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Abstract. A new hybrid algorithm for LDU -factorization for large sparse matrix combining
iterative solver, which can keep the same accuracy as the classical factorization, is proposed.
The last Schur complement will be generated by iterative solver for multiple right-hand sides
using block GCR method with the factorization in lower precision as a preconditioner, which
achieves mixed precision arithmetic, and then the Schur complement will be factorized in higher
precision. In this algorithm, essential procedure is decomposition of the matrix into a union
of moderate and hard parts, which is realized by LDU -factorization in lower precision with
symmetric pivoting and threshold postponing technique.

1 INTRODUCTION

There are two kinds of demand in finding a solution of linear system with large sparse matrix
in numerical simulation by using mixed precision arithmetic. One is for solving the system with
very high condition number in numerical simulation of complex physical model and/or with
large variety of physical coefficients. In this case, a monolithic direct factorization solver using
“quadruple” precision could be only feasible tool. However arithmetic complexity by “double-
double” data structure, which is a faster implementation of “quadruple” arithmetic using modern
hardware named as fused multiply-add unit, is 25 times higher than “double”. Hence, it is neces-
sary to introduce mixed precision arithmetic with “double” to reduce computational complexity.
The other is to solve rather moderate problem on forthcoming CPU with more single precision
units than double.

Usages of mixed precision arithmetic in numerical linear algebra are hot research topics and
a survey paper [1] covers the recent developments. The main tool to improve or recover the
accuracy of the solution obtained by lower precision either direct solver or iterative solver is
the iterative refinement, which generates new right-hand side from the residual to improve the
solution. However convergence of the refinement process depends on the condition number and
it is still not easy to improve the solution for matrix with high condition number. For some
singular matrix whose condition number on the image is moderate, accurate factorization is
mandatory especially to perform rank-revealing. Our aim is to construct factorization itself,
which fits to usage of mixed precision arithmetic, not to improve the accuracy of the solution.

In section 2, classical LDU -factorization with symmetric pivoting with threshold postponing
is viewed and a way to decomposition of the matrix into a union of moderate and hard parts
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is proposed. Section 3 describes a novel method to generate Schur complement matrix of the
hard part by solving linear system of the moderate part with multiple right-hand sides. Sec-
tion 4 verifies efficiency of the proposed algorithm in accuracy and computing time by numerical
examples.

2 FACTORIZATION WITH SYMMETRIC PIVOTING FOR LARGE SPARSE
MATRICES

Let us assume that the matrix K ∈ RL×L is scaled so that diagonal entries take one of −1,
0 and 1, which could be realized by a scaling with only diagonal entries [Q]i i = 1/

√
[K]i i when

[K]i i ̸= 0, otherwise [Q]i i = 1. Here the original matrix K is scaled as QKQ = K.

2.1 factorization with symmetric pivoting and recursive generation of Schur com-
plement

The LDU -factorization of the matrix K consists of recursive generation of the Schur com-
plement,

ΠT

[
K11 K12

K21 K22

]
Π = ΠT

[
K11 0
K21 S22

] [
I1 K−1

11 K12

0 I2

]
Π , (1)

S22 = K22 −K21K
−1
11 K12 . (2)

Here pivoting strategy is a symmetric one that is expressed by using the permutation Π with
ΠT = Π−1 and Π is decomposed into a union of diagonal blocks as Π = diag{Π1 ,Π2} . Indices
Λ = {1, · · · , L} is decomposed into a direct sum of Λ1 ⊕Λ2, where Πi is a one to one operation
on Λi. Λ1 denotes indices of already factorized part of the matrix and further factorization will
be performed for S22 on Λ2. Each entry of Π is selected during the factorization. Let us suppose
that k×k sub-matrixK11 is already factorized and {Π(1), · · · ,Π(k)} are obtained and in the rest
of matrix (L−k)×(L−k) sub-matrixK22 needs to be factorized. We find the maximum absolute
value in the diagonal entries of K22, label k0 as the index of such entry, define Π(k+1) = k0, and
set d = [K]k0 k0 . The rows and columns of K with indices k and k0 are exchanged each other and
the result is stored as K̃. Schur complement matrix S′

22, whose size is (L− k− 1)× (L− k− 1),

is calculated by rank-1 update with weight 1/d, S′
22 = K̃ ′

22 − [K̃22]↓ 1d
−1[K̃22]1→. This is the

essential operation of LDU -factorization.
In practical computation of large sparse matrix, Λ1 will be created by following the elimination

tree of the nested-dissection ordering with threshold postponing with user defined parameter τ .

