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Abstract

In recent years, Domain Decomposition Methods (DDM) have emerged
as advanced solvers in several areas of computational mechanics. In
particular, during the last decade, in the area of solid and structural
mechanics, they reached a considerable level of advancement and were
shown to be more efficient than popular solvers, like advanced sparse
direct solvers. The present paper explores the extent of application of the
general concept of force-displacement duality in DDM. A general
framework for the definition of DDM is set up and it is shown that if the
definition of a DDM meets some requirements, then it can lead to one
primal and one dual formulation. A number of DDM are included in this
setting and its particular implications for each one of them is researched.



1 Introduction — Historical background

In the last decade Domain Decomposition Methods (DDM) have progressed
significantly leading to a large number of methods and techniques, capable of giving
solution to various problems of computational mechanics. In the field of solid and
structural mechanics, in particular, this fruitful period has led to the extensive parallel
development of two large families of methods: (a) the Finite Element Tearing and
Interconnecting (FETI) methods and (b) the Balancing Domain Decomposition (BDD)
methods. Both introduced at the beginning of the 90s [1,2], these two categories of
methods today include a large number of variants. Even though these two categories had
many differences, it was gradually becoming apparent that there should exist links between
them. Thus, in the present decade two studies [3,4] have attempted to determine the
relations between the two methods.

In particular, the study [4] and its extention [5] explained a process used to transform a
dual method into a primal one. This process was applied to basic FETI variants, like FETI-
1, FETI-2 and FETI-DP, thus creating the primal methods P-FETI1, P-FETI2 and P-
FETIDP, respectively. Studing the relations between the original FETI and P-FETI
variants, it was observed in numerical experiments that FETI-1 and P-FETI1 had
practically the same eigenspectrum. This observation was further stengthened by numerical
experiments that showed similar convergence properties for the original methods and their
primal offspring. These findings thus led reasonably to the conjecture that these two
variants and possible other pairs of “compatible” dual and primal methods have practically
the same cigenvalues (“practically” here meaning the exclusion of eigenvalues that would
have small importance to the convergence of the methods). The equality of the eigenvalues
was then proved in [6] for the methods FETI-DP and P-FETIDP (the later also known as
BDDC from the work of [7]) and this proof was further simplified in [8]. Recently, another
study [9] extended the concept of the relations between primal and dual methods to the
case of the lumped preconditioned methods.

In the present paper, we attempt to encompase parts of the above knowledge in a general
framework. We start by setting up a general description for the definition of DDM. This
description starts by defining an operator that estimates globally subdomain displacements,
from subdomain forces. It is then shown that if this operator meets one condition, it can
define one primal and one dual method (section 2). It is also shown that if the initial
operator meets another condition, then the primal and dual methods will have practically
the same eigenspectrum (section 3). Defining the displacement estimate operator for
several DDM, we show that they all satisfy the two conditions and thus inherit a number of
properties proven in previous studies (section 4). Finally, we discuss the mechanical
interpretation of the two employed conditions (section 5) and provide numerical evidence
(section 6) in order to verify the conclusions (section 7) of this study.

2 General description of primal and dual DDM



The problem that we are interested in solving can be written as'
T
L'KLu, = f, (1

where

K= 2)
K(",\-)

is the block-diagonal assemblage of the stiffness matrices K of the subdomains
s = L., n,_ and L is a Boolean matrix that maps the global displacements %, and forces

f, to the corresponding subdomain variables.

If the internal d.o.f. of the subdomains are condensed eq. (1) becomes

n

L,SLu, = f, )

where fo = fo ~ LKL K S, )

In eqgs. (3) and (4), subscripts » and i denote restriction to interface and internal d.o.f.
of the subdomains, respectively, while S=K, —K,K,'K, is the block-diagonal
assemblage of the subdomain Schur complements.

Assume that given some subdomain forces, an estimate for the subdomain
displacements is given by

u=K'f (5)

or u,=S*f, (6)
20 O

where u=| : and f=| : 7
N £

are the vector block assemblage of the displacements and forces of the subdomains,
respectively. Based on eq. (5), a general description for primal and dual DDM will be
defined in the following two subsections.

