

Methodologies for Tracking of Load

Extremes and Error Estimation
using Probabilistic Techniques

R. Flores
E. Ortega
R. López

Publication CIMNE Nº-375, April 2012

Methodologies for Tracking of Load

Extremes and Error Estimation
using Probabilistic Techniques

R. Flores
E. Ortega
R. López

Publication CIMNE Nº-375, April 2012

International Center for Numerical Methods in Engineering
Gran Capitán s/n, 08034 Barcelona, Spain

ALEF Deliverable D1.2.3-6

1

Summary	

This work, conducted at CIMNE under ALEF project task 1.2.3, presents an investigation

about the potential capabilities of neural networks to assist simulation campaigns. The

discrete gust response of an aircraft has been chosen as a typical problem in which the

determination of the critical loads requires exploring a large parameter space.

A very simple model has been used to compute the aerodynamic loads. This allows creating

a large database while at the same time retaining some of the fundamental properties of the

problem. Using this comprehensive dataset the effects of network structure, training method

and sampling strategy on the level of approximation over the complete domain have been

investigated. The capabilities of the neural network to predict the peak load as well as the

critical values of the design parameters have also been assessed. The applicability of neural

networks to the combination of multi-fidelity results is also explored.

ALEF Deliverable D1.2.3-6

2

Table	of	contents	

1 Introduction ... 7

2 Neural networks .. 8

2.1 Multilayer perceptron ... 8

3 Software implementation ... 13

4 A simple test case ... 14

5 Initial test with two free parameters ... 16

5.1 Data normalization ... 16

5.2 Effect of the choice of network configuration ... 18

5.3 Training algorithm .. 22

5.4 Number of samples required for training .. 24

6 Test with four free parameters .. 26

6.1 Choice of a suitable network configuration .. 27

6.2 Reducing the cost of training ... 29

7 Use of neural networks for data fusion .. 30

8 Test with 3D model ... 32

9 Conclusions ... 35

10 References .. 36

ALEF Deliverable D1.2.3-6

3

List	of	figures	

Fig. 1 – A perceptron neuron model ... 9

Fig. 2 - Multilayer perceptron network architecture .. 10

Fig. 3 - Simple 2-dof system for gust response analysis .. 15

Fig. 4 - Load factor increase as a function of gust size and altitude 16

Fig. 5 - Normalized system response ... 18

Fig. 6 - Example network with three neurons in the hidden layer ... 19

Fig. 7 - Error distribution (2 hidden neurons) .. 20

Fig. 8 - Error distribution (3 hidden neurons) .. 21

Fig. 9 - Error distribution (4 hidden neurons) .. 21

Fig. 10 - Network with two hidden layers of three neurons each .. 22

Fig. 11 - Convergence history for several training runs with the same dataset 23

Fig. 12 - Effect of solver choice on training .. 24

Fig. 13 - Approximate gust load factor recovered from a 4x4 sample 26

Fig. 14 - ATR-72 three-view schematic. Source: www.atraircraft.com 33

ALEF Deliverable D1.2.3-6

4

List	of	tables	

Table 1 – Parameter values for 2-dof model .. 16

Table 2 - Parameter distribution statistics .. 17

Table 3 - Distribution of approximation error (not scaled) .. 19

Table 4 - Distribution of approximation error (17x17 sample) .. 22

Table 5 - Approximation error with two hidden layers (not scaled) .. 22

Table 6 – Error at the end of training with 4x4 sample set ... 25

Table 7 - Approximation error for 10x10 set after training with 4x4 samples (not scaled) 25

Table 8 – Maximum load factor obtained with a 10x10 set and interpolated from a 4x4

sample .. 25

Table 9 - Approximation error after training with 81 samples (not scaled) 27

Table 10 - Approximation error after training with 256 samples (not scaled) 28

Table 11 - Critical parameter combinations and peak load factor .. 29

Table 12 - Approximation error for training with modified latin hypercube sampling (not

scaled) .. 30

Table 13 - Critical parameter combinations and peak load factor .. 30

Table 14 – Setting for low-fidelity and high-fidelity models .. 31

Table 15 – Discretization error for 26-point modified latin hypercuble sample 31

Table 16 – Error distribution for network trained with 166 low-order samples 31

Table 17 – Error distribution for low-order approximation (obtained from 166-sample set)

corrected with error map interpolated from 26-point sample .. 32

Table 18 - Critical parameter combinations and peak load factor .. 32

Table 19 - Summary of properties of 3D model ... 33

Table 20 – Ranges of free parameters for 3D model ... 33

Table 21 - Predicted vs. actual load factor ... 34

Table 22 - Computed values near predicted extremum ... 34

Table 23 - Predicted vs. actual load factor after re-training .. 34

ALEF Deliverable D1.2.3-6

5

Nomenclature	

t Time increment

 Mean value

 Standard deviation

U Flight speed (true air speed)

UG Gust velocity

ADM Aerodynamic Data Module

ALEF Aerodynamic Loads Estimation at Extremes of the Flight Envelope

BFGS Broyden-Fletcher-Goldfarb-Shano method

c Airfoil chord

CG Conjugate Gradient method

CIMNE International Center for Numerical Methods in Engineering

CPU Central Processing Unit

dof Degrees of freedom

EAS Equivalent Air Speed

h Altitude

H Gust gradient distance

IG Moment of inertia per unit span

L-BFGS Limited memory BFGS method

m Mass per unit span

MAC Mean Aerodynamic Chord

MLW Maximum Landing Weight

MSE Mean Squared Error

MTOW Maximum Takeoff Weight

MZFW Maximum Zero-Fuel Weight

RMS Root Mean Square

ALEF Deliverable D1.2.3-6

6

Ry Radius of gyration

SM Static Margin (fraction of chord)

xG Center of mass longitudinal position

ALEF Deliverable D1.2.3-6

7

1 Introduction

This report explores the applicability of neural networks as useful tools for building a detailed

representation of the aerodynamic loads over the complete flight envelope, including the

determination of the critical load cases. When the number of free parameters in the problem

increases the so called “curse of dimensionality” comes into play (Bishop 1995). This means

that it is not possible to obtain a comprehensive sampling of the parameter space because

the number of points required grows geometrically with the dimensionality of the problem.

Neural networks are known for their ability of generalization, that is, the capability to extract

trends from a collection of sample points (so much in fact that they are used for such abstract

task as shape recognition, for example). From a statistical point of view, it can be

demonstrated that under certain conditions a neural network delivers the best representation

of an unknown probability density function which is possible for a given number of degrees of

freedom (Bishop 1995). In this sense, neural networks are optimum approximators and

therefore very good interpolators. They are especially suited for cases where there are large

gaps in the sample set. It seems then reasonable that neural networks can be useful in the

process of building a database of aerodynamic loads, where the number of points that can

be computed is limited due to time and cost constraints. Moreover, from the computational

point of view the cost of training a neural network is very small; it can be used in combination

with existing tools without increasing the cost of the data generation process. Thus, the

networks could be a useful tool for building aerodynamic data modules (ADM’s)

The ability of neural networks to predict the extreme load cases from a small sample set is

the main focus of this report. The document starts with a summary description of the

characteristics of neural network and their basic working principles (section 2). Next a simple

2D model is introduced which will be the basis for exploring the capabilities of the method

(section 4). The effects of network architecture, training algorithm and sampling strategy on

the accuracy of the approximation are assessed starting with a very simple model of little

practical interest but which has the advantage of allowing a graphical rendering of the

response surface (section 5). Once some basic understanding of the approximator has been

achieved the report moves to a higher dimensionality case (sections 6) where the capabilities

of the neural network become more important due to the impossibility of visualizing the

system response. Section 7 tests the ability of the networks as data fusion tool, combining

multi-fidelity results into a single coherent approximation. Next, section 8 applies the results

ALEF Deliverable D1.2.3-6

8

of section 6 to higher fidelity model, to verify the general applicability of the method. Finally,

the main conclusions drawn from the investigation are summarized in section 9.

