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Abstract. The paper focuses on the Continuum Strong Discontinuity Approach (CSDA) to fracture
mechanics, and the traction-separation cohesive laws induced from continuum dissipative models as
their projections onto the failure interface. They are compared with the cohesive laws commonly used
for the fracture simulation in quasi-brittle materials, typically concrete. Emphasis is placed in the anal-
ysis of the mechanical stress-strain states induced by the CSDA into the fracture process zone: first
when the damage mechanism is initiated and, after, when the cohesive model determines the crack
response. The influence of the material parameters, particularly the fracture energy and the initial con-
tinuum softening modulus, in the obtained phenomenological responses is also analyzed. Representa-
tive numerical solutions of fracture problems are finally presented.
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1. Introduction

The performance of classical cohesive traction-separation laws in modeling the
appearance and progression of fractures is already a well known issue, and their ben-
efits and drawbacks have been established in many works (Hillerborg 1985; Bazant,
2002; Bazant and Planas, 1998; Planas et al., 2003; Bazant and Li 1997). This paper
focuses on a more recent modeling environment: the Continuum Strong Discontinu-
ity Approach (CSDA) to fracture mechanics (Simo et al., 1993; Oliver, 1996a, 1996b;
Oliver et al., 1999, 2003, 2004; Oliver and Huespe, 2004) and the cohesive models
that are projected by that approach, onto the fracture interfaces, as degenerations of
continuum (stress vs. strain) dissipative constitutive models. Therefore, in this sense
there is a clear connection of the CSDA with the cohesive fracture mechanics. How-
ever, in the CSDA those traction separation laws are never explicitly implemented
and the analysis is held in a continuum format in all the stages of the fracture pro-
cess modeling. This work is an attempt of displaying some benefits, regarding the
numerical simulation of fracture that can be extracted from this fact, namely:
— The CSDA may reproduce with higher resolution the dissipative phenomena
occurring at the fracture process zone. It is not necessary to introduce an
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explicit distinction of the continuum behavior in the bulk and the discontinuous
behavior in the fracture to model the transition from continuity to discontinuity.

— The so called time continuity (Papoulia et al., 2003) of the traction separation
law is automatically achieved in the CSDA with no necessity of encoding the
traction separation law.

— Some numerical problems (i.e., oscillations of the traction profiles along the
crack paths) typical of cohesive models equipped with large initial dummy stift-
ness do not appear in the CSDA implemented with embedded strong disconti-
nuity finite elements.

— The continuum dissipative mechanisms naturally modeled in the CSDA
translate into smoother stress fields in the neighborhood of the crack path;
unphysical results like the stress mismatch in cohesive models and the inconsistent
traction profiles can be completely removed.

In summary, the CSDA could be regarded as a more comprehensive procedure, to
model cohesive cracks, than simple traction separation laws introduced in an ad hoc
manner. As it will be shown by means of some representative simulations, the pay off
for the slightly more complex implementation involved in the CSDA, is an increasingly
robustness and accuracy of the simulation of the fracture mechanics phenomena.

2. The continuum-strong discontinuity approach (CSDA): overview

Although the CSDA has been widely described by the authors elsewhere (Simo et al.,
1993; Oliver, 1996a, 1996b; Oliver et al., 1999, 2003, 2004; Oliver and Huespe, 2004),
in this section its main features are summarized, namely: (a) the selection of a tar-
get continuum constitutive model to capture the nonlinear dissipative behavior of the
material and (b) the use of the so called strong discontinuity kinematics entailing a
regularization of the continuum softening modulus.