2.2 nested-dissection ordering and threshold postponing

Let us introduce the nested-dissection ordering [2] and suppose that Λ is decomposed into
2m − 1 sub-indices with m-level bi-section tree, Λ =

⊕
1≤ℓ≤2m−1 Λℓ, where k-th level contains

2k−1 sub-index sets {Λℓ}. For stability of the factorization, a given threshold parameter τ > 0
is introduced to perform postponing of factorization. During the LDU -factorization of the sub-
matrix with index Λj , if the ratio in absolute value of successive diagonal entries becomes smaller
than τ , i.e., |[K]i+1 i+1/[K]i i| < τ , then the lower block of the matrix is not factorized. The

index will be decomposed as Λj = {j1, · · · , ji}⊕{ji+1, · · · , jM} = Λ̃j⊕ Λ̂j , where Λ̃j is set of the
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Figure 1: symmetric pivoting with threshold postponing following nested-dissection ordering

indices for the factorized part. For m-level bisection tree of the nested-dissection ordering, an
LDU -factorizable part with 1 × 1 pivot is collected as

⊕
1≤ℓ≤2m−1 Λ̃ℓ and Λ0 =

⊕
1≤ℓ≤2m−1 Λ̂ℓ

for the postponed entries. At the end of all threshold factorization following the elimination tree,
we will again apply the LDU -factorization to the last Schur complement with indices Λ0 and
will obtain Λ0 = Λ̃0 ⊕ Λ̂0. Here we will enlarge Λ̂0 with n entries by moving the last entries of
Λ̃0 to ensure S22 has an image space, which contributes to comparison between zero eigenvalues
and nonzero ones. Usually we take n = 4 entries [3]. By this process, the very last Schur

complement matrix K22 in (1) collecting postponed pivots Λ2 :=
⊕

0≤ℓ≤2m−1 Λ̂ℓ will have large
condition number or singular for the case that the original matrix is not invertible, and may
contain 2× 2 pivoting entries when K11 is not definite. On the contrary, K11 in (1) with index

Λ1 :=
⊕

0≤ℓ≤2m−1 Λ̂ℓ has moderate condition number that can be factorized with appropriate
permutation. Figure 1 shows schematic explanation of the threshold postponing with 3-level
bisection tree in nested-dissection ordering.

3 HYBRID FACTORIZATION ALGORITHM

A new algorithm is constructed by replacing the solution of the linear system with multiple
right-hand sides (RHSs), K11X12 = K12 of the first block in (1) by an iterative solver. Factor-
ization for K ∈ RL×L with user-defined threshold τ is performed in a hybrid way as follows.

Algorithm 1 LDU -factorization with internal iterative solver
1. factorize K with threshold postponing in lower precision and extract moderate part K11 with
finding indices Λ1 and permutation Π1 with N = #Λ1 .

2. decompose matrix K into 2 × 2 blocks as

[
K11 K12

K21 K22

]
with K11 ∈ RN×N , K12 ∈ RN×M ,

K21 ∈ RM×N , and K22 ∈ RM×M .
3. find solution X12 satisfying K11X12 = K12 by an iterative solver using the LDU -factorization
of K11 with permutation Π1 in lower precision as preconditioner .
4. construct the Schur complement S22 := K22 −K21X12 in higher precision .
5. factorize S22 in higher precision with finding a symmetric pivoting expressed by the permu-
tation Π2 that may contain 2× 2 entries .