2 Neural networks

A neural network is a biologically inspired computational model which consists of a network

architecture composed of artificial neurons (Haykin 1994). These are information processing

structures whose most significant property is their ability to learn how to perform certain

tasks. A neural network can be subject to different learning paradigms, depending on how

the knowledge available for training is represented. They include supervised, unsupervised

and reinforcement learning (Haykin 1994).

The multilayer perceptron is an important kind of neural network, and much of the literature in

the field is referred to that model (Bishop 1995). This type of neural network has found a

wide range of applications, with data modelling (usually refered to as function regression in

the specialized literature) being one of the most popular ones (Bishop 1995).

The function regression problem can be regarded as the problem of approximating a function

from an input-target data set (Bishop 1995). The targets are a specification of what the

output response to the inputs should be. From a statistical point of view, the basic goal in a

function regression problem is to model the conditional distribution of the output variables,

conditioned on the input variables (Bishop 1995). This function is called the regression

function.

Other tasks for which neural networks have proven themselves valuable tools are pattern

recognition (classification) and time series prediction (forecasting). While of great practical

importance these applications fall outside the scope of this document and won’t be discussed

in the following.

2.1 Multilayer perceptron

In this section we summarize the basic theory behind the multilayer perceptron. This type of

neural network is based on four building blocks:

 A neuron model (the perceptron)

 A feed-forward network architecture

 The objective functional

 Training algorithm

ALEF Deliverable D1.2.3-6

9

2.1.1 The perceptron neuron model

A neuron is the basic information processing unit in a neural network. The perceptron is the

characteristic neuron model in the multilayer perceptron (Sima & Orponen 2003). It computes

a net input as a function of the input signals and some free parameters. The net input is then

passed through an activation function to produce an output signal (Sima & Orponen 2003).

Figure 2 shows a perceptron neuron model.

Fig. 1 – A perceptron neuron model

Mathematically, a perceptron neuron model spans a parameterized function space V which

transforms an element of the input space nx  into a scalar output y  (Lopez & Oñate

2006). The function space V is parameterized by the free parameters of the neuron  ,b w

and therefore the dimension n+1. The elements of the vector w are called the weights and

the scalar b is known as the neuron bias. The weights are used to average the inputs while

the bias mission is to offset the average value. The elements of the function space spanned

by a perceptron are of the form:

  : | , ,ny y b x x w  (1)

where

1

n

i i
i

y g b w x


   
 

 (2)

ALEF Deliverable D1.2.3-6

10

Some of the most commonly used activation functions are the logistic sigmoid

1
()

1 exp()
g u

u


 
, the hyperbolic tangent ()

u u

u u

e e
g u

e e









 and the linear function ()g u u

(Bishop 1995). The logistic sigmoid function can approximate as extreme cases both a linear

function and a Heaviside step thus delivering great versatility. It also allows for the

probabilistic interpretation of the network outputs (Bishop 1995). The properties of the

hyperbolic tangent are very similar to the logistic sigmoid but this activation function has

been empirically shown to improve convergence of the training algorithms in many cases.

2.1.2 The multilayer perceptron network architecture

Although a single perceptron can perform certain simple tasks, the power of neural

computation comes from connecting many neurons in a network architecture. Neurons. The

architecture of a neural network is determined by the number of neurons, their arrangement

and connectivity (Sima & Orponen 2003). The characteristic network architecture of the

multilayer perceptron is the so called feed-forward architecture.

A feed-forward architecture typically consists on an input layer of sensorial nodes, one or

more hidden layers of neurons, and an output layer of neurons (Fig. 2). Communication

proceeds layer by layer from the input layer via the hidden layers up to the output layer (Sima

& Orponen 2003). In this way, a multilayer perceptron is a feed-forward network architecture

of perceptron neuron models.

Fig. 2 - Multilayer perceptron network architecture

ALEF Deliverable D1.2.3-6

11

In a similar way as it happens with a single perceptron, a multilayer perceptron spans a

parameterized function space V from an input nx  to an output my  (Lopez & Oñate

2006). Elements of V are parameterized by the free parameters in the network, which can be

grouped together in a s-dimensional free parameter vector  1,..., s α . Note that the

vector includes both the weights on the connections as well as the biases of all the neurons.

In fact, it is common practice to consider the bias values as additional weights and include an

extra virtual neuron at each layer with the output fixed to one. This is advantageous from the

point of view of the programmer because it allows for a unified treatment of all the free

parameters. In this line the vector α may be referred to as is “vector of network weights”

when no specific distinction is necessary. The dimension of the function space V is therefore

s. The elements of the function space spanned by the multilayer perceptron in Fig. 2 are of

the form:

  : | ,n m y x y x α  (3)

where the state of any neuron can be evaluated from the outputs of the neurons in the

previous layer:

1

() () () (1) (1)

1

 for 1,2,..., 1
ih

i i i i i
j j kj k

k

y g b w y i c


 



 
    

 
 (4)

In the expression above 1ih  denotes the number of neurons in layer 1i  and (1)i
kjw  is the

weight connecting the output of neuron k of layer 1n  to neuron j of layer i . Note that (4)

assumes that the inputs are treated as the first layer of the network  (0)
j jy x . Using

expression (4) the state of the network can be advanced layer-by-layer from the input all the

way to the output layer.

A multilayer perceptron with as few as one hidden layer of sigmoid neurons and an output

layer of linear neurons provides a general framework for approximating any function from

one finite dimensional space to another up to any desired degree of accuracy, provided

sufficiently many hidden neurons are available. In this sense, multilayer perceptron networks

are a class of universal approximators (Hornik et al. 1989).

2.1.3 The objective functional

The objective functional defines the task that the network is required to accomplish and

provides a measure of the quality of the representation that it is required to learn. In this way,

ALEF Deliverable D1.2.3-6

12

the choice of a suitable objective functional depends on the particular application (Lopez &

Oñate 2006). An objective functional for the multilayer perceptron is of the form

    : | , ,F V F    y x α y x α (5)

The learning problem for the multilayer perceptron can then be formulated in terms of the

minimization of an objective functional of the function space spanned by the neural network

(Lopez & Oñate 2006).

One of the most common objective functionals used in function regression is the sum-of-

squares error, which is measured on an input-target data set (Bishop 1995). It is written as a

sum, over all the samples in the data set, of a squared error calculated for each sample

separately:

     2
() ()

1 1

1
, ,

2

Q m
q q

k k
q k

E y t
 

      
 

 y x α x α (6)

where ()qt is the q-th member of the target sample set while ()qx is the corresponding input

sample. Q denotes the target sample size and the 1
2 factor is included in order to make the

gradient of the error functional directly proportional to the factor  () (),q q
k ky tx α . Closely

related to (6) and widely used too is the mean squared error (MSE), which is simply the sum

of the squared errors normalized with the number of samples in the data set in order to

remove the dependency with the set size:

     2
() ()

1 1

1
, ,

Q m
q q

k k
q k

MSE y t
Q  

      
 

 y x α x α (7)

From the MSE functional and considering a fixed training-target set, an error function can be

defined whose argument is the vector of free parameters in the network

  : |sf f α α  (8)

The minimum of the objective functional is achieved when a vector α is found for which the

objective function f reaches a minimum value. Therefore, the learning problem for the

multilayer perceptron, formulated as a variational problem, can be reduced to a function

optimization problem (Lopez & Oñate 2006).