2.1. TARGET CONSTITUTIVE MODEL: CONTINUUM DAMAGE

There is no intrinsic restriction about the target continuum constitutive model, other
than its adequacy to reproduce the phenomenological observed material behavior. In
this sense, plasticity models for metallic or soil materials have been successfully used.
Frictional materials failing in tension, like concrete, can be quite appropriately mod-
eled by using continuum damage models and this motivates this particular choice.
Let us, then, define an isotropic continuum damage constitutive model (Oliver, 2000),
in terms of the following function of density of free energy:

<p(e,r)=%<@e:€:s); C=00x1)+2ul (D)

where ¢ >0 and r >0 stand for the stress-like and strain-like internal variables, ¢
is the strain tensor, C is the standard elastic constitutive tensor, depending on the
Lamé’s parameters A and u and 1 and I being the unit second and fourth order
tensors. The free energy function is then a potential for the stress field ¢ defined as:
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where d=1—¢q(r)/r, d €0, 1], is the continuum damage variable. The kinetic equa-
tions defining the evolution of the internal variables are described by:

g=Hr;, 7=y
09
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where o is the uniaxial peak stress and the dimensionless material parameter H (r) <

0 stands for the continuum softening modulus of the model and defines the slope of
the curve g =¢(r). Then, the loading-unloading conditions:

)/20, FU(G,Q)go; yFa=O
Fys(0,9)=va:Cl.0—g 4)

determine a monotonous increase of r, and decrease of ¢, along the pseudo-time
t. In Equation (4) F, is interpreted as a damage criterion that describes an elastic
domain in the generalized stress space (o, ¢). If a linear softening law is adopted, as
it is shown in Figure 1 (left), the stiffness of the material point response (tangent con-
stitutive modulus) during a monotonic one-dimensional loading process, i.e. the 0 — e
curve slope, is given by HE (see Figure 1, center). Finally, the internal dissipation of
the model is a positive quantity: D =1/2(g7 —qr) >0, which assures the thermody-
namic consistency of the model.

As this material model is used to reproduce the strain localization phenomenon
observed in a bar subjected to traction, by resorting to a distributed cracking con-
cept, the damage is smeared in a band of width ¢ as shown Figure 1 (right). Then,
the total external work per unit of area consumed as to produce the exhaustion of
the bar loading capacity, G (i.e., the fracture energy) is:

Nz 1
=021+ — 5
Gr 2E[+|H|] ©)

and assuming |H| < 1, the softening modulus H <0 can be characterized as:

(6)

Py
(8] A | J

Figure 1. Softening modulus, H, and distributed cracking concept.
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Equation (6) supplies a physical interpretation for the softening modulus, H, in terms
of material fracture properties.

2.2. STRONG DISCONTINUITY KINEMATICS

Let us consider a body occupying a domain € in R? and a non-smooth displacement
field u(x) defined in it. A jump, across a material surface S, is assumed to appear
in this field, which is characterized by the vector § =u™ —u~;u® and u~ being the
displacements at both sides of S. Here S is regarded as the limit of a sequence of
volumes (or slices) S;, of bandwidth h and containing the surface S:S=1Iimj, ¢S,
(see Figure 2). The strain field (in infinitesimal strain format) compatible with the dis-
placement jump & has the form (Oliver et al., 2002):

o1
€s=€§2/S+}1l1£})E (6 @n)™™ (7

where n is the unit normal vector to S. From now on, subindex (e)s and (e)q/s refer,
respectively, to entities evaluated into domains S, and its 2-complement, 2/S;,. Since
eq/s and & are assumed bounded, Equation (7) displays the most relevant feature of
the so-called strong discontinuity kinematics: the singular (unbounded) character of
the strains eg as h tends to zero.

The continuum constitutive model of Section 2.1 can now be applied to those
singular points exhibiting the kinematics given by Equation (7). By evaluating the
stresses 0 s = X (&g, rs) and the traction vector, ts=o0-n, in S;; equilibrium (momen-
tum balance) requires the traction vector continuity across S, i.e. :

ts=0s5-n=0gq/5-n=tg/g )

From the bounded character of the stresses o /s, Equation (8), termed the inner trac-
tion continuity condition, imposes the bounded character of the stress o5, even when
€s is a singular measure. This condition requires redefining the softening modulus in
Equation (3), (see (Oliver et al., 2002)):

H=hHg )

which is the so called continuum softening modulus regularization. Observe that, by
combining Equations (9) and (6) for £=h one obtains (for a linear softening rule):
- H 002

Hy="=—
" h T 2GE

(10)

Figure 2. Discontinuous displacement field.
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which provides the physical meaning of the intrinsic softening modulus, Hs, as a frac-
ture material property.