2.1 Primal methods

Based on egs. (5) and (6), we define a primal method as: apply the PCG method for
solving the system

L'KLu, = f, ®
or LSLu, = 1. (9)

' The present paper follows the notation used in recent papers [4,9,etc] with the main
difference that superscripts s are removed from block-diagonal matrices
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with preconditioners

(a) For eq. (8) LKL, (10)

(b) For eq. (9) LS, (11)

In the above equations, L, is a scaled variant of L, satistying equation LI,L =1 (see [4]

and references cited there). Furthermore, for the method to be valid it is required that K*
(or S7) is such that the preconditioner is positive definite.

2.2 Dual methods

In order to define a dual method, based on the displacement estimates of eqs. (5) and (6)

, we first need some intermediate analysis. We start assuming that K* (or S*) satisfy the
condition

R*KL=L (or S*SL, =1L, (12)

We can then prove the following theorems:

Lemma 1. If K* (or S*) satisfies condition (12), then if vector A, satisfies relation

Lf,-B"A=KLu, (or L,f —BA=SLu, ) (13)
where B is a mapping matrix such that null(B) = range(L), then we have
BR*(L,f,~B"4)=0 (or BS'(L,7, ~B/4)=0) (19)

Proof. Eq. (14) follows from eq. (13), by multiplication by BK* (or Bb5'+) from the left,
while taking into account eq. (12).

First, we note that eq. (13) is an equivalent expression of eq. (1) (or (3) ). Therefore, eq.
(1) (or (3) ) has actually been transformed into eq. (14). However, given that in general eq.
(14) has infinite solutions, in order to consider it equivalent to eq. (1) (or (3) ), we also
need to prove the following:

Lemma 2. If K* (or S*) satisfies condition (12) and 2, is a solution of eqs. (14) then the
solution of eq. (1) (or (3) ) is

U, = L]I;IZJr (Lpfg - BI/’{Z) (07‘ ug,, = L-[I;b'§+ (Lphﬁgb B B[-’r/ll) (15)

Proof. Substitute eq. (15) into eq. (1) (or (3) ), while taking into account eq. (12), (14) and
the fact that dueto L,L =1, LL, is the identity in null(B).

Therefore, based on egs. (5) and (6) and using Lemmas 1 and 2, we define a dual
method as: apply the PCG method for solving the system



BK*B'"A=BK'L,f, (16)

or B,S*BlA=BS'L, |, (17)
with preconditioners

(a) For eq. (16) (lumped prec.) B,KB, (18)
(b) For eq.(17) (Dirichlet prec.) B, SB, (19)

where B, is a scaled variant of B (see [4] and references cited there). Once eq. (16) (or
(17) ) is solved to the desired precision, the displacements are obtained from eq. (15). For
the method to be valid, it is required that K* (or S*) is such that matrix BK*B" (or
BbS' *B, ) is positive semi-definite. It is also worth noting that in all DDM that we treat later

in this paper, K* and S* are chosen as 1o satisfy relation
S*=N,K*N;] (20)

where matrix N, is a Boolean matrix that extracts subdomain interface d.o.f. from full

subdomain d.o.f. vectors, like in equation #, = N,u . Due to eq. (20), the left-hand side of

eqs. (16) and (17) is the same.

In later sections of the paper, it will be shown many BDD, FETT and primal alternative
methods belong in this framework, using the appropriate definitions for the displacement
estimate operators K* and S*.

3 Relations between the eigenspectrums of the primal and dual formulations

As it was mentioned in the introduction, in [6] it was shown that the FETI-DP and
BDDC methods® have the same non-zero eigenvalues, while this proof was further
simplified in [8]. In the present section, it will be proven that the primal and dual methods
that have been introduced in a general setting in section 2 will have the same non-zero and
non-unit eigenvalues, provided that the estimate K° (or S§*) is chosen so as to satisfy
condition (12) and the following

K*KK*=K* (or S§'8§*=S") 1)

2 The BDDC method was introduced in [7] and it can be shown identical to the PEETI-DP
with any vertex, edge or face coarse constraints [10]. In fact, this method was introduced
independently in three studies: (a) as a preconditioner based on constrained energy
minimization in [7] and later called BDDC, (b) as the primal derivative of the FETI-DP
with only vertex constraints [11] or vertex, edge and face constraints [12] in [4] (In fact as
primal alternative of the FETI-DP it was first mentioned and tested in an earlier publication
[13]) and (c) as a preconditioner inspired from FETI-DP in [14]. In fact, even though the
work in [14] is apparently restricted to vertex constraints and homogeneous scaling, that
paper probably derived this method in the simplest and most intuitive way.
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In particular, if we denote by 4, and ;1;1 the matrix operator and preconditioner of the

primal method and by 4, and ;15' the respective operators of the dual method, then this
eigenspectrum relations hold (as it will be shown) in the two cases: ’
1. No internal d.o.f. condensation case: 4, is chosen as the coefficient matrix of system

