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Abstract 

In this research we present a method based on using Exponential Basis Functions (EBFs) to 

solve a class of time dependent engineering problems. The solution is first approximated by a 

summation of EBFs satisfying the differential equation and then completed by satisfying the 

time dependent boundary conditions as well as the initial conditions through a collocation 

method. This can be performed by considering two approaches. In the first one the solution is 

split into three parts, i.e. a homogeneous solution obtained by homogeneous boundary 

conditions, a homogeneous solution obtained by non-homogeneous solution and finally a 

particular solution induced by source terms. In the second approach the solution is split into 

two parts, i.e. a homogeneous solution and a particular solution induced by source terms. The 

two approaches are then employed to construct a time marching algorithm for the solution of 

problems over a long period of time. 

We shall present the details of the application of the two approaches introduced to some 

mathematical and engineering problems. The details of the time marching algorithm proposed 

are explained.  Several problems are solved to show the capabilities of the approaches used.  

Some benchmark problems are also devised and solved for further studies.  It is shown that 

the one of the introduced approaches is capable of solving a class of problems with moving 

boundaries. 

 

Keywords: Time-dependent, Exponential basis functions, Fundamental solution, Collocation, 

Discrete transformation, Meshless method 
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1. Introduction 

 

After about a century from the development of efficient numerical methods such as Finite 

difference method (FDM), finite element method (FEM) or boundary element method 

(BEM), the need of further developments for attaining high accuracy solutions is still felt in 

some engineering problems. An instance may be seen in wave propagation problems 

involving high frequency excitation encountering in crack detection procedures. Among the 

ideas for improving the available routines, one may find studies on using alternative basis in 

FDM as in [1] or in FEM as [2-4]. Compared with FDM and FEM, BEM is capable of 

producing solutions with high accuracy. However, the necessity of using elements at the 

boundaries introduces some undesirable features in many applications. The method of 

fundamental solutions (MFS) has emerged as an alternative to BEM and so far has proved to 

be effective in many problems [5, 6].  Both BEM and MFS are sometimes categorized in 

Trefftz methods. However, these two methods require basis functions which are not available 

in many problems. Most of the above mentioned methods are basically devised for solution 

of problems defined in spatial coordinates.  

For problems defined in spatial coordinates and time, the methods are sometimes combined 

with FDM (e.g. Newmark methods [7] or combined with Trefftz method [8]) or they are used 

in conjunction with a suitable transformation technique such as Fourier or Laplace 

transformation (see [9-11]). In the latter case, finding the inverse of the solution is another 

difficult task.  

Among the aforementioned numerical methods considering time directly, MFS seems to be 

more attractive to many researches [12-15], although the list of the studies in this regard is 

short. Due to the limitation of availability of the fundamental solution, most of the studies 

focus on heat conduction problems for which the bases are known [13-15]. However, such 

fundamental solutions are not available for many other cases even in the realm of problems 

whose governing differential equation is of constant coefficient type. Nevertheless, it is 

mathematically understood that for this latter type of problems one can always find some 

bases in the form of exponential functions. This helps to construct a Trefftz method for such a 

category of problems. As shown in [16], a Trefftz collocation approach is well suited for this 

purpose.  

In this research we extend the idea used in [16, 17] to solve time dependent problems. We 

shall focus on problems having application in engineering, such as heat conduction or wave 

propagation ones. Considering time as an axis, we treat the problems in manner similar to 
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that introduced in [16] while acknowledging the fact that in this case the problems are of 

initial value type. As is seen later, we shall cast the method in two forms of approaches, in 

one exponential basis functions (EBFs) are used to construct a non-standard eigenvalue 

problem and another directly EBFs are employed in a manner similar to procedure introduced 

in [16]. In both approaches we satisfy the non-homogenous boundary conditions through 

collocation. In some special cases, part of the procedure in the first approach becomes similar 

to Sturm-Liouville problems [9, 10] and thus results in a set of orthogonal eigen-functions. 

However, the problems we consider here are of more general forms and thus the eigen-

functions are not necessarily orthogonal which makes the satisfaction of the initial boundary 

conditions more difficult, compare with Sturm-Liouville problems.  This effect may be 

viewed as a convincing reason for using collocation for satisfaction of the initial conditions.   

A rather similar idea has recently been tested successfully in boundary value problems [18].  

In the second approach we satisfy the initial and side conditions at the same time through 

collocation.  

As will be seen later, a finite time interval is predefined in the method presented and this 

effect resembles other methods using MFS. However, in many practical problems it is needed 

to consider a rather long period of time for simulation. We shall introduce a time marching 

procedure with the aid of the two proposed approaches. To this end, we choose a small time 

interval and repeat the procedure in a step by step manner while using the information 

obtained at the end of time interval as the initial values for the next step.  We shall show that 

such an algorithm affects the accuracy of the solution.  

The idea of treating time as an axis similar to those used for special coordinates appears to be 

rather new. Few studies have focused on such an idea most of which use the method of 

fundamental solutions (MFS) in a certain class of problems [12-15]. This makes it hard to 

find benchmarks especially when a wider class of problems is of interest. Most of the 

benchmarks may be found in references addressing classical mathematics where separation of 

variables is used to solve the time dependent problem through some well-known 

transformation techniques [9, 10].  

The method is to be tested in solution of well-known engineering problems. Heat conduction 

and wave propagation problems are chosen for this purpose.  Some of the problems defined 

are solvable through well-known approaches such as using Fourier series [9, 10]. We shall 

use such solutions as the reference ones for those particular benchmark problems.  However, 

as will be seen later, there are some engineering problems, in the two aforementioned 

categories, which are not easily solvable with the standard approaches. We shall show that 
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the introduced collocation method is capable of solving many of such problems.  In the same 

line, we shall show how more general mathematical problems can be solved using the 

proposed method.   

The layout of the report is as follows. In the next section the model used in this research is 

described.  In Section 3 we address the way that the EBFs are found.  In Section 5 the 

solution method is described where we introduce two approaches for our method.  

Formulation suitable for the solution of problems with source terms is explained in the same 

section. In Section 5 we shall introduce the time marching algorithm mentioned earlier. In the 

next section we shall consider two sample problems as general mathematical ones.  The 

problems are defined so that the well-known approaches can not easily be applied. Also in 

section 7 we shall consider five more sample problems in the category of engineering 

problems some of which may not be solved with standard mathematical methods.  In the 

same section we shall show how the approach II may be used to solve a class of problems 

with moving boundaries. Finally in Section 8 we shall summarize the conclusions made 

throughout the research.   

 

2. Model problems 

We consider a general 1D time dependent problem with following equation 

0 1 1 1

( , )
n m n mN M N M

n m nmn m n m
n m n m

u u u
a b a q x t

x t x t

+

= = = =

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
∑ ∑ ∑∑  L Rx x x≤ ≤ , 0t ≥    (1) 

In the above equation u  is the main unknown function to be found in spatial coordinate x  

and time t , na , mb  and nma  are the representatives of three sets of constant coefficients (with 

at least one non-zero element in each set of every two chosen sets for  1n ≥  and 1m ≥ , 

respectively), N  and M are the maximum orders of differentiation with respect to x  any t ,  

and finally q  is a predefined source term varying with x  and  t .  The following generalized 

end boundary conditions are also defined  

,

0

( )

i
L

L

K k

i k ik
k x x

u
c L t

x= =

 ∂
= 

∂ 
∑ ,     11,....,i N= ,             (2) 

,

0

( )

j
R

R

K k

j k jk
k x x

u
d R t

x= =

 ∂
= 

∂ 
∑ ,     21,....,j N= ,           (3) 

Here again ,i kc  and ,j kd  are the representatives of 1 2N N+  sets of constant coefficients (with 

at least one non-zero element in each set). i

LK  and j

RK  are the maximum order of derivatives 

appearing in the end conditions at Lx  and Rx , respectively (in many practical problems 
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i

LK N≤  and j

RK N≤ ).  Also ( )iL t and ( )jR t  represent two sets of time dependent functions 

defined at Lx x=  and Rx x= .   

The reader may note that for a solvable problem with definition (1), each set of the relations 

in (2) and (3) should give, respectively, 1N  and 2N  distinct but not over-determined 

conditions. Besides, the total number of conditions at both sides should satisfy 1 2N N N+ = .   

The initial boundary conditions may generally be expressed as follows 

,

0 0

( )

P kI

P k Pk
k t

u
e F x

t= =

 ∂
= 

∂ 
∑ ,       1,....,P M= ,    L Rx x x≤ ≤      (4) 

where ,P ke  represents M sets of coefficients (with at least one non-zero element in each set). 

( )PF x is an element of a set of functions defined in spatial coordinate as initial values. The 

maximum order of differentiation PI  in each set, for engineering problems, is usually equal 

or less than M  (here again the relations (4) should be a set of M distinct but not over-

determined conditions). 

In the above relations the left and right ends of the problem are considered fixed, however for 

problems with moving boundaries one may consider the end coordinates as functions of time, 

i.e. ( )Lx t  and ( )Rx t . We shall give some examples in the part of numerical results. 