A very relevant result from this regularization is that the original continuum con-
stitutive model degenerates in a traction—displacement jump law, that is fulfilled at
the discontinuity interface S, (see (Oliver, 2000)), according to:

ts=05-n=2X(e5(d),r5) n=Xg,(3,7) (11)

The constitutive law (11) is normally presented in the literature as a cohesive law
relating the displacement jump & with the traction vector tg. It can be interpreted as
a projection, or degeneration, of the continuum model (1)—(4) to a cohesive law at
the failure interface. Therefore, it inherits some properties of the original continuum
damage model. The use of a continuum constitutive model, like the one in Section 2.1,
to reproduce the effects of the corresponding projected cohesive model (11) into the fail-
ure interface, is the most distinguishing feature of the CSDA. That cohesive model is
never derived nor implemented but the results at the failure interface S are the same
than if this had been done. As a counterpart, in the CSDA the volume dissipative
effects in the material bulk, and the transition from continuum to discontinuum (the
fracture process zone) (Bazant and Planas, 1998) can be easier and more naturally
captured from the continuum format of the constitutive model. This, and other con-
sequences and advantages of this approach to model the cohesive behavior of a crack
or fracture, will be displayed in next sections.

2.3. ANALYSIS OF THE DEGENERATED COHESIVE MODEL

The cohesive law (11) could have been alternatively derived by proposing a free
energy function per unit of area of S,¢s (surface density energy). Let us con-
sider the total free energy contained in the finite volume S, per unit of area:
®, =he(eg, rs). We determine ¢g (see (Oliver, 2000)) as the limit of the sequence:
¢s(8, ) =limy,_ o O, (e5(d), rs), which for the function in Equation (1), taking into
account the strong discontinuity kinematics in Equation (7), results:

1 1
osté.a)=1 1 V1g.Q 5= 1)
o 2 o

Q°=n-C-n=Q+p)n®n+pul

[Ge 421087 + 18] (12)

where §,=4-n and §; =4 -s are, respectively, the normal and tangential components
of the displacement jump, see Figure 2, and the second order tensor, Q°¢, is the so
called elastic acoustic tensor (Willam and Sobh, 1987). The internal variable g is
the same than the one defined in Equation (3) for the continuum model, and o =
limy,_, ¢ hrg is the regularized (bounded) counterpart of the strain-like internal variable
rs (we recall that the strain field ey and the corresponding internal strain-like vari-
able rg are unbounded measures of order O(1/h)). Similarly to the continuum model
case, the free energy ¢g is used as a potential for determining the traction vector tg:

_ 0ps(8, @) _ 4

06 o
——

l1-w

ts Q- 6=(1—w)Q° -8 (13)
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Figure 3. Cohesive degenerated model. (a) Criterion for activation of the dissipative mechanism in the
space of generalized forces; (b) Softening response of the traction-separation law.

where w =1 — g(a)/«, (w € (—00,0]), is a discrete damage variable. The evolution
equations for the internal variables are then defined as:

g=Hso; a=7p
04
q)|i=, =qa= ﬁ >0;  a)|i=,=0 (14)

where #; is the time of onset of local damage (cracking). The loading-unloading con-
ditions read:

y=0; Fi(t,9)<0; pF,=0 (15a)
1
Fit,9)=t—q; u=vt- Q)" —\/(k+2 i 2+— (15b)
effective traction

From Equations (14) and (15) it can be observed that « is a monotonous increas-
ing function in time (& > 0). Now, F, is a damage criterion defined in the space of
the generalized forces (t,g), see Figure 3. These conditions can also be placed in the
space of generalized displacements by redefining F, in terms of the variables (4, «):

y>0; Fs0,0)<0; pF;=0

Fs(6,0)=15— (16)
— e . — 2 2

B= Vs =[O 2082+ u

effective crack opening

From Equation (16), and the aforementioned condition & >0, « can be interpreted
as the maximum effective crack opening along the loading process history.