(8)and A;' aseq. (10), while 4, as the coefficient matrix of system (16) and A;' as

eq. (18)
Internal d.o.f condensation case: A4, is chosen as the coefficient matrix of system (9)

o

and 4;' as eq. (11), while 4, as the coefficient matrix of system (17) and 4;' as eq.
(19).
In what follows, we will refer only to the case where internal d.o.f. of the subdomains are
condensed. It is quite simple to show that the eigenvalue equivalence proof and all
remaining issues treated in this paper also hold in the case where internal d.o.f. are not
condensed”.
The eigenvalue equivalence proof follows ideas from [6]. First, we note that the
mapping matrices L, and B, satisfy the (some of the most complete studies on these

equations can be found in [3,6]):

range(L,)=null(B,) and range(L,)=null(B,) (22)
(L, L;)'=L, L, and (B/B,)'=B/B, (23)
LiL,=I and L, L+BB, =1 (24)

We also need to prove the following relations:

Lemma 3. If conditions (12) and (21) hold, then we have:

L §*SL =1 (25)
B,5*SL, =0 (26)
S*B,B,SS"=8"BB, (27)
§*B/B,SS'L, =0 (28)
B,S'SB, is a projection (29)

Proof. Eqs. (25) and (26) follow directly from eq. (12) and eqs. (22) and (24). In order to
prove (27), it suffices to use the two assumptions of this lemma, to obtain

3 All equations that follow still hold if one substitutes all Schur complement matrices S
with the full stiffness matrices K and all remaining variables that refer to interface d.o.f.
with their alternatives that refer to all d.o.f.
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$'ByB,SS" =8 (1-L,1,)SS" =§°S§* - §*L, 1SS
o+ o+ o+ R (30)
=8 -8, L,=8(I-1,1;)=5BB

Py

In addition, eq. (28) follows from (27) by multiplication by L, from the right. Finally, to
obtain (29), we multiply (27) by B, S from the left and by B, from the right and the proof
follows by noticing that By B, B, = (I~ L, L,)B; = B; .

In order to prove that primal and dual methods have the same non-zero and non-unit
eigenvalues, it suffices to prove the following theorem

Theorem 4. If relations (12) and (21) hold, then we have:

T,4;'4, = A} 4,T, (31)

T, 454, = 4;'4,T,, (32)

Al Ay =Au, , up #0, A, #1 = Tu, #0 (33)
Al A, =Au, , uy 20, A, 20,1 = Tu, #0 (34)

where T, = 43 4,B SL, and T, = L' S*B;.

Proof. In order to prove (31) we develop its left-hand side using relation (24)
T,4,'4, = 4, 4,8, SL,L) S*L, L, SL,
=A4;'4,B,8(1- B}, B,)S* (1-B/B, )SL, (35)
= 4,4,B,5(8"(1- BB, )SL,~ B} B,S"SL, )+ 4;'4,B) SB, B,S" B} B, SI,

In the right-hand side, the 2™ term of the parenthesis vanishes due to eq. (26), while the last
term of the right-hand side equals JIBIADTP . So, eq. (35) becomes

T,4;'4, = 4;'B,S*B, B, SS*L, L;SL, + A4, 4,T, (36)

In the later, note that the 1% term of the right-hand side vanishes due to eq. (28), which
gives us (31).
In order to prove (32), we follow a similar course

TyAy 4, =L, S'B"B, SB, B,S*B]

=8 (1-1,2)S(1- L) B] 67
LSS (1 L) B - LS, BB ¢ 1S, £S5

The first two terms of the right-hand side vanish due to eqs. (26) and (28), respectively.
Furthermore, the 3" term equals 4;'4,T,, which proves eq. (32).