We can utilize this solution in lower precision as a preconditioner for the iterative solver in
higher precision.
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If the condition number of K11 is in the range of the maximum floating digits of the lower
precision, the solution X12 of K11X12 = K12 will be obtained very accurately with the residual
closed to the machine epsilon of the higher precision. Therefore, even for the case that the origi-
nal matrix is singular, the Schur complement K22 is well constructed without large perturbation
during the operation of K−1

11 and kernel detection for rank-reveling [3] works well as the original
full factorization algorithm. Solution procedure with forward and backward substitutions are
performed block-wisely for the linear system after applied permutations Π = diag[Π1,Π2]. The
following algorithm describes a procedure to find [xT1 , x

T
2 ]

T satisfying[
K11 K12

K21 K22

] [
x1
x2

]
=

[
b1
b2

]
. (3)

Algorithm 2 forward/backward substitutions for hybrid factorization
1. solve K11 y1 = b1 by the same iterative solver in Algorithm 1 in higher precision .
2. compute y2 = b2 −K21y1 .
3. solve S22 x2 = y2 by forward and backward substitutions in higher precision .
4. update x1 = y1 −X12x2 with X12 is computed in Algorithm 1 .

Solution of the moderate part of the liner system K11y1 = b1 is obtained by the iterative
solver within given accuracy to specify the convergence. Thanks to preconditioner by the LDU -
factorization in lower precision for K11 with moderate condition number, we can expect enough
accuracy of the solution by the preconditioned iterative solver closed to one by the direct solver.

3.1 Iterative solver for solution of linear system with multiple RHSs

There are two kinds of solver for the system K11X12 = K12. For simplicity, we first describe
algorithms for linear system with single RHS, Ax = b where A ∈ RN×N is invertible and it
stands for K11 and b ∈ RN will be one of the column vector of K12. Let us denote Q̂x̂ = b̂ as
the linear system in lower precision with solution x̂ for the RHS, b̂, which is converted from the
given data b in higher precision by the floating point casting operation.

3.2 Iterative refinement

The iterative refinement is a classical method to improve the accuracy of the linear system.
For mixed precision arithmetic, solution of the linear system is found in lower precision but
calculation of the residual is performed in higher precision. Therefore we can expect iterative
renfinement will converge with higher accuracy.

Algorithm 3 iterative refinement to improve solution in lower precision
1. find ê0 satisfying Q̂ê0 = b̂ in lower precision .
2. convert x0 ← ê0 from lower precision to higher precision .
3. compute residual r0 = b−Ax0 of solution .
4. loop n = 0, 1, 2, · · ·

4a. truncate r̂n ← rn, higher precision data to lower preicision .
4b. find ên satisfying Q̂ên = r̂n in lower precision .
4c. update solution xn+1 = xn + ên by adding lower precision data .
4d. compute residual rn+1 = b−Axn+1 of solution .

4



Atsushi Suzuki

Here in the procedure for updating n + 1-th solution, addition of lower precision data can be
performed directly without preparation of a working vector en in higher precision converting
form lower precision ên. To make clear of the role of the preconditioner Q in higher precision,
let Qen = rn denote the operation to find ên satisfying Q̂ên = r̂n in lower preicision for given
data rn that is converted to r̂n and up-converting ên in lower to en. Calculation of the residual
r1 in the first step is viewed as following using the assumption that A is invertible,

r1 = b−Ax1 = b−A(x0 + e1) = r0 −Ae1 = r0 −AQ−1r0 = (I −AQ−1)r0 ,

x1 = x0 +A−1(I − (I −AQ−1))r0 = x0 +A−1AQ−1r0 = x0 +Q−1r0 .

By the same argument, residual and solution at n-th step are obtained as

rn = (I −AQ−1)nr0

xn = x0 +A−1(I − (I −AQ−1)n)r0

= x0 +

(
n− 1

0

)
Q−1r0 −

(
n− 1

1

)
(Q−1A)Q−1r0 + · · ·+ (−1)(n−1)

(
n− 1

n− 1

)
(Q−1A)Qn−1r0

using the binomial expansion. We conclude that iterative refinement will find solution x0 in a
Krylov subspace with Q−1A and Q−1r0

xn ∈ x0 + span[Q−1r0, (Q
−1A)Q−1r0, (Q

−1A)2Q−1r0, · · · , (Q−1A)n−1Q−1r0] .