2.1.4 The training algorithm

The training algorithm is in charge of solving the function optimization problem by adjusting

the free parameters in the network so as to minimize the objective function. More specifically,

ALEF Deliverable D1.2.3-6

13

the training algorithm searches in a s-dimensional space for a parameter vector *α at which

the objective function takes a minimum value. A minimum can be either a global minimum,

the smallest value of the function over its entire range, or a local minimum, the smallest value

of the function within some local neighborhood. Finding a global minimum is, in general, a

very difficult problem (Wolpert & McReady 1997) so algorithms in common use generally

yield only local extrema.

Training algorithms might require information from the value of the objective function only, its

gradient (first derivatives) vector or its Hessian (second derivatives) matrix (Press et al.

2002). These methods, in turn, can perform either global or local optimization.

Zero-order training algorithms evaluate the objective function only (no derivatives are

needed). Usually these methods call for a larger number of iterations than gradient-based

schemes. They are especially useful when the derivatives of the error function are difficult to

compute (or if the function is not even differentiable).

First-order training algorithms use the objective function and its gradient vector. Examples of

these are gradient descent, conjugate gradient and quasi-Newton methods (Press et al

2002). They are all local optimization methods.

Second-order training algorithms make use of the objective function, its gradient vector and

its Hessian matrix. An example is the Newton's method (Press et al 2002), which is a local

optimization method. In spite of its fast rate of convergence, the complexity associated with

the computation of the Hessian often outweighs the benefits of the method.

3 Software implementation

For this activity the PUMI -NEURAL library of Neural Network procedures has been

developed in FORTRAN 95 language. This choice of language allows for seamless

integration into CIMNE’s existing analysis software while also delivering increased

performance compared with existing alternatives (e.g. Demuth & Beale 2002).

The code allows experimenting with general multilayer perceptrons with an arbritary number

of layers, different types of activation functions (which can be mixed in any combination

across the different layers) as well as error measures.

Two methods to calculate the gradients of the error function with respect to the network

parameters are provided:

 Finite differences. A very general method but with limited efficiency.

ALEF Deliverable D1.2.3-6

14

 Back propagation. Computationally efficient but requires a derivable form for the error

norm (note that this is not the same as requiring a closed form for the complete error

functional). This is no limitation in data modelling activities when the MSE norm is

used. This algorithm computed the rate of change of the activations of each layer as

a function its connections with the previous one. The information is then back

propagated from the output down to the network input in order to compute the

gradient vector. This method has a computational complexity ()O s versus 2()O s for

finite differences making, it the prime choice for software implementations.

In order to solve the minimization problem associated with training three different methods

are provided: conjugate gradient (CG), Broyden-Fletcher-Goldfarb-Shano (BFGS) and L-

BFGS (Bishop 1995). Both BFGS and L-BFGS (Limited Memory-BFGS) are quasi-Newton

methods that iteratively build an approximation to the Hessian matrix without directly

computing it.

The training sequence also requires some kind of line search minimization once a suitable

descent direction has been found. Recomputing the gradient at every step would be too

costly to be practical so instead Brent’s method is used to locate the extreme along a search

direction (Brent 1973).

4 A simple test case

In order to explore the capabilities of the method and to determine the best strategy for

application it is useful to start with a simple problem where the solution can be easily found.

In this case the discrete gust response of a a simple 2-dof bidimensional system has been

chosen. On one hand the model still retains some of the physics of a real problem and, on

the other hand, its numerical complexity is simple enough as to allow for an exhaustive

search of the parameter space. This way the accuracy of the neural network approximation

can be tested across the complete design space.

To obtain a quick estimate of the aerodynamic loads an unsteady potential model is used.

While compressibility and viscous effects are neglected, it is important to remark that the

model is not linearized (i.e. geometric changes are not assumed small and wake rollup is

accounted for). Thus, the system response is not easy to predict beforehand and constitutes

a good test of the generalization capabilities of the neural network.

The degrees of freedom of the system are the pitch angle () and the vertical displacement of

the center of gravity (). Its dynamic behaviour is characterized by its mass (m) and moment

of inertia (IG) per unit length along the span and center of mass position (xG).

ALEF Deliverable D1.2.3-6

15

x

z

G

 U

UG(x,t)

Fig. 3 - Simple 2-dof system for gust response analysis

The discrete gust profile is taken from the EASA CS-25.341 definition. Constant Equivalent

Air Speed (EAS) is assumed at any altitude (h) and air density is obtained from the ISA

atmosphere. Under these assumptions it is clear that the maximum vertical acceleration due

to the gust has the following functional dependence:

  max 1 2, , , , , , , ,G Gf m I x c EAS h H R R  (9)

where c denotes the airfoil chord and H the gust gradient distance. Parameters R1 & R2 are

defined in CS-25 and depend on the aircraft weights (MLW, MZFW & MTOW). From

dimensional analysis it follows that

 max
1 22 2

' , , , , ,G Gc I x h H
f R R

EAS mc c c c

    
 


 (10)

As for a given aircraft the values of R1 and R2 are constant, the maximum load factor due to

the gust can be characterized as a function of four parameters only. In the analysis that

follows the parameters chosen as free are

 Flight altitude (h)

 Gust gradient distance (H)

 Radius of gyration /y GR I m

 Aircraft static margin (0.25) /GSM x c  (xG is measured from the leading edge)

In order to obtain results which are at least plausible the values of the different parameters

are based on real world aircraft. Taking as reference a regional transport turboprop (ATR-72

class) the following values were chosen:

Parameter Value

h 0 ‐ 7000m

H 9 – 107m

EAS 110m/s

c 2.25m

m 700kg/m

ALEF Deliverable D1.2.3-6

16

Ry 3.9 – 5.1m

R1 0.97

R2 0.91

SM 0.05 – 0.40

Table 1 – Parameter values for 2-dof model

Taking 10 equally spaced values for each parameter within the bounds stated above a

database of 410 points is constructed. While such a comprehensive coverage is probably

unnecessary, it will allow obtaining detailed distributions of the approximation error and

choosing the best strategy to accurately model the sample data.

5 Initial test with two free parameters

Given the difficulty visualizing the error distribution when the parameter space is four-

dimensional it is interesting to first analyze the behaviour of the neural network when there

are only two free parameters.

To this effect the rotational degree of freedom has been constrained rendering the moment

of inertia and center of mass position irrelevant. Under these assumptions the maximum

(positive) load factor increase due to an upward gust is plotted in Fig. 4.

9
20

31
42

53
63

74
85

96
107

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Gust gradient length (m)Altitude (m)

Load factor increment 1.1‐1.2

1.0‐1.1

0.9‐1.0

0.8‐0.9

0.7‐0.8

0.6‐0.7

0.5‐0.6

0.4‐0.5

Fig. 4 - Load factor increase as a function of gust size and altitude

5.1 Data normalization

While a neural network can, in theory, approximate an arbitrary distribution like that shown in

Fig. 3, common practice dictates that all the variables should have comparable ranges.