To prove (33) we make the assumption that A,'A,u, = Au,, u, #0 and Tou,=0.1t
suffices to show that A4, =1. For that, we take equation T,u, =0 and multiply by 7, from
the left

TyTou, =0=>T,A4;'4,B, SLu, =0 (38)
Using egs. (32) and (25), eq. (38) becomes
A,'4,T,B, SLu,=0=
4;'4,L, 8*B{B, SLu,=0=
A4, 8§ (1-L, 1) SLu, =0= (39)
A AL S SLu, - A AL STL, L SLu, = 0=
A A, — A A, A A, =0
By simply taking into account that A4,'4,u, = A,u,, eq. (39) becomes
Apttp = Agtty =0= Ap (1= A5 )up =0 (40)
which gives 4, =1, because the primal methods do not have zero eigenvalues.

Finally, (34) is proven by assuming that 7%, =0 and multiply by B, SL, from the left

B,SL,L 8§ Bju,=0=>B,S(I-B} B,)S Bju,=0= an
B, SS*Byu, =B, SB, B,S"Bu, = B, S8 Bu, = Au,,

The last equation is a contradiction because of (29).

4 Application of the general framework to particular DDM

In the present section, we will prove that conditions (12) and (21) hold for several DDM
and therefore the analysis of sections 2 and 3 holds for all of them. All proofs are written
only for the case where internal d.o.f. are condensed. The other case follows in a very
simple maner”.

4.1  The one-level FETI method

First, we define the displacement estimate operator that corresponds to the onc-level
FETI method (FETI-1) [1] and its primal alternative [4] and introduce the corresponding
notation. So, for these methods we have:

K'=H'K'H (or S =H]S'H, ) (42)

where K (or S$%) is the block-diagonal assemblage of the generalized inverses of the
subdomain stiffhess matrices (or subdomain Schur complements), with the property:

4 As it was explained in the previous section, in order to obtain the proofs that refer to the
case where internat d.o.f. are condenced, in all equations substitute Schur complement
matrices S with the full stiffness matrices K and all remaining variables that refer to
interface d.o.f. with their alternatives that refer to all d.o.f.
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AY:K'K=I+RY (or 3Y:S8'S=I1I+RY ) (43)
where R is the block-diagonal assemblage of the subdomain zero energy modes:
range(R) = null(K) (44)
In addition, f{ is a projector given by
H=1-B'QG(G'QG)"'R" where G=BR (45)

and @ is a symmetric positive definite matrix used in the FETI-1 coarse projector (see for
instance [15]). H, is the restriction of H to interface d.o.f., which means

H,=1-B,0G(G'QG)"'R, (46)

It is worth noting that if Q is set equal to the Dirichlet preconditioner, then the primal
formulation of section 2 becomes the standard formulation of the BDD method [2] (see [4],
scction 8). Thus, the analysis that follows also holds for this method. We note that H,

satisfies relations

R/H, =0 , HL,=L and HS=S (47)
We proceed to the proofs of conditions (12) and (21). First, we note that
3Y:H,S*'S=H, (I+RY)=H, (48)
and S*S=HSTH,S=H,S*S=H] (49)
Given eq. (49), conditions (12) and (21) are obtained by
S*SL,=HL, =1, (50)
and §'SS" =HI§ =(H!) S'H, = HIS'H, =§" (51)

4.2 The rwo-level FETI method
For the two-level FETT method (FETI-2) [16,17] and its primal alternative [4], we have:

Kt =H" (K+ ~ K*HB'C, (C}BHTK+HBTCA)_1 c}BHTK+) H (52)

or St=H] (S+ ~S*H,B,C,(C]B,H, S*HbBbTCl)_l c}B,,H,,TS+) H, (53)

where C, is a Boolean matrix that extracts some selected Lagrange multipliers from a full
Lagrange multiplier vector. Using eq. (48), we have

§'S =M (S+ ~S*H,BIC, (CIB,H!S H,BIC,)” c}BbH,}‘y) 1,8
- ( I-HS H,BIC, (CIB,HI S H,BIC,) C}Bb) HS*S (54)
. . . . -1
- (1 ~ HIS*H,BIC, (CIB,HIS H,BIC, ) CLB, ) HY
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Condition (12) is obtained by multiplying eq. (54) by L, from the right and using the 2" of
cqs. (47). Likeways, condition (21) is obtained by multiplying eq. (54) by S* from the
right and doing the algebra.

