2(1 - 30 -
g:CS: (;U)CU—_— E

Cs, —Eg= = E
S SE RS Ty T 20 1)

g (49

2(1 +v)
3

where those involving E stay bounded as v — % The strain energy density splits exactly into deviatoric
and volumetric parts for any v:

2L{=0'Te:sTg+p9=sTe+p9=aTg+p9. (50)

This decomposition is the basis of energy methods (in particular finite element methods) for incompress-
ible and near-incompressible materials. For example, in a displacement-pressure formulation

2
- P
U= 'Eed =,

2(1+V)e e (51)

Here e comes from displacements. Displacement-pressure coupling terms, such as p div u, are added to
establish mixed variational principles [6]. For an incompressible material X' — co and the p?/K term
vanishes.
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4. Orthotropic Materials

In this section we study an orthotropic material with the x; aligned with the principal material axes.
This case is worth separate consideration on account of the technical importance of such materials and
because several important results can be obtained in closed form.

4.1. Rigidtropy and Incompressibility Conditions

The principal elastic moduli are £, £, and E3, whereas the principal shear moduli are G;, G, and
G3. The six moduli are assumed to be positive. Three Poisson ratios are defined symmetrically with
respect to the geometric means /£ E,, +/E, E3 and /E3E}, a device that circumvents the widespread
befuddling practice of carrying six Poisson ratios linked by three symmetry constraints. Accordingly
the compliance matrix is written

1/E\ —via/E\Ey, —vi3/s/E\Es 0 0 0
1/E, —Vy3 /s Er E5 0 0 0
B 1/E; 0 0 0
L= /G, 0 0 (52)
1/G, 0
symm 1/G;

The determinant of C is (1 — (v}, 4+ v, + viy) + 2v12v23v13) /(B E2 E3G1 G2 Gy). This vanishes if

VIZZ + U223 -+ v123 + 2viv93v13 = 1. (53)

If vi; = vp3 = vy3 = v condition (53) reduces to (v — %)(u + 1) = 0, which has the positive root v = %

and the negative double root —1. This result is more general than the isotropic material studied in Section
3 because it holds for arbitrary £, £, and E3. Many rational solutions of (53) exist. The simplest one
with three different positive ratios is vz = 9/16, vy3 = 3/4, vi3 = 1/8, and cyclic permutations thereof;
also the signs of two ratios may be simultaneously switched.

Equation (53) is only a necessary condition for rigidtropy. It remains to check stability. One eigenvalue
of Cis 0 and three others are simply 1/G; > 0. Two roots remain. An inertia analysis of the uppermost
3 x 3 principal minor shows that both roots are positive if and only if

—l<vp<l, —=l<ysz<l, —=1<uvy<l, (54)

forany £, > 0, £; > 0 and £3 > 0. Consequently (53) and (54) are necessary and sufficient conditions
for rigidtropy. Poisson’s ratios over that range may be realized in composite materials.

The incompressibility conditions are far more restrictive: C; + Cjp +C13 = C13 +Can +Cp3 = Ci3 +
Cy3+Cs3 = 0. Given E|,E ,, and Ej as data, this can only be satisfied if the Poisson ratios become vj; =
S(ET'4+E; —ETYVEEy, viy = 3(Ey ' +E; ' —E5 )E(Es and vy = L(E;'+E'—E; ) VE Es.
IfE, = FE, = E; = E this gives vj; = vj3 = vp3 = % as can be expected. But if the moduli are widely
different, at least one of the Poisson ratios may stray out of the stable region (54). As a consequence the
compliance matrix becomes unstable, meaning that incompressible orthotropic models are physically
impossible if the ratios £/ E; and £ /E3 depart sufficiently away from unity. A detailed analysis along

with a stability chart is provided in [2].
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4.2. Spectral Analysis

Suppose the rigidtropy conditions (53)-(54) exactly holds so that C is renamed C. The null eigenvector
of squared-length 3 is as usual called w, which has the configuration

w=[w wy wy 00 0], ww=wl+wl+uw!=3 (55)

A closed form solution for the first 3 entries is:

wy =v/3E1/S, wy=vy/3E2/S, w3 =u3/3E3/S,
v = (1 +v3)( +vip +viz — va3), vy = (1 +vi3)(1 + vip — viz + v23), (56)
v3 = (1 +vi2)(1 — viz + i3 + va3), S = E\vi + Eqv5 + E33.