 

3. Exponential Basis Functions 

The solution to the problem defined in (1) may be split into homogeneous and particular parts 

as 

H Pu u u= +            (5) 

where Hu  is the solution to (1) with 0q =  and Pu  is the solution when 0q ≠  disregarding 

the boundary conditions.  Generally the summation may contain smooth and non-smooth 

parts.  Here we focus on the smooth solutions so that they can be expressed as the summation 

of some exponential functions.   For homogeneous part, for instance, the following 

exponential form is considered 

( , , , ) ( , ) x t

Hu x t A e
α βα β α β +=          (6) 

Substitution of (6) in (1), with 0q = , results in a relation which is satisfied when the 

following algebraic equation holds 

0 1 1 1

0
N M N M

n m n m

n m nm

n m n m

a b aα β α β
= = = =

+ + =∑ ∑ ∑∑        (7) 

From the above equation either of the parameters α or β  may be found in terms of another 
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( )n nfα β=             1,.....,n N=         (8) 

 or     

( )m mfβ α=          1,.....,m M=         (9) 

This may be performed either explicitly by finding the functions or numerically by choosing 

one and calculating the roots of the algebraic equation (7).  

 

Remark 1: In some problems the characteristic equation (7) yields multiple roots for α  or β .  

In that case, some of the bases will be missing. The missing bases may be found by 

considering a polynomial, containing monomials of x  and t , multiplied by the original basis.  

For instance if two repeating roots exist then one may consider ( ) x t
a bx ct e

α β++ + as a new 

form of basis (see [16] for similar situation in problems just defined in spatial coordinates).  

We shall present an example in Section 6 of the report. ■ 

 

It must be noted that α  and β  in (8) and (9) may take on complex values.  Therefore, the 

solution to (1) may be written as  

1

( , ) n

N
x t

H n n

n

u A e d
β

α β
βα β +

Ω
=

= Ω∑∫                   (10) 

for instance when α  is found in terms of β  as in (8).  In the above relation βΩ  is an 

appropriate area or locus in the Gaussian plane. The unknown coefficients ( , )n nA α β  are to 

be found so that boundary conditions (2) to (4) are satisfied. This, if not possible, is very 

difficult task for most problems. However, one may think of a discrete form of (10), for 

instance when the integral is to be calculated numerically, and simply write 

 ,0 0

0

0

,

1 1

ˆ ( , ) i n i

N N
x t

H i n

i n

u x t C e
β

α β+

= =

=∑∑   
0 0, ( )i n n ifα β=                 (11) 

In the above equation ˆ
Hu  is an approximation to Hu ,  

0 ,i nC  represents a set of coefficients to 

be found from boundary conditions, 
0 ,i nα  is evaluated by the n th functions in (8) when 

0i
β  is 

chosen on the Gaussian point, and Nβ  is the total number of points used in Gaussian plane 

for β . A similar expression may be written when β  is found in terms of α  as in (9), thus the 

approximated function ˆ
Hu  may be considered as     

, ,0 0 0 0

0 0

0 0

, ,

1 1 1 1

ˆ ( , ) i n i i i m

N NN M
x t x t

H i n i m

i n i m

u x t C e C e
β α

α β α β+ +

= = = =

= +∑∑ ∑∑                 (12) 
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with 
0 ,i mC , 

0 ,i mβ  and Nα being analogously defined as their counterparts in (11). Instead of 

working with the forms given above, for convenience, we summarize the expressions as the 

following one 

0 0

0

0 1

ˆ ( , )
e

j j

N
x t

H j

j

u x t C e
α β+

=

=∑                    (13) 

where eN is the number of EBFs used. Whenever needed, we shall specify whether α  is to be 

found in terms of β  or vice versa. Next we shall explain how one can find the coefficients 

from the information at the boundaries. 

 

4. The solution method 

In this part first we consider problems with no source term, i.e. 0q = , and try to satisfy the 

boundary conditions to obtain a solution for a homogeneous partial differential equation.  

Having introduced the approaches, we explain how one can deal with problems with source 

terms. 

 

4.1. Problems without source terms 

The aim here is to find appropriate coefficients 
0i

C  in (13) so that the boundary conditions (2) 

- (4) are fully or approximately satisfied. Two approaches are proposed here in this regard.  In 

the first one we split the solution into two parts through defining a suitable characteristic 

problem and use two separate collocation schemes. In the second one we directly use a 

collocation scheme for all boundary conditions. The later approach enables us to solve some 

class of problems with moving boundaries. 

 

Approach I 

We spilt the homogeneous solution into two parts 

0ˆ ˆ ˆ g

H H Hu u u= +                      (14) 

In the above relation 
0ˆ
Hu  denote a solution in which side boundary conditions (2) and (3) are 

considered in their homogeneous forms  

0

,

0

ˆ
0

i
L

L

K k

H
i k k

k x x

u
c

x= =

 ∂
= 

∂ 
∑ ,        11,....,i N=                  (15) 

and     
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0

,

0

ˆ
0

j
R

R

K k

H
j k k

k x x

u
d

x= =

 ∂
= 

∂ 
∑ ,     21,....,j N=                  (16) 

By defining 0ˆ
Hu , obviously, the task of satisfying the actual conditions remains for ˆ g

Hu  (this 

will be explained later). From the two forms in the right hand side of (12) we choose the first 

one for 0ˆ
Hu  and write 

( )0

1

ˆ( ) n

N
f x t

H n

n

u C e
β β

β
+

=

=∑                    (17) 

while we let β  to be determined later.   Inserting (17) in (16) and (15) results in a 

characteristic problem 

β =A C 0                      (18) 

where βA  is a N N× matrix depending on β  and C is an 1N ×  array containing the 

coefficients nC . The elements of  βA  are as 

1

2

1 2 1 2

( )

, ,

0

( ) ( )

n
L

n L

K
k f x

n n n k n

k

c f e
β

β β
=

 =  ∑A          1 1n N≤ ,               21 n N≤ ≤              (19) 

1

2

1 2 1 2

( )

, ,

0

( ) ( )

n
R

n R

K
k f x

n n n k n

k

d f e
β

β β
=

 =  ∑A          1 1N n N< ≤ ,      21 n N≤ ≤              (20) 

For non-trivial solution of (18), the determinant of  βA  is set zero 

| | 0β =A                      (21) 

This is a non-standard eigenvalue problems which should be solved for β .  One may arrange 

the values in terms of their Hermitian length | |β  and thus use a counter as “ l ” to distinguish 

the eigenvalues and eigenvectors as 

l lsβ = ,     l l=C φφφφ            l ∈�                   (22) 

The first part of the homogeneous solution is therefore written as 

( )0

1

ˆ ( ) n l l

N
f s x s t

H l l n

l n

u c eφ +

=

 
=  

 
∑ ∑                    (23) 

In (23) lc  denotes a set of new unknown coefficients to be determined from non-zero 

boundary conditions and ( )l nφ  is the n th element of lφφφφ .  

 

Remark 2: The characteristic problem defined above has much in common with Sturm-

Liouville problems; however the elements of the series (23) are not necessarily orthogonal in 

all cases. Nevertheless the problem may be reduced to a Sturm-Liouville when the operators 
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in (1) and boundary conditions (2) and (3) are arranged in an appropriate form [9, 10]. We 

shall refer to this effect in the Section 7 of the report where the engineering problems are 

dealt with. ■ 

 

t

xx x
L R

T

t

 

t

xx x
L R

T

t

 

t

xx x
L R

T

t

 

(a) (b) (c) 

Figure 1. Schematic presentation of the solution domain; the points used for satisfaction of  

(a) the side boundary conditions in approach I, (b) the initial conditions in approach I,  

(c) the side and initial conditions in approach II. 

 

The second part of the homogeneous solution ˆ g

Hu  may be constructed by an expression 

similar to (17) but with parameter β  different from those obtained as (22).  To this end we 

choose a set of values for β  as 

r rwβ =      { },r lw s l∉ ∈�                    (24) 

Prior to construction of ˆ g

Hu , one should express the right hand sides of (2) and (3) in terms of 

exponential functions in time; i.e. 

,

1

( ) ( )

t
e

r

N
w t

i L i r

r

L t h e
=

=∑ ,     11,....,i N=                   (25) 

 and  

,

1

( ) ( )

t
e

r

N
w t

j R j r

r

R t h e
=

=∑ ,     21,....,j N=                   (26) 

In the above relations  ,( )L i rh  and ,( )R j rh  are two sets of new coefficients to be determined 

from ( )iL t  and ( )jR t . Also 
t

eN  is the number of exponential functions to be used.  Note that 

exponential functions rw t
e  are not necessarily orthogonal.  To find ,( )L i rh  and ,( )R j rh  we 

employ a collocation scheme. First of all we consider a finite interval of time as [0, ]t T∈  

instead of [0, )t ∈ ∞ .  The largeness of T  may be determined by inspection, i.e. in a 

successive solutions one can enlarge T  until the final approximation to u converges to a 
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solution for smaller time interval 1[0, ]t T∈ , 1T T< .  We then sample ( )iL t , ( )jR t  and rw t
e  at 

t

pN  points along t  (see Figure 1-a) 

1 2( ) ( ) ...... ( )t
p

T

i i i i N
L t L t L t =   

L  

1 2( ) ( ) ...... ( )t
p

T

j j j j N
R t R t R t =   

R                  (27) 

1 2 .....
r tN pr r

T
w t

w t w t

r e e e
 =   

e  

and rewrite (25) and (26) in their discrete form 

,

1

( )

t
eN

i L i r r

r

h
=

=∑L e ,    
,

1

( )

t
eN

j R j r r

r

h
=

=∑R e                  (28) 

 Note that the number of sampling points should not necessary be equal (or even greater than) 

the number of bases.  The coefficients ,( )L i rh  and ,( )R j rh  can simply be found as  

,( ) T

L i r r ih = e r L ,     ,( ) T

R j r r jh = e r R                   (29) 

where r  is a 
t t

p pN N×  projection matrix which can be evaluated (see [16-21] ) by inserting 

relations (28) in (29) as 

1

t
pN

T

r r

r

+

=

 
=  
  
∑r e e                      (30) 

In the above equation [.]+  denotes the pseudo-inverse of the matrix. Note that in (28) to (30) 

normalized arrays as 
1

r r
a

=e e , with a  being an appropriate scaling factor, may be used  (see 

[16]).  