ALEF Deliverable D1.2.3-6

17

When the different parameters have vastly different orders of magnitude (as is the case here)

the magnitude of the required network weights will also have a large spread. This by itself

does not degrade the quality of the approximation bust has the potential to cause problems

during the training process. Given the highly nonlinear behaviour of the network the weights

must be obtained using iterative algorithms which might become slow or even fail to

converge if the initial guess is too far off from the solution.

While it is not possible to provide a good initial guess of the correct weights, it is at least

desirable to start with the correct order of magnitude. To this effect it is common practice to

first normalize the training data so that both the inputs and outputs values have zero mean

and unit variance.

The statistics of the data shown in Fig. 4 are given by:

Parameter  (mean)  (standard deviation)
Altitude (m) 3500 2250

Gust gradient length (m) 58.0 31.3

Load factor increase 0.867 0.165

Table 2 - Parameter distribution statistics

The scaled values are computed according to:

 original
scaled

x
x





 (11)

The scaled data set is shown in Fig. 5

‐1.6
‐1.2

‐0.9
‐0.5

‐0.2
0.2

0.5
0.9

1.2
1.6

‐3.0

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

‐1.6
‐1.2

‐0.9
‐0.5

‐0.2
0.2

0.5
0.9

1.2
1.6

Normalized gust gradient length
Normalized altitude

Normalized load factor increment 1.5‐2.0

1.0‐1.5

0.5‐1.0

0.0‐0.5

‐0.5‐0.0

‐1.0‐‐0.5

‐1.5‐‐1.0

‐2.0‐‐1.5

‐2.5‐‐2.0

‐3.0‐‐2.5

ALEF Deliverable D1.2.3-6

18

Fig. 5 - Normalized system response

Once the inputs have been transformed to zero mean and unit variance it is at least possible

to find an initial set of networks weights which keeps the neurons from saturating and

therefore maintain the ability of the network to approximate the target data. Therefore the

initial weights are chosen in such a way that the net input of each neuron (in the initial state)

has also zero mean and unit variance. This is achieved (assuming random uncorrelated

network inputs) if the weights for each neuron are taken form a distribution such that (Bishop

1995)

1

0w w
d

   (12)

where d is the number of neurons in the previous layer (that is, the number of weights used

to calculate the input to the neuron being considered). Given that the minimization algorithms

find local rather that global extrema, starting with a random set of weights means that the

result of the training process is non-deterministic. That is, repeating the training several times

yields different network weights. Given the reduced computational cost of the training

process this is no serious limitation, several runs can be performed and the best result kept

(Bishop 1995).

5.2 Effect of the choice of network configuration

The choice of the number of hidden layers and neurons in the network must strike a balance

between accuracy and level of generalization. A network with a sufficiently large number of

free parameters can fit exactly an arbitrary training set. This is however no guarantee that

any real trend has been extracted from the training data. In fact, it may well happen that the

approximated results present large oscillations (overfitting) predicting unrealistic values

outside of the training points. On the other hand, if the network is not given enough flexibility

it will be impossible to fit the training data with a reasonable accuracy. There is no general

rule that suggests the best network configuration for the problem at hand so some

investigation is required.

The data of Fig. 5 is smooth and does not contain localized peaks so it is easy to

approximate. Assuming that a single hidden layer is used a number of neurons on the order

of three should be adequate (Fig. 6).

ALEF Deliverable D1.2.3-6

19

H

h

n

1

1

tanh

tanh

tanh

Fig. 6 - Example network with three neurons in the hidden layer

On the example shown in Fig. 6 two nodes labelled “1” are included. These represent virtual

units with fixed activation that allow the code to treat biases in the same manner as the

network weights. The hidden neurons have hyperbolic tangent activation functions whereas

the output layer is linear. The total number of free parameters in the example network is 13.

When the data of Fig. 5 is used to train networks with different number of neurons in the

hidden layer the error distributions of Table 3 - Distribution of approximation error Table 3 are

obtained

Hidden Neurons Average RMS‐Average Minimum Maximum

2 ‐6.95E‐06 1.26E‐02 ‐2.91E‐02 4.14E‐02

3 ‐2.05E‐05 5.97E‐03 ‐2.07E‐02 1.45E‐02

4 1.77E‐05 2.68E‐03 ‐6.79E‐03 8.47E‐03

Table 3 - Distribution of approximation error (not scaled)

Please note that, for ease of interpretation, the values in Table 3 are the actual errors in the

load factor increment, not the errors in the normalized value. In this case, as far as gust

loads are involved, a 3-neuron network seems enough to achieve a sufficient precision over

the parameter space (RMS error below 1% and maximum deviation of some 2%). Because

this simple example is very easy to visualize, it is also worth plotting the actual error values

to investigate how the error is distributed.

ALEF Deliverable D1.2.3-6

20

‐1.6
‐1.2

‐0.9
‐0.5

‐0.2
0.2

0.5
0.9

1.2
1.6

‐0.03

‐0.02

‐0.01

0.00

0.01

0.02

0.03

0.04

‐1
.6

‐1
.2

‐0
.9

‐0
.5

‐0
.2

0
.2

0
.5

0
.9

1
.2

1
.6 Normalized gust gradient length Normalized altitude

Load factor approximation error (2 hidden neurons)

0.03‐0.04

0.02‐0.03

0.01‐0.02

0.00‐0.01

‐0.01‐0.00

‐0.02‐‐0.01

‐0.03‐‐0.02

Fig. 7 - Error distribution (2 hidden neurons)

For the simplest network (Fig. 7) it is seen that error is fairly well distributed (no

overwhelmingly large peak) with the largest values found at boundaries of the parameter

space. As the number of hidden neurons is increased the distribution becomes more

complex (as expected from the larger number of free parameters in the network) but the

errors remain spread across the domain (Fig. 8 & Fig. 9).

The error plots shown do not reveal, however, if the network is overfitting the training data.

To discard this possibility the approximation error has to be measured using an input sample

different from the training data. To this end a new sample of the same parameter domain has

been built using a grid of 17x17 points instead of 10x10. Given that 17 is a prime number, all

the points thus obtained will be different from the original set (except for, obviously, the four

corners of the domain). If overfitting has taken place large increase in approximation errors

shall appear on the new sample.

ALEF Deliverable D1.2.3-6

21

‐1.6
‐1.2

‐0.9
‐0.5

‐0.2
0.2

0.5
0.9

1.2
1.6

‐0.020

‐0.015

‐0.010

‐0.005

0.000

0.005

0.010

0.015

‐1
.6

‐1
.2

‐0
.9

‐0
.5

‐0
.2

0
.2

0
.5

0
.9

1
.2

1
.6

Normalized gust gradient length Normalized altitude

Load factor approximation error (3 hidden neurons)

0.010‐0.015

0.005‐0.010

0.000‐0.005

‐0.005‐0.000

‐0.010‐‐0.005

‐0.015‐‐0.010

‐0.020‐‐0.015

Fig. 8 - Error distribution (3 hidden neurons)

‐1.6
‐1.2

‐0.9
‐0.5

‐0.2
0.2

0.5
0.9

1.2
1.6

‐0.008

‐0.006

‐0.004

‐0.002

0.000

0.002

0.004

0.006

0.008

‐1
.6

‐1
.2

‐0
.9

‐0
.5

‐0
.2

0
.2

0
.5

0
.9

1.
2

1.
6

Normalized gust gradient length Normalized altitude

Load factor approximation error (4 hidden neurons)

0.006‐0.008

0.004‐0.006

0.002‐0.004

0.000‐0.002

‐0.002‐0.000

‐0.004‐‐0.002

‐0.006‐‐0.004

‐0.008‐‐0.006

Fig. 9 - Error distribution (4 hidden neurons)

The error statistics for the 17x17 sample are given in Table 4. It shows that the performance

of the three networks remains basically the same with the new sample so the possibility of

overfitting can be discarded.