The effective pressure and volumetric strain are defined as explained in Section 2.8: p = %WTU =

%(wlo“ + wyo92 + wso33) and @ = wle = wyey; + wyey + wiess. The projected elasticity matrix,
split constitute equations and energy are obtained in the usual manner. where the normal stresses and
strains are weighted by the first 3 entries of w.

For the quasi-rigidtropic (QRT) case the reference model C can be obtained by projection or scaling.
Since the last 3 components of the eigenvector v, should be zeros, both methods preserve the off-
diagonal zero entries and thus the orthotropy pattern. Hence as noted in Section 2.6 the projection
method is preferable.

4.3. Example

As an example, consider the QRT orthotropic complaince:

144.00396 —53.99340 —26.99208 0 0 0
—53.99340 36.01100 —2.98680 0 0 0

_ 1 | —2699208 —2.98680 16.01584 0 0 0 57
T 144 0 0 0288 0 O
0 0 0 0720 0
0 0 0 0 0 432

The reference model is obtained by the projection method. The eigenvalues of C are y; = 0.03080,
¥2 = 25.93059, y3 = 170.06941, y4 = 288, ys = 432 and ys = 720. The eigenvector corresponding to
1, normalized to squared-length 3 is

w=v, =[0.621059 1.035098 1242118 0 0 0]". (58)

from which C = C — 1y, ww’ giving

144 —54 =27 0 0 0 1 =3/8 =3/16 0 0 0
54 3 -3 0 0 0 —3/8 1/4 —1/48 0 0 0

e_ L |-27 -4 16 0 0 0|_|-3/16 ~1/48 1/9 0 00 (59)
“Taa| 0 0 028 0 0 0 0 0 200
0O 0 0 0720 0 0 0 0 050
0 0 0 0 0432 0 0 0 003

The eigenvalues are the same as C except for y; = 0. Thebulk modulusis K = 1/(w'Cw) = 1/(3y1) =
10.8225.
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The nice result (59) should come as no surprise since (57) was “cooked” by a spectral shift of y; =
77/2500 of the C matrix fabricated with £y = 1, E; =4, E3 =9, G, = 1/2, G, = 1/5, G3 = 1/3,
viz = 3/4, vi3 = 9/16 and vy3 = 1/8. The exact null eigenvectorisw” =[3 5 6 0 0 0]./3/70.

The projected elasticity matrix is

6432 2880 —5616 0 0 0
2880 21600 —19440 0 0 0
= = _ 1 —5616 —19440 19008 0 0 0
= 1 Ty-1 _
E=PC+3jww)" = 7350 0 0 0 3675 0 0 (60)
0 0 0 0 1470 0
0 0 0 0 0 2450

The eigenvalues of E are wr =0, uy = 5.55329, n3 = 0.846713, ugy = 0.5, us = 0.333333, and
us = 0.2. These are the reciprocals of the corresponding eigenvalues of € except for y; which becomes
1 = 0.

The effective pressure and volumetric strain are

1 /3
p= %WTO' = m(')‘au + 50’22 + 60’33), 8= wTe = —7—6(3611 + 5622 + 6633). (61)

The calculation of a similar C by scaling is left as an exercise.

5. Conclusions

This article considers the case of volumetric constraints on linearly-elastic anisotropic solids. The
objective is to obtain spplitings appropriate for numerical treatment. The constraints are subsumed
under the umbrella rigidtropic behavior, in which the material does not deform under a stress pattern
characterized by the null eigenvector of the complaince matrix. This model includes incompressible
behavior as special case when that pattern is hydrostatic stress. Anisotropic incompressibility, however,
is relatively rare in comparison to the isotropic case. Further, if enforced for highly anisotropic materials
incompressibilty may lead to unstable models [2].

The main findings of the paper are:

1. Rigidtropic behavior can be characterized by a spectral analysis of the compliance matrix. The
incompressible subset is defined by a specialization of the null eigenvector.

2. Quasi-rigidtropic (QRT) models, which represent the extension of the quasi-incompressible models
of isotropic materials, are handled by decomposition into a exactly rigidtropic reference model
and the bulk behavior. Two methods: projection and scaling, for effecting this decomposition are
described. These methods can also be used for fixing slighly unstable compliances due to noisy
experimental data.

3. Correct splittings of the constitutive equations and internal energy require a redefinition of pressure
and volumetric strain as effective quantities.

Using the splittings derived here, mixed variational principles appropriate for constructing finite element
models have been derived in a separate document [7].
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