 

Remark 3: The reader may note that in choosing rw  the point spacing used for the sampling 

plays an important role.  Here we choose rw  so that oscillation of the function rw t
e  happens 

within a period greater than 4 t∆ , with t∆  being the spacing between the points along t axes.  

This leads us to consider a restriction for the imaginary part of rw  as ( )
2

r
w

t

π
ℑ ≤

∆
. ■ 

 

Remark 4:  In the evaluation of ,( )L i rh  and ,( )R j rh  one may use the extended forms of the side 

conditions, i.e. ( )iL t  and ( )jR t  may be fictitiously extended to 0t < .  This helps to construct 

a smooth ˆ g

Hu  so that the initial boundary conditions are satisfied effectively. ■   
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With ,( )L i rh  and ,( )R j rh  in hand, a new system of equations similar to (18) but with non-zero 

right hand side are arranged as 

rw r r=A C h ,       1,...., t

er N=                    (31) 

In (31) 
,1 ,

...
r r r N

C C =  C  is a set of  N  coefficients and  

1 2

, ,[... ( ) ... | ... ( ) ....]T

r L i r R j r

N N

h h=h
������� �������

                 (32) 

The elements of  
rwA  are as 

1

2

1 2 1 2

( )

, ,

0

( ) ( )

n
L

n r L

r

K
k f w x

w n n n k n r

k

c f w e
=

 =  ∑A          1 1n N≤ ,               21 n N≤ ≤              (33) 

1

2

1 2 1 2

( )

, ,

0

( ) ( )

n
R

n r R

r

K
k f w x

w n n n k n r

k

d f w e
=

 =  ∑A          1 1N n N< ≤ ,      21 n N≤ ≤              (34) 

Since 
rwA  is regular, one may find the coefficients of rC as  

1

rr w r

−=C A h                       (35) 

The second part of the homogeneous solution is therefore written as 

( )

,

1 1

ˆ

t
e

n r r

N N
f w x w tg

H r n

r n

u C e
+

= =

 
=  

 
∑ ∑                    (36) 

In view of (23) and (36) the complete form of the homogeneous solution is now written as 

( ) ( )

,

1 1 1

ˆ ( )

t
e

n l l n r r

NN N
f s x s t f w x w t

H l l n r n

l n r n

u c e C eφ + +

= = =

   
= +   

   
∑ ∑ ∑ ∑                (37) 

 

Remark 5: In view of Equations (25) and (26), it may be seen that Fourier series may also be 

used to express ( )iL t  and ( )jR t .  In that case one may write 

2 /

,( ) ( )
r t T

i L i r

r

L t h e
π

∞

=−∞

= ∑ i ,     2 /

,

1
( ) ( )

T
r t T

L i r i
T

h L t e dt
T

π−

−
= ∫

i                (38) 

2 /

,( ) ( )
r t T

j R j r

r

R t h e
π

∞

=−∞

= ∑ i ,    2 /

,

1
( ) ( )

T
r t T

R j r j
T

h R t e dt
T

π−

−
= ∫

i                (39) 

Upon selecting a finite number for r  in this case, e.g. r rN r N− ≤ ≤ , the right hand side of 

(31) is replaced by the following array 

1 2

, ,[... ( ) ... | ... ( ) ....]T

r L i r R j r

N N

h h=h
������� �������

                 (40) 
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The elements of 
rwA  will be as those given in (33) and (34) with rw  replaced by /r Tπi . The 

rest of the procedure will be as explained before (see relations (35)-(37)). Note that in this 

case, one should extend the side conditions to 0t <  (see Remark 4).  We shall present the 

results of such a formulation in the sample problem 5. ■ 

 

The remaining unknowns in (37) are the coefficients lc  which are to be found from the initial 

conditions (4). Note that the number of these unknown coefficients may be increased by 

finding new ls  from the characteristic equation (21). 

In order to find the coefficients lc  first we substitute (37) in (4) as 

,

0 0

ˆ
( )

P kI
H

P k Pk
k t

u
e F x

t= =

 ∂
= 

∂ 
∑ ,        1,....,P M=                  (41) 

which leads to 

( ) ( )

, ,

0 1 1 1

( ) ( )

tP
e

n l n r

NI N N
f s x f w xk k

P k l l l n r r n P

k l n r n

e c s e w C e F xφ
= = = =

     
+ =    

     
∑ ∑ ∑ ∑ ∑               (42) 

By rearranging the summation signs, one may write  

( ), ,( ) ( )l P l P l P

l

c B x F x F x+ =∑ ,    1,....,P M=                  (43) 

where 

( )

, ,

0 1

( ) ( )

L

n l

I N
f s xk

P l P k l l n

k n

B x e s eφ
= =

 
=  

 
∑ ∑ ,         

( )

, ,

0 1 1

( )

tl
e

n r

NI N
f w xP k

P k r r n

k r n

F x e w C e
= = =

 
=  

 
∑ ∑ ∑             (44) 

Once again, we employ a collocation scheme to find lc  in (43). To this end, a number of 

sampling points, say 
x

pN  , are chosen along L Rx x x≤ ≤  at 0t =  (see Figure 1-b). Then the 

functions at both sides of (43) are calculate at the points to obtain 

,l P l P P

l

c + =∑ B F F   1,....,P M=                  (45) 

We further arrange all conditions as 

l l

l

c + =∑ B F F
�� �

                    (46) 

For instance F
�

 is an ( . ) 1x

pM N ×  array arranged as follows 

1 2( ) ( ) .. ( ) .. ( )
T

T T T T

P M
 =  F F F F F

�
,    1 2( ) ( ) ( ) ..... ( )x

p

T

P P P P N
F x F x F x =   

F   

                      (47) 

The coefficients lc  are found as 
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( )T

l lc = −B R F F
�

,        
T

l l

l

+
 

=  
 
∑R B B                  (48) 

The final solution is then obtained as 

( ) ( )

,

1 1 1

ˆ ( ) ( )

t
e

n l l n r r

NN N
f s x s t f w x w tT

H l n l r n

l n r n

u e C eφ + +

= = =

    
= − +    

    
∑ ∑ ∑ ∑B R F F

�
              (49) 

Here again one may also use a normalized form of the arrays lB  (see [16]).   

 

Remark 6: It may be noted that the point spacing along x  axes must be selected by 

considering the fluctuation of the function ( )n lf s x
e . By restricting the oscillation of the 

function within a period greater than 4 x∆ , with x∆  being the spacing, one may find a 

relation between the point spacing and the imaginary part of ( )n lf s  as 

2 max ( ( ))n lx f s π∆ × ℑ ≤ . This means that the larger N  the smaller point spacing x∆ . ■ 

 

The above approach may be followed for many engineering problems.  We shall explain the 

procedure for some well-known problems. But before that, next we shall propose another 

approach without splitting the homogeneous part of the solution. 

 

Approach II  

In this approach we directly use Equation (13) and try to find the coefficients iC  by a 

collocation scheme for boundary conditions (2), (3) and (4) simultaneously. Unlike the first 

approach the relations (8) and (9) are both used in this case. To this end we substitute (13) in 

the boundary conditions which leads to the following sets of equations 

0 0

0 0

0

,

1 0

( )

i
e L

j L j

N K
x tk

j i k j i

j k

C c e L t
α β

α
+

= =

=∑ ∑ ,       11,....,i N=                  (50) 

for the left conditions at Lx x=  and  

0 0

0 0

0

,

1 0

( )

j
e R

j R j

KN
x tk

j j k j j

j k

C d e R t
α β

α
+

= =

=∑ ∑ ,     21,....,j N=                 (51) 

for the right conditions at Rx x=  and finally 

0

0 0

0

,

1 0

( )

P
e

j

N I
xk

j P k j P

j k

C e e F x
= =

=∑ ∑
α

β ,        1,....,P M=                 (52) 
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 for the initial conditions at 0t = .  Here again we sample both sides of (50) and (51) at 
t

pN  

points along t  and at the same time sample both sides of (52) at x

pN  points to write 

0 0

0 1

( )
eN

L

j j i i

j

C
=

=∑ e L                   11,....,i N=                  (53) 

as the collocated values at Lx x=  and 

0 0

0 1

( )
eN

R

j j j j

j

C
=

=∑ e R                 21,....,j N=                  (54) 

as the collocated values at Rx x=  and 

0 0

0 1

( )
eN

j j P P

j

C
=

=∑ f F
�

,                1,....,P M=                  (55) 

as the collocated values at 0t =  (see Figure 1-c).  The definitions of iL  and jR are the same 

as those given in (27) and that of the PF
�

 is the same as the second relation in (47).  The 

definitions of 
0

( )L

j ie  , 
0

( )R

j je  and 
0

( )j Pf  are, respectively, as 

0 010 0

0 0 0

( )( )