3.3 preconditioned GCR method for single RHS

The iterative refinement procedure to improve accuracy of the solution obtained by lower
precision arithmtic can be viewed as an iterative process to find solution in the Krylov subspace
of preconditioned matrix with fixed coefficient for linear combination. The coefficient by the
binomial expansion is not optimal and we can use the standard proceudre of Krylov subspace
solver family. The most easiest method in implementation is Generalized Conjugate Residual
(GCR) method [4] and it is also closed to the iterative refinement procedure with further ap-
proximation. A preconditioned GCR method for the linear system Ax = b with A ∈ RN×N and
b ∈ RN by using solution Qy = f with Q ∈ RN×N and f ∈ RN in lower precision as a right
preconditioner

AQ−1Qx = AQ−1x̃ = b

is given as Algorithm 4. When A has moderate condition number, the solution process by LDU -
factorization of A in lower precision that is expressed as Q−1 is well performed and AQ−1 is
very closed the identity matrix, AQ−1 ≃ IN . In practice the following right preconditioned GCR
converges in few iterations, which is rather natural consequence by selection of moderate part
of the matrix K11 using threshold postponing in lower precision. An example of convergence
history will be shown in Section 3.5.

Algorithm 4 preconditioned GCR method
find x0 satisfying Qx0 = b
r0 = b−Ax0
w0 = Q−1r0
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p0 = w0

loop n = 0, 1, 2, · · ·

αn :=
(rn, Apn)

(Apn, A pn)
=

(rn, AQ
−1p̃n)

(AQ−1p̃n, AQ−1p̃n)
xn+1 := xn + αnpn
rn+1 := rn − αnApn
find wn+1 satisfying Qwn+1 = rn+1

for 0 ≤ m ≤ n

βmn := −(Awn+1, A pn)

(Apm, A pm)
= −(AQ−1rn+1, AQ

−1p̃n)

(AQ−1p̃m, AQ−1p̃m)

pn+1 := wn+1 +

n∑
m=0

βmnpm

In practical computation, to avoid two times multiplication of A to pn and to wn+1, Apn is
stored as qn and is updated in the same manner as pn+1 using a new vector zn+1 := Awn+1,
which results in qn+1 := zn+1 +

∑n
m=0 βmnqm. Here Awn+1 is performed by the SpMV (Sparse

Matrix-Vector multiplication) opertaion.
We can see the residual at n-step belongs to n + 1-dimensional Krylov subspace, rn ∈

Kn+1(r0, AQ
−1) and approximate solution x̃n of the right preconditioned system AQ−1x̃ = b

is found as x̃n ∈ x̃0 +Kn(r0, AQ
−1) with the initial approximation Qx0 = x̃0. By defintion of

x̃n = Qxn, approximation of the linear system is written as xn ∈ x0 +Kn(Q
−1r0, Q

−1A).
Orthogonality on residual, for all y ∈ Kn(r0, AQ

−1), it holds that (rn+1, AQ
−1y) = 0 and

search vectors (AQ−1p̃m, AQ
−1p̃n) = 0 for m ̸= n. Both are verified by induction. Since we can

assume AQ−1 ≃ IN , we get

αn =
(rn, AQ

−1p̃n)

(AQ−1p̃n, AQ−1p̃n)
≃ (rn, p̃n)

(p̃n, p̃n)
and βmn ≃ −

(rn+1, p̃n)

(p̃m, p̃m)
.