Hidden Neurons Average RMS‐Average Minimum Maximum

2 ‐6.95E‐06 1.26E‐02 ‐2.91E‐02 4.14E‐02

3 ‐2.05E‐05 5.97E‐03 ‐2.07E‐02 1.45E‐02

4 1.77E‐05 2.68E‐03 ‐6.79E‐03 8.47E‐03

ALEF Deliverable D1.2.3-6

22

Table 4 - Distribution of approximation error (17x17 sample)

So far the network configurations explored have been restricted to a single hidden layer. This

choice might seem arbitrary so it is interesting to explore the possible advantages gained

from topologies with more hidden layers.

H

h

1

1

tanh

tanh

tanh

n

1

tanh

tanh

tanh

Fig. 10 - Network with two hidden layers of three neurons each

In Fig. 10 the two-hidden-layer equivalent of Fig. 6 is shown. The number of free parameters

increases from 13 for the single-hidden-layer network to 25. Clearly, unless the

approximation delivered by the more complex network is substantially better it makes little

sense to use it. In Table 5 the performance of several networks having two hidden layers

with the same number of neurons is summarized.

Hidden Neurons Average RMS‐Average Minimum Maximum

2+2 3.09E‐05 1.00E‐02 ‐1.56E‐02 3.25E‐02

3+3 ‐2.27E‐05 2.88E‐03 ‐7.01E‐03 8.61E‐03

4+4 ‐1.28E‐05 2.77E‐03 ‐6.62E‐03 9.31E‐03

Table 5 - Approximation error with two hidden layers (not scaled)

Comparing the data of Table 5 with the values from Table 3 is becomes evident that the

benefit of adding a neuron to a single hidden layer network is far greater than the advantage

gained by including an additional hidden layer. What’s more, for the network with 4 neurons

in the first hidden layer there is no gain at all from adding a hidden layer. It follows that, for

this simple problem, networks with a single hidden layer are the obvious choice (as they can

deliver the same accuracy with fewer free parameters).

5.3 Training algorithm

Given that the quality of the approximation depends largely on the success of the training

process, the latter deserves a careful examination. In particular, it is important to learn if

ALEF Deliverable D1.2.3-6

23

there is a training method which yields better approximation. It is also important to

characterize the extent to which the non-deterministic character of the error minimization

influences the end result.

Taking as an example the single layer network with four hidden neurons, repeating the

training with the CG solver using different random initial weights each time yields the results

of Fig. 11 are obtained. The network with the highest number of free parameters is chosen

because it is expected to show a larger scatter of the results.

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1 10 100 1000 10000

Training epochs

Sum‐of‐squares error

Fig. 11 - Convergence history for several training runs with the same dataset

The non-deterministic result of the training is clearly demonstrated in Fig. 11. However, all of

the cases shown, save one, converge to a very similar error level. This means incorrect initial

guesses can be easily eliminated by training the network several times and discarding the

worst results. It is worth mentioning that the frequency with which a result as anomalous as

that corresponding to the brown curve in Fig. 11 appears is much lower than what the chart

might suggest. In fact, the number of runs that were needed to find such a bad convergence

behaviour was well over 20. Not all the runs have been plotted in order to reduce clutter in

the chart.

The effect of the nonlinear solver choice also deserves some attention. To isolate the effect

of the solver several runs with the same set of initial random weights have been performed.

The results are summarized in Fig. 12.

ALEF Deliverable D1.2.3-6

24

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1 10 100 1000 10000

Training epochs

Sum‐of‐squares error

CG

L‐BFGS

BFGS

Fig. 12 - Effect of solver choice on training

The best rate of convergence is achieved by the BFGS quasi-Newton solver which reaches

the minimum residual in 700 cycles approximately. The CG and the L-BFGS solver need, on

the other hand, close to 5000 main iterations (excluding line search steps) to reduce the error

to the same level. Given that all the methods reach the same level of approximation the

choice will be based purely on efficiency considerations. In terms of CPU time per iteration

the BFGS algorithm is roughly twice as expensive as the other two so in the end it delivers

the solution in about one third of the time. Using current commodity hardware (Intel Core i3

M350) CPU time for the BFGS method is less than one second. CG & L-BFGS contain

additional parameters that can be tuned in order to improve performance (e.g. the interval at

which the search directions are reset). While this fine-tuning could yield slightly increased

performance, it is not expected to change the overall result in a significant way.

When applicable, BFGS is usually chosen over CG or L-BFGS due to superior performance.

It is worth mentioning, however, that the BFGS method does not scale well to very complex

networks. The resources needed to store and update the approximate Hessian matrix grow

rapidly with the number of free parameters so at some point a switch to CG of L-BFGS is

required (Bishop 1995). Networks of this complexity fall however outside the scope of this

document.

5.4 Number of samples required for training

Up to this point a large (100 points) sample has been used for training which delivers a

comprehensive mapping of the system response. However, for the neural network to be

ALEF Deliverable D1.2.3-6

25

really useful it must yield an accurate prediction using a small sample size. For a single

hidden layer perceptron, the network with 2 hidden neurons has 9 free parameters, while

using 3 neurons requires setting 13 weight values (this figure includes the biases). The

number of training points should be larger than the number of free parameters, otherwise the

problem is underdetermined. In order to have a well-posed problem a reduced data set

containing 4 equally-spaced points along each axis has been constructed (note that only the

corner points coincide with the 10x10 sample). This has been used to train the networks

yielding a final error as shown in Table 6.

Hidden Neurons Sum‐of‐squares error

2 4.05E‐02

3 2.23E‐04

Table 6 – Error at the end of training with 4x4 sample set

The set of weights obtained from the training with 4x4 points was then used to approximate

the 10x10 sample in order to determine the errors.

Hidden Neurons Average RMS‐Average Minimum Maximum

2 ‐3.67E‐02 8.69E‐02 ‐2.09E‐01 4.86E‐02

3 ‐9.90E‐03 2.61E‐02 ‐9.02E‐02 2.52E‐02

Table 7 - Approximation error for 10x10 set after training with 4x4 samples (not scaled)

Comparison of Table 7 with Table 3 reveals an important increase in the approximation error.

For the 3-neuron network the maximum deviation is now 9% while the RMS-average error is

3% approximately. While this loss of accuracy might not be acceptable depending on the

application, the information is still valuable if it correctly points to the critical combination of

parameters. Fig. 13 shows the load factor increment approximation over the complete

domain recovered from the 4 by 4 point sample. While not identical to Fig. 4, the shape of the

distribution is well captured and the position of the maximum load is predicted accurately.

Table 8 lists the peak load factor and its location for both the complete 10x10 set and the

recovered data using 3 hidden neurons and a 4x4 sample.