, ,

0 0

( ) , ........ ,

j j
R R

j L j tNj L j p

T
K K

x t
x tL k k

j i j k j j k j

k k

d e d e
++

= =

 
=  
  
∑ ∑

α βα β
α αe               (56) 

0 010 0

0 0 0

( )
( )

, ,

0 0

( ) , ........ ,

j j
R R

j R j tNj R j p

T
K K

x t
x tR k k

j j j k j j k j

k k

d e d e
α βα β

α α
++

= =

 
=  
  
∑ ∑e               (57) 

010

0 0 0

( )
( )

, ,

0 0

( ) , ......... ,

P P

j xNj p

T
I I x

xk k

j P P k j P k j

k k

e e e e
= =

 
=  
 
∑ ∑

αα
β βf                (58) 

A new arrangement of equations (53), (54) and (55), for all i , j  and P , may be rewritten as 

0 0

0 1

eN

j j

j

C
=

=∑ V U ,                         (59) 

where 

 
0 0 0 1 0 0 2 0 0

1 2

1 1 1

1,...., 1,...., 1,....,

[( ) ......( ) | ( ) .......( ) | ( ) .......( ) ]L T L T R T R T T T T

j j j N j j N j j M

for i N for j N for P M= = =

=V e e e e f f
������� ������� �������

              (60) 

and  

1 21 1 1[ ...... | ....... | ....... ]T T T T T T T

N N M=U L L R R F F
� �

                (61) 

The coefficients
0j

C  may now be found as 

0 0

T

j jC = V HU          
0 0

0 1

eN
T

j j

j

+

=

 
=  
 
∑H V V                   (62) 
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With the coefficients 
0j

C in hand, one may find the final homogeneous solution as 

0 0

0

0 1

ˆ ( , )
e

j j

N
x t T

H j

j

u x t e
α β+

=

 
=   
 
∑ V HU                   (63) 

In writing (59) one may use  

0 0

0

1
j j

js
=V V                      (64) 

with 
0j

s  being an appropriate scaling factor (e.g. Hermitian length see [16]).  In that case   

0 0

0

0 0
1

1
ˆ ( , )

e

j j

N
x t T

H j

j j

u x t e
s

α β+

=

 
=   
 
∑ V HU ,                

0 0

0 1

eN

T

j j

j

+

=

 
=  
 
∑H V V               (65) 

With relations (63) or (65) in hand, we must select an appropriate set of 
0j

α and
0j

β . As 

mentioned earlier these two parameters must satisfy the characteristic equation (7) and one 

may be calculated in terms of another as (8) and (9).  Two strategies have been suggested in 

[16], one based on a projection concept and another heuristically based on numerical 

experiences.  Here we shall employ the former, and for this, we select a number of points on 

imaginary axis for 
0j

β  and 
0j

α , to be used in (8) and (9) respectively, as 

0 0j jqββ = i ,        
0 0j jqαα = i ,               1= −i                  (66) 

The largeness of the scalars, i.e. 
0

| |jqβ
and

0
| |jqα

, affects the fluctuation of the EBF along t  and 

x  axes, respectively.  In the case that the points on the axes are uniformly separated by t∆  

and x∆ , one may find the bounds of 
0

| |jqβ
and

0
| |jqα

 as 

0
| |

2
j

q
t

β π
≤

∆
,     

0
| |

2
j

q
x

α π
≤

∆
                   (67) 

assuming that a single oscillation of the function, along each axis, is allowed within 4 t∆  and 

4 x∆  respectively.    

Having nominated a number of EBFs, we select some of them which contribute most to the 

solution.  To this end we find direct projection of the vectors 
0j

V  on U  by defining a 

projection value as 

0 0

T

j j
p = V U                      (68) 

Since for a given β  one may find some nα  as (8), or vice versa for a given α  a number of  

mβ  as (9) may be found, we calculate maximum projection values for each case as 

0 0

,
max( ( ) )n T

i i
n

p
α ββ = V U ,    0 1,....,i Nβ=                  (69) 
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and 

0 0

,
max( ( ) )m T

i i
m

p
α βα = V U ,    0 1,....,i Nα=                  (70) 

In above 
0

,n

i

α β
V  and 

0

, m

i

α β
V  represent two sets of arrays as defined in (60) for pairs of ( , )nα β  

and ( , )mα β  respectively.  Now we find  

0
0

max
max( )

i
i

p pβ β= ,     
0

0

max
max( )

i
i

p pα α=                   (71) 

and choose those EBFs which have more than a certain projection value through defining  ξ  

as 

0 maxjp pα αξ≥ × ,      
0 maxjp pβ βξ≥ × ,    0 1ξ< < ,    0 1,......, ej N=               (72) 

In this research we use 0.25ξ = . 

 

4.2 Problems with source terms 

As mentioned earlier, when the right hand side of (1) is non-zero we split the solution as (5) 

where Pu  is the solution when 0q ≠  disregarding the boundary conditions.  The idea has 

much in common with the dual reciprocity method (DRM) introduced for MFS method in 

[22, 23] using radial basis functions.  However, here we shall use either EBFs or analytical 

functions for this purpose in a manner similar to the way we used them in [16]. In the case of 

using EBFs we construct Pu  by first expressing the source term in terms of EBFs as 

0 0

0

0 1

ˆ( , ) ( , )
q

k k

N
x t

k

k

q x t q x t D e
λ γ+

=

=∑�  ,            
0 0

2( , )k kλ γ ∈�                (73) 

In the above relation, the pair 
0 0

( , )k kλ γ represents a set of parameters which are to be chosen 

so that they do not satisfy the characteristic equation (7), i.e. 

0 0 0 0

0 1 1 1

0
N M N M

n m n m

n k m k nm k k

n m n m

a b aλ γ λ γ
= = = =

+ + ≠∑ ∑ ∑∑                  (74) 

The coefficients 
0kD  in (73) are found by sampling the source term q on a grid of points in 

the domain [ , ] [0, ]L Rx x T× .  The procedure is analogous to the one introduced in [16] and 

thus we avoid explaining it here for the sake of brevity (see reference [16] for the way we 

choose the pairs 
0 0

( , )k kλ γ ). By expressing Pu  in terms EBFs as 

0 0

0

0 1

q

k k

N
x t

P k

k

u G e
λ γ+

=

=∑                     (75) 

where 
0kG  is found by substituting (73) and (75) in (1) as 
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0

0

0 0 0 0

0 1 1 1

k

k N M N M
n m n m

n k m k nm k k

n m n m

D
G

a b aλ γ λ γ
= = = =

=

+ +∑ ∑ ∑∑
                 (76) 

Such a particular solution has projection on the boundaries and therefore satisfaction of the 

boundary conditions is performed by rewriting (2), (3) and (4) as 

,

0

( )

i
L

L

K k

H
i k ik

k x x

u
c L t

x= =

 ∂
= 

∂ 
∑ 	 ,    ,

0

( ) ( )

i
L

L

K k

P
i i i k k

k x x

u
L t L t c

x= =

 ∂
= −  

∂ 
∑	               (77) 

,

0

( )

j
R

R

K k

H
j k jk

k x x

u
d R t

x= =

 ∂
= 

∂ 
∑ 	 ,    ,

0

( ) ( )

j
R

R

K k

P
j j j k k

k x x

u
R t R t d

x= =

 ∂
= −  

∂ 
∑	               (78) 

,

0 0

( )

P kI
H

P k Pk
k t

u
e F x

t= =

 ∂
= 

∂ 
∑ 	 ,     ,

0 0

( ) ( )

P kI
P

P P P k k
k t

u
F x F x e

t= =

 ∂
= −  

∂ 
∑	               (79) 

and substituting (75) in them.  The collocation approaches may then be followed as:  

 

Approach I 

In this form, the arrays iL  and jR  in (27) are replaced with their counterparts  

1 2( ) ( ) ...... ( )t
p

T

i i i i N
L t L t L t =   

L	 	 	 	 ,     
1 2( ) ( ) ...... ( )t

p

T

j j j j N
R t R t R t =   

R	 	 	 	             (80) 

we then find  

,
( ) T

L i r r i
h = e r L	 	 ,     ,

( ) T

R j r r j
h = e r R	 	                   (81) 

and replace rh  by rh	  arranged analogously. In place of rC  in (35) we evaluate  

1

rr w r

−=C A h	 	                      (82) 

With the elements of rC	  in hand, one may rewrite (37) by replacing ,r nC  with ,r n
C	  .  Now 

the initial boundary conditions are considered by a set of relations similar to (41) and  (42) 

noting ( )PF x should also be replaced by ( )PF x	  (see (79)). In that case (43) is written as 

( ), ,
( ) ( )

l P l P l P

l

c B x F x F x+ =∑ 	 	                    (83) 

with , ( )P lB x  being as the one given in (44) and 

( )

, ,

0 1 1

( )

tl
e

n r

NI N
f w xP k

P k r r n

k r n

F x e w C e
= = =

 
=  

 
∑ ∑ ∑	 	                  (84) 

The rest of formulation is similar to those given in (45) to (49) with appropriate replacement 

of the arrays. The final expression is as 
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0 0

0

0

( ) ( )

,

1 1 1 1

ˆ ( ) ( )

t
qe

k kn l l n r r

NNN N
x tf s x s t f w x w tT

l n l r n k

l n r n k

u e C e G e
λ γ

φ
++ +

= = = =

    
= − + +    

    
∑ ∑ ∑ ∑ ∑B R F F

�		 	
            (85) 

with T

lB	 , F	  and F
�	

 being the counterparts of T

lB , F  and F
�

. 