If we could approximate αn ≃ 1 and βmn ≃ 0 with 0 ≤ m ≤ n up to n-th step, we will have

xn+1 ≃ xn + pn, rn+1 ≃ rn −Apn, and pn ≃ Q−1rn+1,

which leads to the same procedure of the iteartive refinement.
We can expect that the preconditioned GCR method converges faster than the the iterative

refinement thanks to better combination of coefficients for Krylov subspace basis to achieve the
Galerkin orthogonality.

3.4 preconditioned block GCR method for multiple RHSs

In practice, the linear system consists of multiple RHSs, K12 and then it will be more efficient
to use block GCR method for multiple RHS, because dimension of Krylov subspace in block
version is much larger than one for single RHS. Comparison of convergence of single and multiple
RHSs versions will be illustrated in Section 3.5.

A preconditioned block GCRmethod for the linear system for multiple RHSs, A [x(1), · · · , x(M)] =
[b(1), · · · , b(M)] by using solution Qy = f in lower precision as a right preconditioner is obtained

by introducing multiplication of matrix A to [w
(1)
n+1, · · · , w

(M)
n+1], which is called SpMM (Sparse
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Figure 2: convergence history of IR/GCR/BGCR

Matrix-Matrix multiplication) operation. Determination of magnitude of the search vector αn

in updating procedure is replaced by operation by M ×M matrices as

[Mn]ℓ,k := (q(k)n , q(ℓ)n ) and [An]ℓ,k := (r(k)n , q(ℓ)n ) for 1 ≤ ℓ, k ≤M

[x
(1)
n+1, · · · , x

(M)
n+1] := [x(1)n , · · · , x(M)

n ] + [pn
(1), · · · , pn(M)]M−1

n An

During the iteration, [q
(1)
n+1, · · · , q

(M)
n+1] are updating with keeping identity to multiplication of A

to [p
(1)
n+1, · · · , p

(M)
n+1]. Both sets of vectors are calculated from linear combination expressed by

M−1
n Bmn with [Bmn]ℓ,k := −(z(k)n+1, q

(ℓ)
n ). We call this iteration as Algorithm 5. When all

matrices Mn at n-th iteration are invertible, the approximate solution x
(k)
n with 1 ≤ k ≤ M

is found as x
(k)
n ∈ x(k)0 + Kn(Q

−1[r
(1)
0 , · · · , r(M)

0 ], Q−1A) and (r
(k)
n , AQ−1y) = 0 for any vector

y ∈ Kn([r
(1)
0 , · · · , r(M)

0 ], AQ−1).

3.5 Convergence history of preconditioned GCR method

Figure 2 shows convergence history to find a solution of X12 satisfying K11X12 = K12 with
matrix in Section 4.2. Sixteen entries are postponed during factorization of K by single precision
arithmetic and K12 consists of 16 column vectors with N = 374, 520. Each iteration drawn by
colors, e.g., purple for iterative refinement (IR): Algorithm 3, green for preconditioned GCR:
Algorithm 4 , and light blue for preconditioned block GCR (BGCR): Algorithm 5, shows con-
vergence of the first column vector of sixteen RHSs. We can see convergence of IR is slower
than other GCR solvers and block GCR converges after 5 iterations to the machine epsilon of
the double precision.

4 NUMERICAL EXAMPLES

In this section, feasibility of hybrid factorization and solution Algorithms 1 and 2 with in-
ner iterative solver by Algorithm 5 using preconditioner in lower precision solution, will be
demonstrated by three sparse matrices.
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Figure 3: finite element mesh decomposition of the box domain excluding an ellipsoid

4.1 symmetric matrix from matrix market

The matrix phb1HYS from the matrix market database is symmetric and has 36, 414 to-
tal number of unknowns and 4, 344, 765 originated from protein data bank and was used in
evaluation of SpMV performance in [5]. By setting pivot threshold τ = 0.05, 17 entries are ex-
cluded by factorization in single precision. By this decomposition, Algorithm 1 is performed
with N = #Λ1 = 36, 397 and M = #Λ2 = 17. The maximum and minimum eigenval-
ues are calculated by the power method as λmax(K11) = 1.0002, λmin(K) = 3.8109 × 10−4

and then κ(K11) = 2.6448 × 103. Since the eigenvalue distribution of the whole matrix has
significant jumps in the smallest, λmin(K) = 9.9876 × 10−10, λmax(K) = 34.854 and then
κ(K) = 3.4862× 1011. The single precision arithmetic can factorize the moderate part K11 but
accuracy of the solution of the whole system with K is very poor. Since the matrix phb1HYS

is symmetric, LDLT -factorization is performed instead of LDU -factorization, but block GCR :
Algorithm 5 is used for the system with K11 and 17 RHSs.