4.3 The dual-primal FETI method

In the case of the dual-primal FETI method (FETI-DP) [11,12], when only nodal coarse
constraints are considered we have:

K*=N'K'N,+(N] =N K;'K,,) LK, LL(-K,K;'N,+N,) (55)
where K., =L8,.L and S =K. -KK]'K, (56)

In the above equations, subscripts ¢ and r denote the restriction of the matrices to the
coarse problem d.o.f. and the remaining d.o.f., respectively. Matrix N, is a Boolean matrix

which extracts the subdomain d.o.f. that do not belong to the coarse problem, from
subdomain d.o.f. vectors, like in equation u, = N,u. Furthermore, matrix N_ is used in
order to extract the coarse problem d.o.f. from global d.o.f. vectors, like in equation
u, = N u. Berore proceeding, it is worth noting, that with definition (55), matrix BK*B"
has a higher dimension than the usual FETI-DP coefficient matrix (see [11]). Our version
simply adds redundant information and the corresponding zero eigenvalues to the FETI-DP
coefficient matrix.
Operator S* can be obtained from eq. (55), using eq. (20). However, for our proofs, we
will use the equivalent expression
S*=N!S;N,+(N!-NS

”

i) S, L (-8 SN, + N ) 57)

where Sp. =LS,L, and 8, =S,-S,S.8, (58)
In eq. (57) instead of decomposing the subdomain stiffness matrices K to submatrices
pertaining to coarse and remaining d.o.f., we have decomposed in the same way the
subdomain Schur complements S .

Before proceeding to the proofs, we will generalize expressions (55) and (57) in order to
include the edge and face constraints that are often used in FETI-DP and its primal
alternative. For this reason, we will redefine coarse and remaining d.o.f. as follows:
Perform the following change of basis in subdomain d.o.f.:

u=[NT N ]B} (59)

where matrix [NCT N} ] is orthogonal and its subblocks satisfy equations
range(N L) =range(L,) < 3IX :N.L=LX (60)
and range(N, L)y=range(L.)>3X N, L=L X (61)

where L, has the same sence as matrix L_, with the difference that it refers to the
remaining d.o.f. rather than the coarse ones. Note that the orthogonality condition implies
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NN'=] , NN'=I , NN'=0 , N'N, +N)N =1 (62)

[ c

d el | N 63
- sl ®

Furthermore, we note that K may be decomposed in the form:

K. KN,
K=[nrowe ]{Kﬂ. K}{N} (64)

=N'K N, +N'K N, +N'K N +NK_N,

where K, =NKN' , K,=NKN! and K, =NKN (65)
With the above framework, N, can be selected in a way that the relation
u,=Lu, <o Nu=Lu, < BNu=0 (66)

can express whatever vertex, edge-averaged or face-averaged coarse-space continuity
conditions are usually used in FETI-DP, PFETI-PD and BDDC literature. For instance, in
order to express the continuity condition for an average displacement of an interface edge
with », nodes, it suffices to create for each of the subdomains of this edge a column of N,

with values 1/ \/Z to each entry that corresponds to the displacements of the edge’s nodes.
Then, the columns of N, that correspond to this edge, should be selected orthogonal to the
N. columns. This change of basis would probably not be favorable for an implementation

— because for instance matrix K, of eq. (65) would be much denser than normally — but as

it will be shown it simplifies the proofs of conditions (12) and (21) to a matter of doing the
algebra in the left-hand side of these equations. It is also worth noting that this change of
basis is similar to the one used to define coarse d.o.f. in [8]. The difference in our case is
that the change of basis is orthogonal.

Thus, with the change of basis of eq. (59) and the corresponding decomposition of
matrix K in the submatrices of egs. (65), expression (55) gives the FETI-DP estimator of
displacements for any coarse constraints. The same holds for expression (57), in which we
use the corresponding decomposition

ot S S {N}
s=[v N"][S% S} N, (67)

=N;S, N, +N S, N +NS, N +NSN,

Ty bl fnReT ¢ ce

where S, =N, SN, , §,.=NSN] and S, =NSN; (68)

With the above definition, we are ready to proceed to the proofs of conditions (12) and
(21). We note that in the case where internal d.o.f. are not condensed these proofs were
done in [9], while in the case where internal d.o.f. are condensed, these two conditions
follow from [6, Lemma 28]. Here, we will perform a different and simpler proof, that
covers both cases.