 

 

Approach II 

In this form, the arrays iL , jR  and PF
�

 in (53), (54) and (55) are simultaneously replaced by 

iL	 , jR	  and PF
�	

.  The array U in (61) is replaced with 

1 21 1 1[ ...... | ....... | ....... ]T T T T T T T

N N M=U L L R R F F
� �	 		 	 	 	 	                 (86) 

In view of (65), the final solution is then found as  

0 0 0 0

0 0

0 00
1 1

1
ˆ( , )

qe

j j k k

NN
x t x tT

j k

j kj

u x t e G e
s

α β λ γ+ +

= =

 
= +  
 
∑ ∑V HU	                (87) 

Next we shall introduce a marching algorithm using the two approaches explained.  

 

5. A time marching algorithm 

 

As explained earlier, the two introduced approaches are suitable for the solution of problems 

on a finite time interval [0, ]t T∈  (see Section 4.1).  The method may be used for the solution 

of problems with larger time intervals, t T
 through a time marching procedure.  To this 

end, we choose a series of overlapping time intervals.  The time interval may contain just a 

few time steps, i.e. T n t= ∆ .  The schematic presentation of the method, using approach II, is 

given in Figure 2. The solution within each time interval may be obtained by one of the two 

approaches introduced.  Let the solution be denoted by   

ˆ ˆ( , )u u x t tξ ξ= −  [ , ( )]t t t Tξ ξ∈ +    0,1,2, ....ξ =                 (88) 

In the above relation û  is the solution obtained in (85) or (87) and ûξ  is the solution within 

the ξ th interval. Such a solution is obtained by the following boundary conditions 

,

0

ˆ
( )

i
L

L

kK

i k ik
k

x x

u
c L t t

x

ξ
ξ

=
=

 ∂
= − 

∂  
∑ ,     11,....,i N= ,      i

LK ∈� ,    [ , ( )]t t t Tξ ξ∈ +             (89) 

,

0

ˆ
( )

j
R

R

kK

j k jk
k

x x

u
d R t t

x

ξ
ξ

=
=

 ∂
= − 

∂  
∑ ,     21,....,j N= ,    j

RK ∈� ,    [ , ( )]t t t Tξ ξ∈ +             (90) 
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which are the same as those in (2) and (3) by considering an appropriate shift in time.  Now a 

marching time step is chosen, e.g. T n t= ∆ ,  n n< .  With such a time marching step we may 

write 

1t t Tξ ξ −= +  ,   T T<                     (91) 

The initial conditions for the current time interval are defined from the solution obtained for 

the previous interval i.e. 

1
1

ˆ ˆ
t t t t T

u u
ξ ξ

ξ ξ
−

−= = +
   =    ,  

1

1
ˆ ˆ

t t t t T

u u

t t
ξ ξ

ξ ξ

−

−

= = +

∂ ∂   
=   

∂ ∂   
, .. ,  

1

1 1

1

1 1

ˆ ˆM M

M M

t t t t T

u u

t t
ξ ξ

ξ ξ

−

− −
−

− −

= = +

   ∂ ∂
=   

∂ ∂      
     (92) 

Note that the above initial conditions may be cast in a compact relation as (4).  Provided that 

the time intervals are chosen equally, i.e. all with duration of T , the solution procedure 

becomes sequentially systematic with the aid of the available numerical operators/matrices 

obtained for the first time interval.  Schematic presentation of the solution procedure is 

shown in Figure 2.   

 

Remark 7: In the case that the definitions of the initial conditions in (4) differ from those in 

(92), the matrices obtained for the first time interval, i.e. [0, ]t T∈ , may not be used for the 

next interval.  In such a situation, it is needed to repeat the solution procedure for 

[ , ( )]t T T T∈ + .  From this time on, the marching algorithm becomes sequentially systematic 

with the available numerical operators. ■ 

 

We shall discuss on the effects of the duration of  T  and T on the accuracy of the analysis 

while presenting the results of such time marching procedure in the sample problem 5.  

t

x

x

x

L

R

T

t

T

T

T

T

T

T

T

 

Figure 2. Schematic presentation of the proposed time marching method using approach II. 
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6. Application to mathematical problems  

In this section we consider some mathematical problems which do not necessarily have 

physical interpretation. 

 

6.1 General mathematical problems: Sample problem 1. 

 

In Equation (1) we consider 3N = , 2M =  and select na , mb  and nma  so that the following 

third order differential equation is defined 

3 2

3 2
0

u u

x t

∂ ∂
− =

∂ ∂
   0 x L≤ ≤                  (93) 

which is to be solved with the following boundary conditions 

[ ] 10
( )

x
u L t

=
= ,       [ ] 1( )

x L
u R t

=
= ,   2 ( )

x L

u
R t

x =

∂ 
= ∂ 

                (94) 

The above relations are arranged by considering 1 1N = , 1 0LK =  and 1,0 1c =  in (2), 

and 2 2N = , 1 0RK = , 2 1RK =  , 1,0 1d = , 2,0 0d =  and 2,1 1d =  in (3).  The initial conditions are  

[ ] 10
( )

t
u F x

=
= ,  2

0

( )
t

u
F x

t =

∂ 
= ∂ 

                  (95) 

Which are arranged by choosing 2M = , 1 0p
I

= = , 2 1pI = = , 1,0 1e = , 2,0 0e =  and 2,1 1e = in 

(4).  

 

6.1.1 Approach I 

Having written the characteristic equation (7), we find 1α , 2α  and 3α  in terms of β  as 

( )nf β  ,  1, 2,3n =  in (8) as follows 

 2 3 2 3 2 3

1 2 3

1 3 1 3
( ) , ( ) ( ) , ( ) ( )

2 2 2 2
f f fβ β β β β β= = − + = − −i i               (96) 

Therefore, when α  is calculated in terms of β  

( )
2 3 2 3

2 / 3

0 0 0

0

1 3 1 3
( ) ( )

1 2 32 2 2 2

1

ˆ ,
e

i i
i i

N
x t x t

x t

H j j j

j

u x t C e C e C e
β β β ββ β − + + − − +

+

=

  
= + + 

  
∑

i i

             (97) 

With the above relations in hand, one may find βA  through (19) to (20) and set its 

determinant to zero which results in the characteristic equation (21) as 

2 3 2 3
2 3

3 3 1 3
( ) ( )

2 32 2 2 2
1

| | 2 3 (3 3 ) ( 3 3 ) 0
2

L L
L

e e e
β β

β
β β

− +
−

 
= − + + + − + =  

 

i i

A i i i             (98) 
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6.1.2 Approach II 

In this approach, in addition to relation (97), we find β  in terms of α  as (9) and thus for this 

case we obtain 

3

1( )f α α= +    ,       3

2 ( )f α α= −                   (99) 

We add the following forms to those in (97) 

( ) { }3 3

0 0

0

1 2

1

ˆ ,
e

i i i i

N
x t x t

H j j

j

u x t C e C e
α α α α+ −

=

= +∑                (100) 

in which C  represents a new set of unknown coefficients. The procedure is continued by 

selecting a set of values for α  and β  as explained in [16]. The rest of the procedure is 

straightforward.  

 

6.1.3 Numerical Solution 

Now we consider an exact solution as 

3 2 22 3exactu x t x t= + +                (101) 

The boundary conditions are found by inserting (101) in (94), and (95) by considering 1L = . 

For numerical solution we choose a time interval of [0,1]t ∈ . A gird of 20 nodes is used 

along x  and a grid of 2 81× nodes ( 0.025t∆ = ) is used along t  at the two sides. In Approach 

I, we use the first seven set of roots of equation (98) for ˆ g

Hu .  For 0ˆ
Hu  we consider rw  as 

follow 

r
w w= i ,       { }0.001, 1, ... , 9, 10w∈ ± ± ± ±                        (102) 

Figure 3 depicts the variation of the two parts of the solution as given in (14). Figure 3-d 

shows the error distribution of the final solution. The maximum error is less than 0.01%.   

In approach II, 
0j

α and 
0j

β  in (60) are selected as below 

0 0j jqαα = i ,  or  
0 0j jq= ββ i      ( ) { }

2

0 0j j
q , q Qα β ∈               (103) 

where { } { }0.01, 1, ... , 4 , 5, 6Q = ± ± ± ± ± .  The results obtained by Approach II are shown 

in Figure 4. In this problem the results obtained from Approach II are of less error than those 

obtained by Approach I (less than 0.001%). 
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(a) (b) 

 

 

(c) (d) 

Figure 3. Variation of (a) 
0ˆ
Hu , (b) ˆ g

Hu , (c) ˆ
Hu  and (d) ˆ

exact Hu u−  in 

sample problem 1 obtained from Approach I. 

 

 

 

(a) (b) 

Figure 4. Variation of (a) ˆ
Hu  and (b) ˆ

exact Hu u−  in sample problem 1 obtained from Approach II. 
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6.2 General mathematical problems: Sample problem 2. 