In a complete process of crack decohesion, the total energy dissipated at the dis-
continuity surface, Wg, results:

W5=/ /t-8dt dS=f /q-da ds
S ty S 0
e e
Gy

r 142 162
Gf=/q-da lgj_1oq (17)
0
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which matches the classical concept of Fracture Energy in cohesive models as the
consumed energy per unit of the crack area (Bazant and Planas 1998) (see Figure
3b).

Remark 1. Unlike in the crack band model of Bazant (1983), in the CSDA, the soft-
ening modulus is not regularized in terms of a characteristic length, £, playing the
role of a material parameter. Here, though the continuum strain softening regular-
ization (9) introduces the length (#) in the dimension of the regularized softening
parameter H, this length is not a physical property, but a computational regulariza-
tion parameter as small as permitted by the machine precision.

Remark 2. The cohesive model induced by Equations (12)-(16) belongs to a sub-
class of the family of cohesive models described by Ortiz et al. in (Oritz and Pandolfi,
1999). In that framework, the surface free energy density, ¢s, in Equation (12) verifies
the material frame indifference requirements:

ps(8,9)=9s(R-6,q); VReOrtht

18
or t(R-8,9)=R-t,q); VYReOrth* (18)

This property is inherited from the continuum free energy density in Equation (12).
Furthermore, Ortiz et al. introduce an effective traction t°P:

TP = 12+ B2 19)

to define the crack loading criteria. The material parameter 8 in Equation (19) sets
the ratio between the normal (¢, =t-n) and tangential (¢, =t-s) critical traction com-
ponents, and it is assumed characterizable by an additional experimental test. On the
contrary, in the degenerated cohesive model of Equations (12)-(16), B is predeter-
mined by the elastic parameters of the continuum model as:

W
A+2u

B= (20)

as it can be checked from Equation (15b).

Remark 3. Prior to the crack activation, the traction-separation law t(8) induced by
the CSDA is naturally inactive, i.e.: the crack remains closed (§=0) at any mate-
rial point during the pre-critical (elastic) states. Indeed, in the elastic regime, for the
continuum model, the traction continuity condition o'5-n=0g/s-n imposes that eg=
€q/s and, from Equation (7), § =0. This makes unnecessary the introduction of any
kind of dummy stiffness in the traction/separation law, t(8), to enforce the crack clo-
sure before the fracturing criterion is fulfilled. As it will be shown in Section 4, the
typical oscillatory traction profile displayed by the cohesive models with high dummy
stiffness (see Rots (1988), pp. 63, Simone (2004)) does not show up by using the
CSDA.

Remark 4. (Time continuity of the traction-separation law): Papoulia et al. (2003)
have introduced the notion of time continuity related to cohesive laws, within the
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context of interface finite element models. The authors advocate that lack of that
pseudo-time continuity, in traction/separation laws, leads to numerical instabilities
and loss of convergence of the iterative numerical procedure to reach the equilibrium
states. This effect cannot be overcome by reducing the time step. Traction/separation
laws, introduced after crack activation in an ad hoc manner, do not exhibit, in gen-
eral, such time continuity, which should be enforced via the so-called encoding proce-
dure (Papoulia et al., 2003). On the contrary, in the CSDA any selected continuum
constitutive model, 0 = X (e(t)), like the one in Equations (1)-(4), is a pseudo-time
continuous function and, therefore, the map ¢+ os(t) -n is a time continuous pro-
jection, even at the crack activation time #jy:

tS(t)|t:t10C:tgrtll’l‘(aS(t)'n) @2y

Therefore, although the degenerated continuum model in Equations (12)-(16) is a
rigid-model (i.e.: the initial secant stiffness in Equation (13) is infinity) and Equation
(13) is undetermined at ¢ =11, (being &(fioc) =0 and «(f,c) =0), Equation (21) defines
uniquely the traction vector, tg, at t =1f,., which removes that indetermination.