4.2 finite element matrix from incompressible flow problem

Let Ω be the flow region consisting of a box domain excluding an ellipsoid. The size of
the box is 6 × 2 × 2 and diameters of the ellipsoid is (0.75, 0.5, 0.25) with 20 degree slanted.
Finite element mesh decomposition Ω =

⋃
e e with tetrahedra {e}, whose diameter is denoted as

he = |e|, is depicted in Figure 3. Here nonuniform mesh subdivision is used and smallest mesh
size h = 0.01 on the surface of the ellipsoid and largest mesh size h = 0.1 on the inlet boundary.

We consider the Stokes problem to find the velocity u and the pressure p, −∇·D(u)+∇p = 0
and ∇ · u = 0 with full homogeneous Neumann data on the all boundary surfaces. Here D(u)
denotes the strain rate tensor D(u) = (∇u+(∇u)T )/2. This boundary condition 2D(u)n−n p =
0 with outer normal n is not physical one, but a domain decomposition method with an artificial
boundary condition like FETI method [6] leads to a floating sub-problem with such kind of
full Neumann boundaries. Finite element matrix is obtained by discretization of the weak
formulation with P1/P1 elements and a stabilization parameter δ that is set as 0.01 in this
example,

K =

[
A BT

−B δD

]
. (4)

Each block is defined using finite element basis functions {φi} for the velocity unknown and
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{ψi} for the pressure unknown,

[A]i j =

∫
Ω
D(φj) : D(φi), [B]i j = −

∫
Ω
∇ · φjψi, [D]i j =

∑
e

∫
e
h2e∇ψj · ∇ψi

The stiffness matrix K with total numbers of unknowns 374, 536 and nonzeros 21, 146, 848 is
generated from tetrahedral mesh decomposition in Figure 3 by FreeFEM software package [7].
We call this matrix as stokes. For constant vectors a and b whose total degrees of freedom
is 6, we have D(a × x + b) = 0 and ∇ · (a × x + b), where a × x + b called rigid body modes.
Then it is clear that the stiffness matrix K defined in (4) has six dimensional kernel. The
maximum and minimum eigenvalues are calculated by the power method as λmax(K) = 2.5003,
λmin(K|Im(A)) = 8.0038 × 10−8, and λmin(K) = 1.1437 × 10−19. Here the operator K|Im(A) is
one-to-one in Im(A), i.e., the orthogonal complement of Ker(A), which is obtained numerically
by LDU -factorization procedure. The condition number of K is κ(K|Im(K)) = 3.1240 × 107

when it is restricted on Im(A) and κ(K) = 2.1863× 1019 for all unknowns.
Applying single precision arithmetic with pivot threshold τ = 0.75, 16 entries are postponed

and the Schur complement S22, whose size is 16 × 16, has six dimensional kernel. By this
decomposition, λmax(K11) = 1.0000, λmin(K11) = 1.6677× 10−8, and κ(K11) = 5.9962× 107.