First, we note that substituting from egs. (57) and (67) and doing the matrix algebra, we
obtain:

11



nh T RC nhRe cce

§*'S=NN, +NS; S, N, +(N!-NS. S, LS. LiS,N; (69)
Then, multiplying by L, from the right and using eq. (60), we conclude that 3X :

S'SIL, = NTNL +N'S'S NI, +(NT NTS S )LS s N.L,

Ty Ik e ’leb r C ccC

=NN,L,+ NS, S, N.L,+(N!-N;S, S, VLS. LS, LX

cT et e

=N,N,L,+N;S,' S, NL,+(N-N;S_S, ) LS. S.X (70)

Ly T ne o ne

—NTNL+NTS S NL +N!NI, NTS 2 S NL,

hiy —he

=(NyN, +NIN,)L, =L,

Finally, it suffices substituting from eq. (69) and definition (57) into the left-hand side of
condition (21), in order to prove it, after doing the necessary matrix algebra.

5 Mechanical interpretation of the conditions that are imposed to the displacement
estimators

In the previous sections, conditions (12) and (21) were imposed on the subdomain
displacement estimators of eqs. (5) and (6) and it was shown first, that if the first condition
is satisfied then the primal problem can be transformed ot a dual one and second, that if
both conditions hold, the primal and dual formulations have the same non-zero and non-
unit eigenvalues. In this section, we will discuss the mechanical interpretation of these
conditions.

From the point of view of mechanics, these conditions can be interpreted either in terms
of displacements, or in terms of forces. In our opinion, the interpretation with respect to
displacements is more enlightening for their importance and we prefer it. We start by
assuming that a displacement field », is applied to the left-hand side of condition (12)

giving {Vug :K*KLug = Lug} & {Vu , Bu=0:K*Ku= u} . So, this condition means that
by applying any subdomain forces f that are a result of continuous across the interface

displacements u ( f = Ku), the estimate K* / must give the same displacements u. In

order to obtain this, the estimator K* needs to deliver one of the infinite displacement
solutions for floating subdomains and balance the zero energy modes of the subdomains
using a coarse corrector, as in all DDM that we have discussed above. Condition (21)

means that Yu e range(K*): K*Ku = u , which means that if the forces f = Ku are given
as input to the estimate operator K*, the same displacements must again be retrieved.
Under this point of view, both conditions appear to be reasonable to expect from some
displacement estimator K™ .

6 Numerical tests

In this section, we run some numerical tests, in order to verify the proof of ecigenvalues’
equality and to compare the numerical performance of the methods. In various small
examples we computed the entire eigenspectrum of several dual and primal formulations
and we found a complete equivalence in all non-zero and non-unit eigenvalues, excluding
of course round-off errors. Two large-scale tests were also performed and their results are
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[/ Material A
— [ Material B

W7 217 17 2]7 17
1

Figure 1. A cubic structure composed of two materials

(2) (b)

Figure 2. Two decompositions of the cubic test problem in 100 subdomains:
(a) Optimal aspect ratio partitioning (Decomposition P1),
(b) Layered partitioning (Decomposition P2)

reported in the following two subsections. In both examples, the condition number and
number of iterations are compared for various DDM in primal and dual formulation.

6.1 Second-order example

Here, we consider the 3-D elasticity problem of Fig. 1. This cubic structure is composed
of five layers of two different materials and is discretized with 28x28x28 8-node brick
elements. Additionally, it is pinned at the four corners of its left surfacc. Various ratios
E,/E, of the Young modulus and p,/p, of the density of the two materials are
considered, while their Poisson ratio is set equal to v, =v;=0.30. An optimal
decomposition of this heterogeneous problem must generate subdomains with good aspect
ratios, while preserving the material interfaces when partitioning the model [15].

Hence, two decompositions of this heterogeneous model of 73,155 d.o.f. in 100
subdomains are considered: In the first decomposition (Fig. 2a), the model has been
partitioned in subdomains with good aspect ratios without taking into account the material
interfaces (Decomposition P1). In the second decomposition (Fig. 2b), the five layers of
different materials have been partitioned independently, thus generating a decomposition
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Table 1

Condition nr. and nr. of iterations (Tolerance: 107) of the FETI-1 and P-FETII

methods (case of no internal d.o.f. condensation) for the solution of the example
of Fig. 1

Ratio of Young Type of Condition. nr. of Nr. of iterations
moduli decomposition bOth. Primal Dual
formulations . .
formulation formulation