3. Modeling the fracture process zone

A specific feature of the CSDA is that the appearance of damage, in a given material
point, can be made not simultancous to cracking. In fact, in the most general case
the material response will initially follow a stable continuum damage process start-
ing at the damage time #;. In a subsequent time, #,., loss of positive definiteness of
the localization tensor, Q'°°, defined in terms of the tangent constitutive operator,
Cn ag:

Qloc: n- Ctan .n
Clan_ do (e, r) (22)
T e

signals the onset of the material instability (Oliver and Huespe, 2004) and the for-
mation of the displacement discontinuity that characterizes the crack . The delay of
tioc in front of #; depends, for a given material model, on the material properties and
the stress state. For a given stress state, the less negative is the softening modulus, H
in Equation (3), the larger is the interval [¢4, fjoc]. Therefore, from a phenomenolog-
ical approach to crack modeling, one can take advantage of this fact to model the
amount of volumetric dissipation in front of the crack tip and, indirectly, the size
and influence of the fracture process zone. This is sketched in Figure 4: the initial
value of the continuum softening modulus, a material property Hco,, rules the stable
damage production at the considered point (see Figure 4a). Material points in this
stage, in front of the crack tip, are displayed in the grey zone in Figure 4b, between
points D (standing for onset of damage) and L (standing for onset of localization).
The length ¢, of this stable damaged zone is governed by the value H.,, as said
before. As, at time 7., material instability is detected the continuum softening mod-
ulus is no longer determined as a material property but regularized from the intrinsic
softening modulus H (in turn depending on the fracture energy) according to Equa-
tion (9), see Figure 4a. At the same time, the strong discontinuity kinematics (7) is
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(c)

} stable damage

} cohesive zone

stress released
zone

Figure 4. (a) Softening rule, (b) Generalized fracture process zone and (c) Regular (RGP) and singular
(SGP) Gauss Points in a finite element with embedded discontinuity.

activated, this ensuring fulfillment of the degenerated traction/separation law and the
subsequent correct dissipation of the fracture energy G, up to the complete stress
release. Points in this stage are signaled, in Figure 4b, as the cohesive zone between
points L (standing for onset of localization) and R (standing for stress release). Both,
the stable damage and the cohesive zones, constitute the generalization, in a CSDA
setting, of the fracture process zone (FPZ), classically considered in non-linear frac-
ture mechanics (Bazant and Planas, 1998), as the locus of material points where the
fracture is processed by dissipation mechanisms. As it will be shown in Section 4.1,
the total size of this fracture process zone, £rpz, basically depends on the amount
of fracture energy G, and the length of the stable damage zone, ¢; (and the corre-
sponding dissipation) is ruled by the continuum softening modulus H,,. Therefore,
the size of the cohesive zone, £, , can be expressed as:

Zloc(Gfa Heon) =£FPZ(Gf) —£4(Hcon, Gf)
dlrpz _ 04y
de = )

(23)

<0
9| Hoon|

In this way the CSDA provides a setting to model the transition from continuum to
discontinuum and to characterize the complete fracture process zone.