 

In (1) we consider 3N = , 3M =  and select na , mb  and nma  so that the following third order 

differential equation is defined as 

3 3 3 3

3 2 2 3
4 8 5 0

u u u u

x x t x t t

∂ ∂ ∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂ ∂
          0 x L≤ ≤               (104) 

which is to be solved with the following boundary conditions 

[ ] 10
( )

x
u L t

=
= ,       [ ] 1( )

x L
u R t

=
= ,   2 ( )

x L

u
R t

x =

∂ 
= ∂ 

                       (105) 

The above relations are arranged by considering 1 1N = , 1 0LK =  and 1,0 1c =  in (2), 

and 2 2N = , 
1 0RK = ,

2 1RK =  , 1,0 1d = , 2,0 0d =  and 2,1 1d =  in (3). The initial conditions are  

[ ] 10
( )

t
u F x

=
= , 2

0

( )
t

u
F x

t =

∂ 
= ∂ 

, 
2

32

0

( )

t

u
F x

t
=

 ∂
= 

∂ 
              (106) 

which are arranged by choosing 3M = , 1 0p
I

= = , 2 1pI = = , 1 2pI = =  1,0 1e = , 2,0 0e = , 2,1 1e = , 

3,0 3,1 0e e= = , and 3,2 1e = in (4). We shall employ the second approach for the solution. The 

characteristic equation of the problem defined in (104) is as 

3 2 2 34 8 5 0α α β α β β− + − =                 (107) 

When α  is calculated in terms of β  (or vice versa) we have  

2

β
α =  (folded roots)  and α β=     (or 2β α=  (folded roots)  and  β α= )          (108) 

The missing bases are found by considering another set of functions as 

( ) ( )ˆ , i ix ti

H i i iu x t a x b t c e
α β+= + +                 (109) 

By inserting (109) in (104), the following relation is resulted 

( ) ( )

( ) ( ) ( )( )

3 2 2 3 3 2 2 3

2 2 2 2 3 2 2 3

4 8 5 4 8 5

12 16 5 8 10 3 4 8 5 0

i i i i

i i

x t x t

i i i i i i i i i i i i i i

x t

i i i i i i i i i i i i i i i i i

a x e b t e

a b c e

α β α β

α β

α α β α β β α α β α β β

α α β β α α β β α α β α β β

+ +

+

− + − + − + −

+ − + − − + + − + − =

                    (110) 

Inserting 2α β=  (or 2β α= ) in (110), it is found that ia , ib  and ic  can be chosen 

arbitrarily (note that at least one of the first two parameters should be non zero).  Here we 

consider i i ia b c= = .  Therefore, considering the two forms we have 
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( ) ( ) ( )
0 0 0

0

1 2 32 2

1

ˆ , 1
e

i i
i

x xN t t
x t

H j j j

j

u x t C e C x t e C e
β β

β
   

+ +    +   

=

  
= + + + + + 

  
∑  

                  
( ) ( ) ( ) ( ){ }

0 0 0

0

2 21 2 3

1

1
e

i i i

N
x t x t x t

j j j

j

C e C x t e C e
α α α+ + +

=

+ + + +∑               (111) 

with C  and C  representing two sets of unknown coefficients The rest of the procedure is 

straightforward. 

 

6.2.1 Numerical solution 

Now we consider the following exact solution 

[ ] [ ] [ ] [ ]2 3 22 4 sin 3 cos 3 sin 3 cos 3exactu x t t x x t x x t t xπ π π π= − + − + +            (112) 

The boundary conditions are found by inserting (112) in (104), (105), (106) while 

considering 1L = . For numerical solution we choose 1.5T =  and a time interval of 

1[0, 1]t T∈ = to study the results. A gird of 80 nodes is used along x  and along t  we use 

0.01t∆ = . In approach II, 
0j

α and 
0j

β  in (60) are selected as (103), respectively, while 

{ } { }0.01, 0.5, ... , 9.5, 10Q = ± ± ± ± . The results obtained by Approach II are shown in 

Figure 5. As is seen, the errors are less than 0.005% in all points. 

 

  

(a) (b) 

Figure 5. Variation of (a) ˆ
Hu  and (b) ˆ

exact Hu u−  in sample problem 2 obtained from Approach II. 
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7. Application to engineering problems 

In this section we consider problems which have physical interpretation. 

 

7.1 Heat conduction problems: Sample problem 3. 

 

In (1) consider 2N =  and 1M =  (with non zero coefficients as 2 1a = −  1 1b = ) on a domain 

0Lx = ,  Rx L=  which results in a second order differential equation known as heat 

conduction problem as 

( )
2

2
,

u u
q x t

t x

∂ ∂
− =

∂ ∂   0 x L≤ ≤                (113) 

The boundary conditions are here defined as 

[ ] 10
( )

x
u L t

=
= ,     [ ] 1( )

x L
u R t

=
=                 (114) 

which are arranged by considering 1 1N = , 1 0LK =  and 1,0 1c =  in (2), and 2 1N = , 1 0RK =  and 

1,0 1d =  in (3).  The initial condition is  

[ ] 10
( )

t
u F x

=
= ,                    (115) 

which is arranged by choosing 1 0PI =
 
and 1,0 1e = in (4). 

 

7.1.1 Approach I 

The parameters 1α  and 2α  are found in terms of β  as 

1( )f β β= + ,   2 ( )f β β= −               (116) 

Evaluation of βA  through (19) to (20) and setting its determinant to zero results in the 

following characteristic equation   

( )sinh 0L β =                   (117) 

from which a series of eigenvalues and eigenvectors are found as 

2

l

l

L

π
β

 
= − 

 
  ,     { }1, 1T

l = −φφφφ ,    l ∈�                (118) 

The formulation is obviously equivalent to the use of Fourier sine series since the problems 

with the homogeneous boundary conditions is in fact a proper Sturm-Liouville one (see [9, 

10] and also Remark 2). Nevertheless, as will be seen later, we satisfy the boundary and 

initial conditions according to the proposed method. 
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7.1.2 Approach II 

In this approach, in addition to (116), we find β  in terms of α  (see (9)) as 

2

1( )f =α α                    (119) 

The EBFs constructed by the above relations are added to those obtained in (116).  The main 

part of the rest of the procedure is to choose a set of points along x  and t .  

 

7.1.3 Numerical solution 

We consider the following exact solution (see also [24]) 

( ) ( )( )4 2 41
2 sin 2 cos 2 3

12

t

exactu e x x t t x x
−  

= + + + + 
 

    [0,1]x ∈      [0,1]t ∈           (120) 

In this example we use 20 boundary nodes along x  and different values for t∆  to discretize 

the boundaries at 0x =  and 1x = . In Approach I we use { }0 001 1 7 8
r

w . , , ... , ,∈ ± ± ± ± × i  

and 
2 2 2

l
s l / Lπ= − , 1 2 6l , , ,= �  which results in a set of 12 EBFs for 0ˆ

Hu  and 32 EBFs for  

ˆ g

Hu . The results obtained by Approach I with t 0.01∆ =  are shown in Figure 6.  The 

distributions of 0ˆ
Hu , ˆ g

Hu  and ˆ
Hu  are shown in Figure 6-a, 6-b and 6-c. As is seen Figure 6-d, 

the errors are less than 0.005 % in all points.  

 

  

(a) (b) 

Figure 6. Continued. 
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(c) (d) 

Figure 6. Variation of (a) 
0ˆ
Hu , (b) ˆ g

Hu , (c) ˆ
Hu  and (d) ˆ

H exactu u−  in 

sample problem 3 obtained from Approach I ( 0.01t∆ = ). 

 

The solution is repeated using approach II. In this approach the selection of the EBFs is 

performed initially by the calculation of the minimum period of variations of the exponential 

functions and then 
0i

pα  and
0i

pβ  as in (65) and (66). The variations of these projections are 

shown in Figure 7. 

 

  

(a) (b) 

Figure 7.  Variation of (a) 
0j

qα
 and (b) 

0j
qβ

 in (66). 

 

By considering 0 25.=ξ , appropriate intervals for 
0j

qα
 and 

0j
qβ

 in (66) can be specified as 

{ }
0

1 2 3
j

q , ,α ∈ ± ± ±  and { }
0

1 4 5
j

q ,..., ,β ∈ ± ± ± which leads to a set of 32 EBFs . The error 

distribution of this approach with t 0.01∆ = is illustrated in Figure 8.  As is seen the errors are 

less than 0.0005% in all points.  Comparing with the results of Figure 6-c, it can be seen that 
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in this example the errors in second approach are of one logarithmic order less than that of 

the first approach.   

In Table 1 the error norms of two approaches of EBFs method are shown for five different 

time steps. The following norms are defined 

{ }
1/ 2

2 2ˆ( ) ( )exact exact
u u uη  = − ∑ ∑  ,  { }

1/2
2ˆ( )ave exact

e u u DP = − ∑             (121) 

In the above relations, DP denotes the number of domain points used for the norm. The 

norms in Table 1 are calculated on 416 domain points inside the domain. The table shows 

that while all the errors are reasonably low the errors in Approach II are less than those in 

Approach II by one logarithmic order. 

 

 

Figure 8. Variation of ˆ
exact Hu u−  in sample problem 3 obtained from Approach II ( 0.01t∆ = ). 