Sample Maximum load factor Altitude (m) Gust gradient length (m)

10x10 1.16 0 53

Interpolated from 4x4 1.19 0 53

Table 8 – Maximum load factor obtained with a 10x10 set and interpolated from a 4x4 sample

From Table 8 it is apparent that the approximation delivered by the network is very good in

this case. Not only the position of the peak load factor has been correctly identified, the value

of the critical load factor has been predicted with less than 3% error. Thus, it is sensible to

expect that neural networks might be useful when a simulation campaign is undertaken in

order to determine critical load cases. As computations progress and enough sample points

ALEF Deliverable D1.2.3-6

26

become available, a network can be trained to provide an approximation to the system

response across the complete parameter space. This has two potential advantages:

1. It provides a general picture of the response surface giving insight on the underlying

physics.

2. The approximate values (which can be computed at almost zero cost) can be used to

explore the parameter domain in a very short time in order to estimate the location of

the critical load cases. This information can then be used to guide the collection of

new sample points, reducing the time needed to identify the load extremes.

9
20

31
42

53
63

74
85

96
107

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Gust gradient length (m)Altitude (m)

Load factor increment (from 4x4 sample ‐ 3 hidden neurons) 1.1‐1.2

1.0‐1.1

0.9‐1.0

0.8‐0.9

0.7‐0.8

0.6‐0.7

0.5‐0.6

0.4‐0.5

Fig. 13 - Approximate gust load factor recovered from a 4x4 sample

6 Test with four free parameters

Once the general behaviour of the approximation has been examined, the same technique

can be applied to a more complex case. Using the example of section 4 the effect of the so

called “curse of dimensionality” becomes evident. While a comprehensive coverage of the

parameter space required just 100 sample points for the single-dof system, the same

resolution needs 10000 samples when the rotational degree of freedom is active. This

remains feasible because a very simple model has been chosen, but would be prohibitive in

the case of a high fidelity model. It is therefore a case where neural networks might provide

an important advantage with respect to “blind” computations. As it is not possible to plot a

ALEF Deliverable D1.2.3-6

27

scalar function (the load factor) defined in a four-dimensional space, from this point on the

analysis shall rely on the statistical analysis of the output data.

6.1 Choice of a suitable network configuration

When only two free parameters where taken into account, a network with a single hidden

layer of three neurons delivered an acceptable performance. Given the increased complexity

of the problem now under consideration a higher number of hidden neurons might be

needed. Tests similar to those of section 5.2 haven been performed to determine the

optimum network configuration. To follow a process more representative of what a real-life

workflow would be, the networks will be trained using only a small subset of the 10000 data

points available. To assess the effect of the subsample size two different datasets have been

used:

1. Set of 81 samples with three equally spaced points for each free parameter

2. Set of 256 samples, using four points along each direction

While these number of data points might seem large, they are comparable to the number of

evaluations a nonlinear solver would require in order to locate the critical condition. A

common choice for minimizing/maximizing functions whose gradient cannot be computed is

Powell’s method (1964). Each step of the requires in this case line searches along four

independent search directions plus an additional search along the newly computed search

direction. In total, five line searches are needed per iteration, each of which requires several

function evaluations. Assuming five evaluations per search yields a total over 20 evaluations

per iteration. Thus, the sample sizes chosen are not unreasonable. It must be stresses that

minimization algorithms can get “stuck” easily in local extrema failing to capture the critical

condition. Thus, some additional exploration of the complete parameter space is still required

in order to discard this eventuality. If the neural network is able to predict the position of the

critical load condition while delivering a reasonably accurate picture of the system response

over the parameter space, it would prove a useful tool for simulation campaign monitoring

Networks with 2, 3 and 4 neurons in the hidden layer have been trained using the reduced

datasets and then the error approximating the complete dataset has been evaluated. Results

are shown in Table 9 & Table 10.

Hidden Neurons Average RMS‐Average Minimum Maximum

2 ‐1.36E‐02 4.62E‐02 ‐1.66E‐01 6.87E‐02

3 ‐1.32E‐02 4.93E‐02 ‐1.28E‐01 6.90E‐02

4 ‐2.60E‐04 1.37E‐02 ‐5.58E‐02 3.73E‐02

Table 9 - Approximation error after training with 81 samples (not scaled)

ALEF Deliverable D1.2.3-6

28

Hidden Neurons Average RMS‐Average Minimum Maximum

2 ‐7.96E‐03 3.02E‐02 ‐1.32E‐01 8.38E‐02

3 9.68E‐03 2.26E‐02 ‐5.21E‐02 8.29E‐02

4 ‐7.59E‐03 2.40E‐02 ‐8.42E‐02 3.49E‐02

Table 10 - Approximation error after training with 256 samples (not scaled)

The data in Table 9 & Table 10 shows that the approximation accuracy for all the networks is

similar with the 4 neuron network delivering a slightly better accuracy (especially for the

smaller training set). Keep in mind that small differences are not significant due to the non-

deterministic character of the training process. Re-training a network with different initial

weights would change the results. In fact, to mitigate the uncertainty associated with the

choice of initial weights, each network has been trained five times using the same data

sample but with different random initial weights each time. The results shown in the tables

belong to the best set of weights (those yielding the minimum MSE for the training data). It

was found that the likehood of finding a “bad” initial weight combination was far greater than

in the case of two free-parameters. Therefore, the extra training runs were considered

essential to achieve good accuracy. Given that the CPU time for each training run is very

short (around one second) this does not increase the cost in any significant way.

It is interesting to note that while the number of free parameters has doubled with respect to

the test of section 5, the networks deliver similar performance without the need for increased

internal complexity (number of hidden neurons). This is a demonstration of the great flexibility

of multilayer perceptrons in the role of interpolators. Using the 81-point sample and the

perceptron with 4 hidden neurons an average accuracy of 2% over the complete domain is

achieved with peak errors of 5%. This is quite acceptable as a first guess of the critical loads

but, more importantly, the critical parameter combination is well predicted. Table 11

compares the extreme load factor obtained from the complete sample with the predictions of

the different networks. The shaded cells indicate the peak load for each data set. All the

networks attain their maximum load factor in the neighbourhood of the real critical condition1.

Training with 81 samples Training with 256 samples

SM RY(m) h(m) H(m)
Full

dataset
2

neuron
3

neurons
4

neurons
2

neuron
3

neurons
4

neurons

0.05 5.1 0 41.7 1.138 1.020 1.066 1.099 1.099 1.146 1.138

0.05 5.1 0 52.6 1.144 1.091 1.121 1.127 1.159 1.144 1.164

0.05 5.1 0 63.4 1.133 1.140 1.152 1.140 1.173 1.136 1.149

1 Please note that the gust gradient distance step in the complete dataset (10000 samples) is 10.9m.

Therefore, there are no additional data points between those shown.

ALEF Deliverable D1.2.3-6

29

0.05 5.1 0 74.3 1.113 1.159 1.157 1.135 1.154 1.122 1.111

Table 11 - Critical parameter combinations and peak load factor

Table 11 shows that the peak load factor is predicted in every case with better than 2%

accuracy and it always takes place in the immediate neighbourhood of the real critical

parameter combination. The neural networks therefore do a good job of mapping the

complete parameter envelope while guiding the search for critical load cases. What’s more,

they do so at a negligible cost. In fact the CPU time needed to recover the 10000

approximate load cases is less than the cost of computing of a single data point (even with

the simple model chosen).