4.3 finite element matrix from semi-conductor problem

The semi-conductor problem is mathematically modeled by the drift-diffusion equations with
the electrostatic potential φ, the electron density n, and the hole density p. By introducing
Slotboom variables for the electron density η = e−φn and for the hole density ξ = eφp, the drift
and diffusion terms are combined into a single term and the following nonlinear system [8] is
obtained as

−∇ · (λ2∇φ) = e−φξ − eφη + C(x), −∇(eφ∇η) = 0, ∇(e−φ∇ξ) = 0, (5)

where λ denotes Debye length, and C(x) is given function to represent doping density of N -rich
or P -rich material. Here we consider two dimensional problem with a box domain 0.3×0.2. The
N -region, ΩN with doping density nd consists of x < 0.1 and x > 0.2 and in the middle is the
P -region ΩP with density na, which is called N-P-N device. C(x) = nd = 1020 for x < 0.1 or
x > 0.2 and C(x) = −na = −6× 1017 for 0.1 < x < 0.2. Dirichlet boundary conditions φD, nD,
and pD are given on x = 0 and 0.3 and Neumann boundary conditions are given on other sides.

The electrostatic potential φ∗ by setting ξ ≡ 1 and η ≡ 1 and then satisfying −∇(λ2∇φ∗) =
e−φ∗ − eφ∗ + C(x) and φ∗ = sinh−1(nd/(2ni)) with ni = 1.08 × 1010 on x = 0 and x = 0.3 is
called thermal equilibrium. The left of Figure 4 shows distribution of φ∗ in the N-P-N device
with Ω = (0, 0.3) × (0, 0.2). A Newton iteration to obtain the thermal equilibrium is rather
straightforward and is a part of the Gummel map [8], which is a kind of fixed point method in
total. To obtain a solution of the nonlinear system (5), we will apply a Newton iteration starting
from the thermal equilibrium (φ, η, ξ) = (φ∗, 1, 1). By introducing expression on hole current
density Jp = −e−φ∗∇ξ, a mixed formulation of an elliptic equation with coefficient e−φ∗ in the
first step of the Newton step is obtained as∫

Ω
eφ∗Jp · v −

∫
Ω
∇ · v ξ −

∫
Ω
∇ · Jp q =

∫
Ω
f · v −

∫
ΓD

ξDv · ν, (6)
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Figure 4: distribution of functions for N-P-N semiconductor device, left : electrostatic potential φ∗,
middle : eφ∗ in matrix coefficient, right : pseudo kernel of the hole ξ0

where external force f represents nonlinear coupling between electrostatic potential unknown φ
and hole unknowns (Jp, ξ) and ΓD is a part of the Dirichlet boundary with ξD = eφDpD and ν
denotes the outer normal to boundary ΓD.

Finite element matrix is obtained by discretization of a weak formulation of the weak for-
mulation with RT0/P1 elements, where RT0 is the Raviart-Thomas finite element in the lowest
order for vectorial unknown function H(div ; Ω) = {v ∈ L2(Ω) ;

∫
Ω∇ · v < +∞} [9],

K =

[
A BT

−B 0

]
, (7)

Here mass and constraint matrices are defined using finite element basis functions {φi} for Jp
and {ψi} for ξ,

[A]i j =

∫
Ω
eφ∗φj · φi, [B]i j = −

∫
Ω
∇ · φjψi .

We call this matrix as dd-hole. The electrostatic potential φ∗ takes negative value in the P -
region and ratio of eφ∗ between N -region and P -region becomes below 10−16. By approximating
eφ∗ ≃ 0 in P -region, the first term of (6) by the domain integration is replaced by

∫
ΩN

eφ∗Jp · v
and for arbitrary constant c, (J0

p , ξ
0) that satisfies

J0
p = 0, ξ0 = c in ΩP , −∇·(e−φ∗∇ξ0) = 0 in ΩN with ξ0 = c on ∂ΩN∩∂ΩP and J0

p = −eφ∗∇ξ0

will be the solution of the modified weak formulation. Shifted solution (Jp, ξ) of (6) by (J0
p , ξ