 

 

 
Table 1. The error norms in sample problem 3 for different time steps. 

Approach II Approach I 

η  ave
e  η  avee  

Time step 

-5
104.19× 

-4
101.17× 

-4
103.35× 

-3
101.92× 0 2t .∆ =  

-6
104.17× 

-5
101.20× 

-5
103.81× 

-5
109.49× 0 1t .∆ =  

-6
102.92× 

-6
107.59× 

-5
101.73× 

-5
104.88× 0 05t .∆ =  

-6
101.62× 

-6
105.05× 

-6
106.59× 

-5
102.25× 0 025t .∆ =  

-7
108.81× 

-6
103.24× 

-6
109.18× 

-5
102.35× 0 01t .∆ =  

 

Also from the results of Table 1 it can be seen that the magnitude of error norms decreases 

when time steps with smaller size are used. However, in smaller time steps the rate of 

reduction in error decreases and in some cases the error remains almost constant. 
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7.2 Heat conduction problems: Sample problem 4. 

 

In this example we consider the heat conduction equation in its non-homogeneous form. To 

this end two exact solutions and associated source functions are considered as given in Table 

2 (see also [14]). Boundary conditions may be calculated from these exact solutions by 

considering 1L =  and 1T = . Twelve boundary nodes are selected along x  and the time step 

t∆ , is chosen as 0.025 . In order to evaluate the heat source functions, ( , )q x t , 128 uniformly 

distributed domain points are selected inside the domain. Here again the solution is 

performed using the two approaches. Initially the heat source functions, ( , )q x t , is expressed 

in terms of exponential basis functions. The bases are produced by considering the 

parameters listed in Table 2.  

 

Table 2. Exact solutions with heat source in sample problem 4. 

No. of exact solution ( ),u x t  ( , )q x t  

1 ( ) ( )sint
x e x

−−  ( ) ( )sin 2cosx x x−  

2 3 4t
e x

−  ( )3 2 23 4t
e x x

−− +  

 

 

The errors of the approximated source term, ( )ˆ ,q x t , as given in (73) are given in Table 3 (the 

definition of qη is similar to η  in (121) with u replaced by q ). The norms are calculated on 

676 points.  

 

 

 

 

 

 

 

 

In Table 4, we summarize the parameters used and the errors obtained from the two 

approaches. In this example the errors of Approach I are less than those of Approach II. 

 

Table 3. The errors of the approximated source terms in sample problem 4. 

No. of exact 

solution 

Number of 

EBFs 
ave

e  
q

η  

1 90 -6
105.98884×  -6

104.04787×  

2 168 -5
105.28902×  -5

101.9014×  
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Table 4. The parameters used for homogenous solution of sample problem 4. 

 
Exact 

solution 
Parameters used 

The No. of 

bases 

ave
e  η  

0ˆ
Hu  

2 2 2

l
s l / Lπ= −

   
1 2 5l , , ,= �  10 

1 

ˆ g

Hu
 

{ }0 001 0 5 2 5 3
r

w . , . , , . ,∈ ± ± ± ± × i�
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-7
4.32 10×  

-6
102.75×  

0ˆ
Hu  

2 2 2

l
s l / Lπ= −

   
1 2 7l , , ,= �  14 

 

 

Approach 

I 

2 

ˆ g

Hu
 

{ }0 001 0 5 8 5 9
r

w . , . , , . ,∈ ± ± ± ± × i�
 

72 

-4
101.89×  

-3
101.25×  

1 ( ) { }
0 0

0 2 4 6 8
j j

q q , , , ,
α β

∈ ± ± ± ±  
30 -6

102.71×  
-5

101.72×  Approach 

II 
2 ( ) { }

0 0
0 1 2 6

j j
q q , , , ,

α β
∈ ± ± ±�  

42 -4
107.32×  

-3
104.84×  

 

 

7.3 Wave propagation problems: Sample problem 5. 
 

Again in Equation (1) we consider, 2N = , 2M =  and select na , mb  and nma  so that the 

following second order differential equation, known as wave equation, is defined 

( )
2 2

2 2
,

u u
q x t

t x

∂ ∂
− =

∂ ∂
  0 x L≤ ≤                (122) 

The boundary conditions are defined as 

[ ] 10
( )

x
u L t

=
=   [ ] 1( )

x L
u R t

=
=                 (123) 

which are arranged by considering 1 1N = , 
1 0LK =  and 1,0 1c =  in (2), and 2 1N = , 

1 0RK =  and 

1,0 1d =  in (3). The initial condition is  

[ ] 10
( )

t
u F x

=
= ,   2

0

( )
t

u
F x

t =

∂ 
= ∂ 

               (124) 

which is arranged by choosing 1 0PI = and 1,0 1e = and 2 1PI =
 
and 2,0 0e = , 2,1 1e =  in (4). 

 

 

7.3.1 Approach I 

The parameters 1α  and 2α  are found in terms of β  as 

1 2( ) , ( )f f= + = −β β β β                  (125) 

Evaluation of βA  through (19) to (20) and setting its determinant to zero results in the 

following characteristic equation   

( )sinh 0L =β                    (126) 

from which a series of eigenvalues and eigenvectors are found as 

l

l

L
=

π
β

i
  ,     { }1, 1T

l = −φφφφ ,    l ∈�                 (127) 
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7.3.2 The use of Fourier series 

In standard wave problems as defined in (122), (123) and (124), approach I of our method has 

much in common with Sturm-Liouville problems. In view of (127), we find 0ˆ
Hu  as the 

following expression 

0

1 2

1

ˆ sin
s s

t t
s sL L

H

s

s x
u c e c e

L

π π π∞ −

=

   
= +   

  
∑

i i

               (128) 

Likewise for ˆ g

Hu  we write 

2 2 2

1 2
ˆ

r r r
x x t

g r rT T T
H

r

u d e d e e

π π π∞ −

=−∞

 
= + 

 
∑

i i i

,       
2r s

T L
≠               (129) 

In (128) and (129), 1

s
c , 2

s
c , 1

r
d  and 2

r
d  are found from boundary conditions which are 

expressed in terms of Fourier series (see (38) and (39)). For instance  

0

( ) sinP Ps
s

s
F x F x

L

∞

=

 
=  

 
∑

π
,   ( )

2
sinP Ps

L

s
F F x x dx

L L

 
=  

 
∫

π
,   1, 2P =  

In this form of solution no collocation scheme is used neither along x  nor along t . The rest 

of the procedure is straightforward. We shall compare the results with those of Approach I. 

 

7.3.3 Approach I incorporating Fourier series in time (a hybrid method) 

In this hybrid form we use Fourier series in time as given in (38) and (39) to find ˆ g

Hu  and use 

a collocation scheme along x  axis as explained in Approach I.  The aim is to compare the 

results of the results with those obtained with Approach I. 

 

7.3.4 Approach II 

Formulation of approach II for wave equation is similar to that already mentioned. Again, we 

find β  in terms of α  (see (9)) as 

1 2( ) , ( )f f= = −α α α α                  (130) 

The EBFs constructed by the above relations are added to those obtained in (125).  

 

7.3.5 Numerical solution 

We consider the following exact solution 

( ) ( )3 4 2 2 2 43 5 9 30 5 20sin 7 sin 7exactu x x xt x t t x t= − + − + + + ,  [0,1]x ∈ ,     [0,1]t ∈           (131) 

For approaches I and II we use 20 boundary nodes on initial boundary and t 0.005∆ = .  Prior 

to solution of the problem we examine the performance of Fourier series and the collocation 
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method in reproducing the non-homogenous side boundary conditions 1( )L t  and 1( )R t .  

Figure 9 depicts the variation of 2L  norm of the errors in terms of the number of bases used 

in Fourier series or those in Approach I. As is seen, the collocation scheme used in Approach 

I can reproduce the functions with high accuracy and less number of EBFs.  In Table 5 we 

summarize the error norms calculated for the solution with Fourier series for the problem. 

Table 6 shows the results obtained from the two approaches proposed.  By comparing the 

contents of Tables 5 and 6 it can be realized that the presented method is capable of giving 

more accurate results with less number of bases.  The results of the hybrid approach, i.e. use 

of Fourier series combined with Approach I, are presented in Table 7.  As is seen, the errors 

are of twice as much as those in Table 6 but are much less than those in Table 5.  To give 

more insight to the solution methods, we present the variation of the exact solution and the 

errors in Figure 10.    

 

 

 

Figure 9. Variation of 2L  norm of errors in approximated side boundary values, 1( )L t  and 1( )R t ,  in 

terms of the number of bases used in Fourier series and those in Approach I. 
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Table 5. The error norms of the solution using Fourier series in sample problem 5  

(Error norms are calculated on 196 domain points). 

rN  sN  ave
e  η  

101 50 1.69E-2 4.71E-4 

201 100 7.19E-3 2.01E-4 

701 350 2.16E-3 6.05E-5 

rN  denotes the Number of bases in complex Fourier series used for ˆ g

Hu  (see (38) and (39)) 

sN  denotes the Number of bases in sine Fourier series used for 
0ˆ
Hu  

 

 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 10.  Variation of (a) exact solution, (b) error of Fourier series method (2nd row of Table 5 )  

(c) error of Approach I and (d) error of Approach II (sample problem 5). 
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Table 6. The parameters used and the results of the two approaches in solution of sample problem 5 

(Error norms are calculated on 196 domain points). 