6.2 Reducing the cost of training

Up to this point the samples used to train the network came from the nodes of a uniformly-

spaced regular grid in parameter space. This is far from optimal from the sampling point of

view. A very small number of values of each parameter can be sampled if the sample size is

to remain acceptable. The question arises then about the effect of a more refined sampling

strategy on the cost of training. To test this effect additional training sets have been prepared

using the latin hypercube sampling technique (Iman 1981). This method generates a sample

of size n using combinations of n different values for each free parameter. Thus, it explores a

larger set of values for each parameter while keeping the total amount of data low. The

parameter combinations are chosen at random with the restriction that any particular value of

each parameter can appear only once in the complete data set. As a result, the size of the

sample set is a function only of the number of values of each parameter, but does not

depend on the problem dimensionality. Latin hypercube sampling is a purely stochastic

sampling technique, there is no guarantee of uniformity in the sample. While multilayer

perceptrons are very efficient interpolators, they are not reliable extrapolators. It is therefore

convenient to include the extreme values of the parameter space in the training sample to

avoid large errors. To this end an additional set of 42 16 points has been included which

contains the corners of the hypercube (all the possible combinations of maximum and

minimum values of each parameter). Three latin hypercube samples have been created

using 20, 30 and 40 equally-spaced values for each parameters; when supplemented with

the corner points the modified datasets contain respectively 36, 46 and 56 points. Training

the four-hidden-neuron network with these samples and then approximating the complete

dataset (10000 points) yields the errors shown in Table 12.

Sample size Average RMS‐Average Minimum Maximum

36 ‐8.26E‐04 1.12E‐02 ‐2.99E‐02 5.06E‐02

46 7.11E‐05 1.30E‐02 ‐3.79E‐02 4.79E‐02

ALEF Deliverable D1.2.3-6

30

56 1.28E‐03 9.63E‐03 ‐4.53E‐02 2.81E‐02

Table 12 - Approximation error for training with modified latin hypercube sampling (not scaled)

Comparison of Table 12 against Table 10 shows that the results of training with the modified

latin hypercube sample are generally better than those obtained with the uniform 256-point

sample. Even for the smallest dataset (36 points) the results fare well against those of table

Table 10. A reduction by a factor of 7 in sample size has been achieved without degrading

accuracy. It is important to verify also that the critical parameter combination is also well

predicted when using the reduced training sample. The results are summarized in Table 13.

Modified latin hypercube sample size

SM RY(m) h(m) H(m) Full dataset 36 46 56

0.05 5.1 0 41.7 1.138 1.131 1.156 1.128

0.05 5.1 0 52.6 1.144 1.131 1.162 1.134

0.05 5.1 0 63.4 1.133 1.117 1.151 1.127

0.05 5.1 0 74.3 1.113 1.097 1.129 1.112

Table 13 - Critical parameter combinations and peak load factor

Once again, the neural network is able to predict accurately the critical parameter

combination as well as the peak load factor (with less than 1% error) despite the vastly

reduced sample size. We can therefore conclude that the modified latin hypercube sampling

strategy is more efficient than “brute force” uniform sampling. Note that the number of

evaluations required to build the smallest sample set (36) is comparable to the number of

evaluations that a maximization algorithm would need in order to find a rough estimate of the

critical load. With the same computational effort a neural network delivers not only the peak

load, but also an accurate map of the system response over the complete parameter space.

7 Use of neural networks for data fusion

 The interpolating capabilities of the multilayer perceptron can also be used to combine multi-

fidelity results into a coherent dataset. Besides interpolating the system response, the neural

network can be used to build a map of corrections to a low-order solution from a limited

number of higher fidelity results.

To test this application a reduced fidelity dataset has been built by using a coarse time and

space discretization. The settings for both the low-fidelity and high-fidelity samples are given

in Table 14. The coarse discretization has been purposefully chosen in order to cause a

noticeable loss of accuracy.

 Panels along airfoil /U t c
Low‐fidelity 12 0.1

ALEF Deliverable D1.2.3-6

31

High‐fidelity 30 0.05

Table 14 – Setting for low-fidelity and high-fidelity models

Two datasets were built next, a small high-fidelity sample of 26 points and a large low-order

database of 166 points. This is meant to be representative of a real-life situation, where high-

fidelity data is scarce due to cost limitations.

The 26-point sample contains results from both models in order to map the discretization

error across the domain. The sample is taken using the modified method (16 corner points

plus 10 latin hypercube samples). The discretization error (difference between the load factor

predicted by the high-order model and the low-fidelity solution) statistics for the 26-point

sample are given in Table 15.

Average RMS‐Average Minimum Maximum

8.06E‐02 8.83E‐02 1.16E‐02 1.39E‐01

Table 15 – Discretization error for 26-point modified latin hypercuble sample

The low-order results are clearly biased, consistently underestimating the load factor

increase due to the gust.

A neural network with three hidden neurons (the number of samples is not adequate for a

more complex network) has been trained with the 26-point sample in order to obtain a

representation of the discretization error across the complete parameter domain. This will

serve to correct the low order approximation at a later stage.

Using the large 166-point low order dataset (obtained with 16 corner points and 150 latin

hypercube samples) a four hidden-neuron network has been trained. It provides a low-order

approximation over the complete parameter envelope. When compared against the full

dataset (10000 high-order points) the errors are distributed according to Table 16.

Average RMS‐Average Minimum Maximum

8.89E‐02 9.30E‐02 2.82E‐03 1.59E‐01

Table 16 – Error distribution for network trained with 166 low-order samples

The errors in Table 16 are slightly larger than those of Table 15 because they contain an

additional term due to interpolation error. However, the discretization error seems the

dominant component.

Finally, the low order approximation is corrected using data from the three-neuron network

trained with the discretization error sample (26 points). The error distribution for the fused

data is given in Table 17.

Average RMS‐Average Minimum Maximum

‐1.10E‐04 7.08E‐03 ‐1.78E‐02 3.75E‐02

ALEF Deliverable D1.2.3-6

32

Table 17 – Error distribution for low-order approximation (obtained from 166-sample set)

corrected with error map interpolated from 26-point sample

The fused data is, as expected, more accurate than the approximation obtained using only

low-order data (Table 16). More important, the response surface obtained with a small

number of high-order results and a large low-order sample is a better approximation than

what is possible using only an intermediate number of high-fidelity samples (see Table 12).

Therefore, data fusion provides a synergistic approach which increases accuracy through

more extensive coverage of the parameter space (large low-order sample) while reducing the

total cost of the simulation campaign (because the number of high-fidelity computations is

kept to a minimum).

It is also important to check the accuracy predicting the peak load factor and the critical

parameter combination. The results are given in Table 18.

Training sample

SM RY(m) h(m) H(m) Full dataset 166 low‐order 166 low‐order + 26 high‐order

0.05 5.1 0 52.6 1.144 1.012 1.160

0.05 5.1 0 63.4 1.133 1.013 1.148

Table 18 - Critical parameter combinations and peak load factor

Once again, the predictions of the fused dataset are superior to those obtained from low-

order-only data and high-order-only modelling with an intermediate-size dataset (Table 13).

The benefits of the approach are thus evident.