0)
still almost satisfies the same weak formulation with difference as

∫
ΩP

eφ∗Jp · v, which is the

residual of the approximation of eφ∗ by zero. This property confirms the stiffness matrix K̃ is
singular with one dimensional kernel, when all coefficients are stored in double precision. The
middle and the right of Figure 4 show the exponential weight eφ∗ with the thermal equilibrium
and the kernel function ξ0. The maximum and minimum eigenvalues calculated by quadruple
precision for given matrix in double precision, λmax(K) = 6.13488 × 1010, λmin(K|Im(A)) =
3.5704× 10−12. The condition number of K on Im(A) is κ(K|Im(K)) = 1.7193× 1022. Applying
double precision arithmetic with pivot threshold τ = 0.01, 13 entries are postponed and the
Schur complement S22, whose size is 13×13, has one dimensional kernel. By this decomposition,
λmax(K11) = 2.0080× 102, λmin(K11) = 3.6200× 10−12, and κ(K11) = 5.5472× 1013.
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4.4 performance comparison of mixed and pure precision arithmetic

Here we summarize performance of the proposed algorithm in accuracy and computational
speed. We used one core of Apple M1 Max CPU running at 3.23GHz, which has capability
to perform two single precision arithmetic instead of one double precision in the same cycle.
For matrices phb1HYS in Section 4.1 and stokes in Section 4.2, double precision arithmetic is
used for higher accuracy and single and double arithmetic are used as mixed precision which is
labeled as mixed(double+single) in the Table 1 . For matrix dd-hole in Section 4.3, quadruple
precision arithmetic that is realized as double-double in QD library [10] is used for higher
accuracy and double and double-double arithmetic are used as mixed precision which is labeled
as mixed(quadruple+double). The error and the residual of the linear system is calculated from
the RHS that is set to satisfy the solution is [x]i ≡ i(mod 11). Since the later two matrices are
singular, detected kernel dimension is also shown.

Table 1: error, residual and elapsed time for factorization by pure and mixed precision arithmetic

phb1HYS n = 36, 414, nnz = 4, 344, 765
double mixed(double+single) single

error 1.2650× 10−6 1.6647× 10−6 3.1178× 10−2

residual 7.6201× 10−16 9.6442× 10−16 4.4906× 10−7

time in second 0.5328 0.4604 0.4053

stokes n = 374, 536, nnz = 21, 146, 848
double mixed(double+single) single

error 4.3646× 10−13 2.0301× 10−12 1.7046× 10−2

residual 1.2730× 10−15 5.1881× 10−15 7.0494× 10−7

dim. of kernel 6 6 0
time in second 33.390 22.983 15.228

hole n = 40, 323, nnz = 401, 243
quadruple mixed(quadruple+double) double

error 5.3652× 10−20 1.3061× 10−21 8.9382× 10−6

residual 5.3850× 10−32 1.5514× 10−32 4.7860× 10−16

dim. of kernel 1 1 1
time in second 16.599 2.6459 0.4064

5 CONCLUSIONS

We have constructed a new hybrid algorithm for LDU -factorization for large sparse matrix
introducing iterative solver for generation of Schur complement matrix in higher precision, where
the matrix is decomposed into a union of moderate and hard parts. Numerical tests confirm the
solution by the proposed algorithm by mixed precision arithmetic can keep accuracy as higher
precision arithmetic.

When quadruple precision arithmetic are realized by using double-double data structure
and are performed on the hardware equipped with fused multiply-add unit, ratio of arithmetic
complexity of double-double to double is 25 to 1. Therefore for the linear system that has huge
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condition number more than the range of the maximum floating digits of the double precision,
mixed precision arithmetic with quadruple and double attains substantial speed-up, which was
verified by a matrix from the semi-conductor problem.

Since recent CPU has ratio of arithmetic complexity of double to float is 2 to 1, some speed-up
is obtained, but solution phase by iteration procedure for recovering double precision accuracy
for the Schur complement matrix masks the efficiency. It is necessary to implement our hybrid
factorization algorithm on the system with more single floating point arithmetic units than
double and to evaluate the performance.

For the solution phase of the large system with multiple RHSs to generate Schur complement,
in the preconditioned part by forward/backward substitution in lower precision already well
utilizes the BLAS level 3 routine, e.g., TRSM, but it is necessary to optimize SpMM operation
in double and quadruple precision, because such kind of sparse linear algebra library is not
provided yet.
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