10° P1 1.1E+2 24 25

10° P1 7.2E+1 41 44

10° P2 6.4E+1 24 25

10° P1 7.9E+1 47 53

10° P2 6.3E+1 26 30

Table 2

Condition nr. and nr. of iterations (Tolerance: 107) of the FETI-1 and P-FETII

methods (case of internal d.o.f. condensation) for the solution of the example of
Fig. 1

Ratio of Young Type of Condition. nr. of Nr. of iterations
moduli decomposition bOth. Primal Dual
formulations 3 ]
formulation formulation
10° Pl 4.0E+1 21 21
10° P1 4.0E+] 31 33
10’ P2 2.6E+1 20 21
10° P1 44E+1 34 38
108 P2 2.6E+1 24 26

which preserves the material interfaces but produces subdomains of suboptimal aspect ratio
in the thin layers (Decomposition P2).

In this example, we have implemented the one-level FETI method in both primal and
dual formulations and both with and without condensation of the internal d.o.f. of the
subdomains. In the homogeneous (E, = E,) configuration of this problem we used
homogenous scaling in the mapping matrices of displacements and forces, while matrix Q
of the FETI-1 projector was set equal to the unit matrix. In addition, in the heterogencous
configuration (E, # E;), we used heterogeneous scaling and () was set equal to the
superlumped choice [15] Q=8, K, B;,,’ where K, is a diagonal matrix, whose main
diagonal is equal to the main diagonal of matrix K,,. The obtained results are shown in

Tables 1 and 2. The condition numbers were computed equal for both primal and dual
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formulations, while their iteration counts are also quite close. In addition, it is worth noting
that the heterogeneous scaling and the superlumped matrix @ succeed in keeping the
condition numbers of the heterogeneous configurations of this problem almost the same as
those of the homogeneous configuration. However, the interation counts increase quite
importantly in the cases where material interfaces do not coincide with subdomain
interfaces. Finally, the condensation of the internal d.o.f. lowers the condition numbers and
iteration counts, as it was reasonable to expect.

6.2 Fourth-order example

As a fourth-order example, we adopt the semi-cylindrical panel of Fig. 3. This shell
problem has a radius of ,0.5 a length of 1.6 and a thickness of =107 or t+=10".
Moreover, the Young modulus is 1x10° and the Poisson ratio 0.30 . The panel is modeled
with a structured mesh of 131x131 nodes and is discretized with triangular TRIC shell
elements [18]. Furthermore, it is fixed on 16 nodes along its two linear edges as shown in
Fig. 3. This model of 102,870 d.o.f. is decomposed in 130 subdomains (Fig. 4).

For the analysis of this problem, we have implemented the FETI-1, FETI-2 and FETI-
DP methods, while the internal d.o.f. of the subdomains are condensed, because this choice
is known to be favourable for fourth-order problems. All methods have been implemented
with homogeneous scaling, while for FETI-1, matrix Q has been set equal to the Diriclet

preconditioner () = BphSB;; . In addition, the coarse spaces of FETI-2 and FETI-DP have

been formed from d.o.f. of nodes that coincide with the ends of the interface edges. For the
coarse space of FETI-DP, all d.o.f. of these nodes have been included, while only the
translational d.o.f. have been used for FETI-2.

The condition numbers and iteration counts of the primal and dual formulations are
shown in Tables 3 and 4. Again, the computed condition numbers are equal between
related primal and dual variants, while iteration counts are quite close. It is also worth
noting that in both tables the condition numbers vary considerably and they are particularly
poor in the case of FETI-1, which is known not to be scalable for fourth-order problems.
Furthermore, the performance of all methods deteriorates importantly in the more ill-
conditioned configuration of the shell, while the dual formulation of the two-level FETI

fails to reach the threshold accuracy of 107,

Figure 3. A semi-cylindrical panel, discretized
with triangular shell elements
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Figure 4. A decomposition of the semi-cylindrical
panel in 130 subdomains — Top view

7 Concluding remarks

The final section of this paper aims at summing up what has been shown in this work
and then studying the consequences of these findings. The main concept behind this work
has been the fact that the definition of an operator that estimates subdomain displacements
from subdomain forces can be used to build a primal and a dual DDM, that are strongly
connected, provided that the operator satisfies two conditions. In particular, the first
condition allows the primal formulation of the problem to be turned into a dual one. Then,
a second condition guarantees that the two resulting DDM, the primal and the dual one,
will have the same non-zero and non-unit eigenvalues. This suggests that the two
formulations will probably have similar convergence properties and iteration counts. Some
of the most popular DDM since the beginning of the 90’s in structural and solid mechanics,
have been inserted in this general framework, by proving that these two conditions hold for
them. In particular, this has been proven when applying the methods FETI-1, FETI-2 and
FETI-DP or their primal alternatives BDD and BBDC for the static analysis of structural
problems. It is also worth noting that it would be simple to extend the proofs performed in
this work to the applications of these methods for implicit dynamic structural problems The
only things that change are the subdomain stiffness matrices that are substituted with the
corresponding matrices of the implicit dynamic analysis and the zero energy mode
projections that must be removed.