8 Test with 3D model

Neural networks are purely mathematical tools, they can provide an approximation to a

dataset irrespective of the underlying physics. Therefore, the results for the 2D model studied

in the previous sections should be extensible to 3D problems. While this seems reasonable it

deserves verification. To this effect the techniques already described shall be applied to the

gust response of a 3D aircraft model. The load factor increments have been calculated using

an unsteady doublet-lattice solver and a simple model of the ATR-72 geometry. As only load

factor increments due to the gust are sought, the effects of camber and thickness of the

lifting surfaces have been neglected, taking only their planform into account. Fig. 14 shows

the general dimensions of the aircraft. Some relevant mass and aerodynamic data are given

in Table 19 and the variation ranges for the free parameters are listed in Table 20.

ALEF Deliverable D1.2.3-6

33

Fig. 14 - ATR-72 three-view schematic. Source: www.atraircraft.com

Mass 19000kg

R1 0.97

R2 0.91

Wing area 61m2

Mean aerodynamic chord (MAC) 2,29m

Wing span 27,1m

Fuselage length 27,2m

Neutral point position (from nose) 12,9m

HTP surface 11,8m2

Table 19 - Summary of properties of 3D model

Radius of gyration Ry 4,5 ‐ 5,5m

Gust gradient distance (per CS‐25) 9 – 107m

Static margin (%MAC) 5 ‐ 40

Altitude 0 ‐ 7000m

Table 20 – Ranges of free parameters for 3D model

Following a strategy similar to section 6.2 a small sample of the response surface will be

constructed using a combination of corner points and latin hypercube sampling. It is always

reasonable to include the extremes of the parameter space (corner points) if a coverage of

the complete domain is sought. Besides the 24 corner points, 10 additional latin hypercube

samples have been taken. The cost of the complete dataset is thus of the same order as the

cost of generating the basic corner sample.

Using the 26-point sample (16 corner + 10 latin hypercube) a network with three

hidden.neurons has been trained. Next, the trained network has been used to contruct a 104

ALEF Deliverable D1.2.3-6

34

point map of the complete parameter envelope using uniform point spacing along the four

axes. The predicted critical condition along with the actual value (computed a posterior) of

the load factor is given in Table 21.

SM RY(m) h(m) H(m) Predicted Value Computed Value

0.244 5.5 0 107 1.23 1.01

Table 21 - Predicted vs. actual load factor

The predicted value is off by more than 20% so the approximation is obviously of low

accuracy. This may be due to the latin hypercube sample being chosen completely at

random with the possibility of irregular coverage of the parameter space. In order to check

whether the critical parameter combination is correctly predicted, computations were

performed for five adjacent points, with the results shown in Table 22.

SM RY(m) h(m) H(m) Computed Values

0.24 5.50 0.00 96.11 1.04

0.24 5.50 777.78 107.00 0.97

0.24 5.39 0.00 107.00 1.01

0.21 5.50 0.00 107.00 1.04

0.28 5.50 0.00 107.00 0.98

Table 22 - Computed values near predicted extremum

Looking at the values of Table 22 there is no evidence for a local extremum so in this case

the prediction of the neural network was completely wrong. However, the results from the

new computations can be used to refine the training of the network in order to increase the

accuracy of the predictions. Training with 32 points (26 original + 6 new) yields an improved

prediction for the critical load factor (see Table 23)

SM RY(m) h(m) H(m) Computed Value Predicted Value

0.05 5.50 0.00 64.44 1.19 1.26

0.05 5.50 0.00 74.33 1.19 1.26

0.05 5.50 0.00 85.22 1.18 1.25

Table 23 - Predicted vs. actual load factor after re-training

Table 23 shows the critical condition as well as the neighbouring points in the matrix. This

time the perceptron has been able to capture the correct parameter combination while

predicting the maximum load factor with increased accuracy (less than 6% error). We see

that online training can improve the predictions of the network as more data becomes

available. This offers the potential to adjust the simulation campaign as it proceeds in order

to identify the critical load cases with a minimum number of computations. At the same time

a global representation of the parameter envelope is constructed which gives further insight

ALEF Deliverable D1.2.3-6

35

into the underlying phenomena than a simple maximization strategy (which tends to provide

a very uneven coverage of the parameter space) .

9 Conclusions

The application of neural networks to a load determination problem where the dimensionality

of the parameter space makes comprehensive searches inefficient has been explored. It has

been shown that using a relatively small number of samples an accurate representation of

the complete parameter space can be obtained. Even in those cases where the accuracy of

the predicted peak load was reduced due to insufficient sample size a reasonable

approximation to the critical parameter combination was obtained. This has the potential to

reduce the number of computations needed in order to determine the critical load cases. At

the same time the neural network provides a global description spanning the complete

design space, something that a maximization solver is not capable of.

The cost of training the network (once the samples are available) and recovering a large set

of approximate values is negligible. Therefore the neural network can be included into

existing process workflows at virtually no extra cost. It has the potential to improve the quality

of the data sets available (by filling gaps).

It was found that the outcome of the training step is unpredictable. The training algorithm can

become trapped into local minima and deliver reduced accuracy. This was overcome

repeating the training process several times for each sample and retaining only the best set

of weights. While this ad hoc solution is functional given the reduced cost of training, the

matter deserves further study.

It has also been demonstrated that multilayer perceptrons can be effectively used for data

fusion tasks. Two sets of different fidelity results were combined yielding a better

approximation than what each dataset was capable of alone. This has the potential to deliver

a highly accurate representation of the complete parameter envelope while maintaining the

total cost of the simulation campaign within acceptable limits.

Finally, it has been shown that the method is applicable to different levels of approximation

(in this case 2D & 3D computations). The fact that neural networks provide a “black box”

description of the system response not related to the underlying physics (they can be

interpreted as representations of the probability density function of the training data) makes

them very general tools applicable to a vast array of processes.

ALEF Deliverable D1.2.3-6

36

10 References

Bishop, C., 1995. Neural Networks for Pattern Recognition. Oxford University Press.

Brent, R.P., 1973. Algorithms form Minimization without Derivatives. Prentice-Hall

Demuth H and Beale M, 2002. Neural Network Toolbox for Use with MATLAB. User’s Guide.

The MathWorks.

Haykin, S., 1994. Neural Networks: A Comprehensive Foundation. Prentice Hall.

Hornik, K. et al., 1989. Multilayer feedforward networks are universal approximators. In

Neural Networks, Vol. 2, No. 5, pp. 359-366.

Iman, R.L. et al., 1981. An approach to sensitivity analysis of computer models, Part 1.

Introduction, input variable selection and preliminary variable assessment. In Journal of

Quality Technology, Vol. 13, No. 3, pp. 174–183.

Lopez, R. and Oñate, E., 2006. A Variational Formulation for the Multilayer Perceptron.

Proceedings of the 16th International Conference on Artificial Neural Networks. Athens,

Greece, Vol 1, pp. 159-168.

Powell, M.J.D., 1964. An efficient algorithm for finding the minimum of a function of several

variables without calculating derivatives. In Computer Journal, Vol. 7, pp 155-162.

Press, W.H. et al., 2002. Numerical Recipes in C++: The Art of Scientific Computing.

Cambridge University Press.

Sima, J. and Orponen, P., 2003. General purpose computation with neural networks: a

survey of complexity theoretic results. In Neural Computation, Vol. 15, pp. 2727-2778.

Wolpert, D.H. and MacReady, W.G., 1997. No free lunch theorems for optimization. In IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 67-82.