Approach Parameters used No. of EBFs ave
e  η  

0ˆ
Hu  1 2 15

l
s l / L , l , , ,π= − =i �  30  

No. I 
ˆ g

Hu  { }0 005 1 7 8
r

w . , , , ,∈ ± ± ± ± × i�
 

16 

4.02E-5 1.13E-6 

 

No. II 
0 0j jqαα = i ,     

0 0j jq= ββ i   

( ) { }
0 0

2 18 20 22
j j

q q , ... , , ,
α β

∈ ± ± ± ±  

 

88 
5.16E-5 1.45E-6 

 

 

 

 

 
Table 7. The parameters used and the results of the hybrid approach in solution of sample problem 5 

(Error norms are calculated on 196 domain points). 

No. of EBFs for ˆ g

Hu  sN  ave
e  η  

50 1.21E-4 3.39E-6 

150 1.21E-4 3.40E-6 
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{ }0 005 1 7 5 8
r

w . , , , . ,∈ ± ± ± ± × i�  
250 1.21E-4 3.40E-6 

rN  denotes the Number of bases in complex Fourier series used for ˆ g

Hu  (see (38) and (39)) 

 

 

 

Now we reconsider the problem with longer time period, [0,8]t ∈ , and apply the time 

marching algorithm proposed in [1].  We shall use approach I to solve the problem within 

smaller time intervals T . A marching step T  is also chosen (see Fig 2). For construction of 

ˆ g

Hu  we use { }0 005 0 25 8 75 9
r

w . , . , , . ,∈ ± ± ± ± × i�  and 40 nodes for initial boundary conditions.  

Figure 11 depicts the variation of error norm, as defined in (121), in terms of the number of 

marching steps (here defined as max /sn t T= )  and various time intervals. The errors are 

calculated on 1640 points. It can be seen that for small number of time steps the errors of the 

three time intervals are rather similar.  Note that for max 8T t= = , just one time interval is 

used meaning that the solution is performed with no marching procedure.  For larger number 

of time steps, the errors obtained for two time intervals, i.e. max2 / 4T t= =  and 

max1 / 8T t= =  significantly differ from the those of maxT t=  (about three logarithmic order 

smaller).  It is worthwhile to mention that the times consumed for 2T =  and 1T =  for 

640sn =  are less than about a half and two third, respectively, of the time consumed for 

maxT t=  in this problem.   
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Figure 11. The variation of error norm in solution of Sample problem 5 with [0,8]t ∈   

using the proposed time marching algorithm. 

 

7.4 Wave propagation problems: Sample problem 6. 
 

In this problem we study the vibration of a straight bar with two lumped masses and two 

springs at both ends as shown in Figure 12. The governing equation of this problem and its 

boundary conditions can be considered as follows 

2 2

2 2
0

d u d u
E

dx dt
ρ− =  0Lx = , Rx L=                (132) 

( )
2

1
1 12

0=

 
− + − = 
  x

M E d u du
EA K u L t

dx dxρ
,    ( )

2

2
2 12

=

 
− − − = 
  x L

M E d u du
EA K u R t

dx dxρ
        (133) 

The initial conditions are  

[ ] 10
( )

t
u F x

=
= ,  2

0

( )
t

u
F x

t =

∂ 
= ∂ 

                (134) 

 

3.4.1 Approach I 

The parameters 1α  and 2α  are found in terms of β  as 

1 2( ) , ( )f f
E E

= + = −
ρ ρ

β β β β                 (135) 

By evaluating βA  through (19) to (20) and setting its determinant to zero, the following 

characteristic equation is resulted 

( ) ( ) ( )( )( )

( )( )( )

2

1 2 1 22

2

2 1 2 2

{

2 } 0

−

− − − + +

+ − + − − + =

L
L

L

E e
E M A M A e M A M A

K A K M A e M A

β
β

β

β
β β ρ β ρ β ρ β ρ

ρ

ρ ρ β ρ β ρ

            (136) 
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If we assume s=β i , then (136) converts to the following equation 

( ) ( )( ) ( )

( )( ) ( )

2 2 2

1 1 2 22

3 2

1 2 1 2 2

{ 1 2 {

sin }} 0

i s L
s L s LE s e

K A e e A E M M s K cos L s

E M M s K M s A K EAs L s

ρ ρ ρ
ρ

ρ ρ

−

− + + + −

+ − + + + =

i ii i

i

                     (137) 

We use a numerical method to solve the following equation and find a series of eigenvalues 

and eigenvectors of βA .  

 

7.4.2 Approach II 

Here again, we find β  in terms of α  as 

1 2( ) , ( )
E E

f f= = −α α α α
ρ ρ

                (138) 

and add them to those obtained in (135).  

 

7.4.3 Numerical solution 

For a numerical solution we consider 1 2 1 2 1= = = = = = =M M K K E Aρ , ( )1 1( ) 0L t R t= =  

and 1( ) 0.1 0.1 /F x x L= + , 2 ( ) 0F x = .   

It should be noted that there is no exact solution for this example.  Here the aim is to provide 

a benchmark problem for further studies. We shall solve the problem using Approach I of 

presented method. 60 boundary nodes are selected along x .  The displacements obtained for 

the two masses are shown in Figure 13.  Similar results are obtained with the time marching 

algorithm using approach II ( 1T = , 0.5T = ). 

 

 

 

 

Figure 12. The model of sample problem 6. 
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Figure 13. Displacement of 1M  and 2M in sample problem 6 obtained from Approach I 

(and time marching algorithm using Approach II). 

 

 

7.5 Wave propagation problems: Sample problem 7. 
 

In this last example we demonstrate the capability of the method in the solution of problems 

with moving boundaries. Here again we introduce a benchmark wave problem with 

governing equation as (122) with the exact solution as follows 

( )( ) ( )( )sin sint

exactu e x t x t
−= + −π π                (139) 

The boundary conditions are as (123) with 1 1( ) ( ) 0L t R t= = , however, the position of the two 

ends varies with time as 

( )Lx t t= −  , ( ) 1Rx t t= +                  (140) 

The right side functions in (123) is as 

( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ), 2 cos sin 2 cos sin
t

q x t e x t x t x t x t
−= − − + − × + − +π π π π π π       (141) 

Figure 14-a shows the arrangement of boundary nodes on initial and side boundaries. In this 

example 20 boundary nodes are used at initial boundary and the time step is selected as 

t 0.025∆ = .  
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(a)  (b)  

Figure 14. Distribution of (a) boundary nodes, (b) domain points for calculation of two error norms  

in sample problem 7. 

 
 

The parameters used for construction of EBFs are shown in Table 8. The error norms are 

calculated on 796 points inside the domain (Figure 14-b).  We solve the problem with 

approach II since the boundary points are moving and Approach I is not applicable. Figure 15 

depicts the variation of the solution obtained and the errors distribution. The error norms are 

given in Table 8. As seen the proposed method is capable of finding the solution with high 

accuracy. 

 

 

Table 8. The parameters used to solve sample problem 7 by Approach II. 

 Parameters No. of EBFs 
ave

e  η  

Homogenous 

solution 
0 0

j j
q

αα = i , 
0 0

j j
q

ββ = i  

( ) { }
0 0

0 1 7 8
j j

q q , , ... , ,
α β

∈ ± ± ±  

72 -69.4 10×  
-53.1 10×  
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(a) (b) 

Figure 15. Variation of (a) ˆ
Hu , (b) ˆ

exact Hu u− in sample problem 7 obtained from Approach II. 

 

8. Conclusions 

We have presented a method based on using Exponential Basis Functions (EBFs) for the 

solution of one-dimensional time dependent problems.  The EBFs are restricted to satisfy the 

time dependent differential equation. The solution is split into homogeneous and particular 

parts. The boundary and initial conditions are satisfied through a collocation method. Two 

approaches are introduced for satisfaction of the boundary conditions for evaluation of the 

homogeneous part of the solution. In one of the approaches the boundary conditions are split 

into homogeneous and non-homogeneous forms.  The homogeneous solution with 

homogeneous boundary conditions is evaluated through defining a characteristic problem 

which has much in common with Sturm-Liouville problems; however, in this case the 

characteristic functions are not orthogonal necessarily and thus may not easily be used for 

satisfaction of the initial boundary conditions.  

In another approach the homogeneous solution is evaluated without splitting the boundary 

conditions.  The particular solution in both approaches is evaluated by the use of dual 

reciprocity method (DRM).  In both approaches a finite time interval is used, however, with 

the use of such a feature we have introduced a time marching method suitable for evaluation 

of the complete solution over a log period of time. 

We have applied the presented method to some mathematical and engineering problem. 

Through two mathematical problems we have shown that the two approaches are capable of 

solving general differential equations with constant coefficients defined in spatial coordinate 

and time. Five more examples are solved in the realm of engineering problem, such as heat 

conduction and wave propagation problems, the last two play the role of benchmarks for 
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further studies.  The results obtained in all numerical examples show the capability of the 

method in producing accurate results.  The proposed time marching algorithm has been tested 

in solution of some of the examples.  The results show that while the time consumed is 

usually less, the results are of either similar or better accuracy compared with those obtained 

originally. In the last example solved we have examined the capability of the method in 

solution of problems with moving boundaries in which we have obtained results with 

excellent accuracy 
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