Hence, after summing up the general theoretical framework that has been set up here,
we can investigate its consequences. A first and obvious but not unimportant consequence
of this framework is that the setting of section 2 allows a very modular programming of
primal and dual methods. If this general setting of primal and dual methods is programmed
then by programming separately the estimate operator K* for some DDM, both primal and
dual formulations are directly obtained. Furthermore, in the version of this formulations
where internal d.o.f. of the subdomains are condensed, recent results show that the primal
formulation, while it has similar performance to the dual one in well-conditioned problems,
it is statistically faster and more robust in ill-conditioned ones [4,5]. Furthermore, with
reference to the case where internal d.o.f. are not condensed, a recent study [9] proves that
if the two conditions that have been set in the present paper hold, then the algorithm of the
primal formulation can be made to operate on dual variables, instead of primal ones. The
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Table 3

Condition nr. and nr. of iterations (Tolerance: 107) of some
DDM for the solution of the example of Fig. 3 (£=107)

Condition. nr. of Nr. of iterations
Method both .
formulations anal. Dual _
formulation formulation
FETI-1 2.2E+6 131 135
FETI-2 5.4E+1 35 36
FETI-DP 2.0E+3 48 49

Table 4

Condition nr. and nr. of iterations (Tolerance: 10™) of some
DDM for the solution of the example of Fig. 3 (1=107")

Condition. nr. of Nr. of iterations
Method both -
formulations anal Dual _
formulation formulation
FETI-1 1.9E+8 319 330
FETI-2 53E+2 91 —
FETI-DP 7.1E+4 139 145

main gain from this transformation is that the primal algorithm that would be excessively
costly because it operates on the full displacement vector of the structure (thus practically
inhibiting for instance the process of reorthogonalization in the PCG algorithm), is now
converted to an algorithm, which operating on dual variables has comparable
computational cost to the pure dual formulation. Hence, when internal d.o.f. are not
condensed, the results of [9] show that the primal and dual formulations have comparable
efficiency. However, in this case, the dual formulation turns out to be more robust and our
tests show that in most problems it will probably be faster than the primal one.

Hence, in order to draw a general conclusion from comparing the primal and dual
formulations, it is necessary to discuss when it is favourable to condense the internal d.o.f.
of the subdomains. In modern DDM practice it has been noted that usually the
condensation of internal d.o.f. leads to higher computational efficiency, while, avoiding the
condensation can probably lead to less memory-consuming solutions in large-scale second-
order problems. However, the results of [9] also suggest that the primal formulation
requires less memory in fourth-order problems and in many second-order problems.
Consequently, the general picture at the moment , with respect to computational cost,
robustness and memory requirement, seems to be in favour of the primal formulation, at
least for the majority of the cases. However, since the beginning of the 90’s, the dual
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methods have been implemented in many other areas beyond the pure static and dynamic
analysis of structures. Therefore, for the primal formulation this work will have to be
adapted when possible, or simply redone. Thus, the best choice today is probably to be
armed with both options.

This paper comes to offer a small piece to the long series of works that have gradually
led to today’s understanding of the concept of duality in DDM for structural and solid
mechanics. Before ending it, it is thus probably suitable to remind some of the most
important steps in the efforts that have led here. A large step in this process was made in
the beginning of the 90’s, with the introduction of the FETI method, which was a dual
method that quickly gained a lot of popularity. Since then, the major advances in the dual
methods, like the introduction of the FETI-2 and FETI-DP methods were closely followed
by similar advances in the area of the primal methods. While more and more advances
were appearing that suggested that there were connections missing between primal and dual
formulations, the first studies of these connections came forward. Today, the international
research community of DDM has gone a long way since the introduction of the first dual
methods and it can be said with a lot of certainty there is a lot more to come.
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