4. Representative numerical simulations and assessment of the CSDA

The CSDA described in previous sections can be readily implemented in numer-
ical modeling scenarios using an embedded strong discontinuity finite element
technique (Oliver et al., 2002). The distinguishing features of finite elements with
embedded discontinuities with respect to standard finite elements are essentially two
(Oliver and Huespe, 2004): (a) the standard deformation modes are supplemented
with additional deformation modes, which reproduce the strong discontinuity kine-
matics in Equation (7), and (b) besides the standard integration points (the “regular
Gauss points”, RGP in Figure 4c) each element is equipped with an additional Gauss
point (the “singular Gauss point” SGP in Figure 4c) where the behavior of the dis-
continuity interface, S, in terms of the kinematics (7) and the softening regularization
(9) is reproduced. In addition, the inner traction continuity Equation (8) is enforced
in terms of the stresses at the regular and singular sampling points, this providing an



220 A.E. Huespe et al.

additional equation that resolves the elemental displacement jump. In elastic regimes,
this equation is trivially fulfilled with the contributions of the standard deformation
modes and, then, the enriching discontinuous displacement modes are not activated.

In the following sections, some well-known, and widely studied, crack propaga-
tion problems are modeled in the CSDA context. The simulation is here addressed to
present the distinguishing features supplied by the degenerated cohesive model to the
numerical solution. In order to reproduce the different tensile and compressive frac-
ture behavior of quasi-brittle materials, like concrete, the continuum damage model
of Section 2.1 is slightly modified in the following sense: the damage criterion of
equation (4) is switched to:

Fo(0,9)=vaot:C 1.0 —¢q
= (24)
G+=Z<Ui>pi ® pi

i=1

where o stands for the positive part of the stress tensor o, 0; and p; stand, respec-
tively, for the eigenvalues (principal stresses) and eigenvectors of o, and (o;) is the
positive part of o;({0;) =0; for o; >0 and (0;) =0 otherwise). With this modification,
damage is restricted to tension dominated states so that the model will be termed
tension damage model. This feature, imposed in the continuum damage model, is
then automatically inherited by the corresponding degenerated traction/separation
law without necessity of any ulterior modification.

4.1. THREE-POINT NOTCHED BEAM TEST

The crack propagation problem in a notched concrete beam supported on three
points, shown in Figure 5, is used to assess several aspects of the CSDA. The dimen-
sions and material data are similar to those presented by Rots (1988) (p.62). In the
present numerical study, a rather fine finite element mesh of linear triangles, with 25
elements discretizing the domain extending from the notch tip to the load applica-
tion point (= 80mm), is used. In these elements, the main phenomena involved in
the crack propagation are going to be captured. The continuum constitutive model
is the tension damage model, introduced above, specified for the plane stress case
and equipped with a linear softening law. Although tracking procedures for auto-
matic determination of the crack propagation path are available (Oliver et al., 2004;
Oliver and Huespe, 2004), here that path has been artificially predetermined as the
vertical line starting from the notch tip in order to make the results independent of
the determination of that crack path.

4.1.1. Assessment of time continuity

Figure 5 shows the evolution, in terms of the pseudo-time u, (the monotoni-
cally increasing vertical displacement of the load application point), of the normal
and tangential components of the traction vector (ts=0-n) at four different points
of the crack path (points A, B, C and D at a distance ¢ from the notch tip).
There it can be observed that both components of tg are continuous all along the
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Figure 5. Notched three-point beam test: (a) Problem description, (b) Selected points in the crack
path, (c) and (d) Evolution of the normal and tangential traction components.

time, irrespective of the transition from the continuous to crack activated states. This
assesses the aforementioned time continuity of the degenerated traction-separation
law (see Remark 4).

4.1.2. Action-response smoothness

Figure 6a shows the pseudo-time evolution of the applied force (action-response
curve). In Figure 6b, spatial profiles of the normal component of the traction, ¢,,
along the crack path, as a function of the coordinate ¢, for the different times sig-
naled in Figure 6a, are presented. Unlike what is mentioned in the literature about
the oscillatory behavior of the traction components when using cohesive models
equipped with large dummy elastic stiffness (Rots (1988), Alfano et al. (2001), Planas
et al. (2004)), in the results provided by the CSDA that oscillatory behavior is not
observed. The profile labeled ¢, corresponds to an elastic response during the load-
ing process (at time #; all elements are in the elastic range) and, as expected, is
smooth. The same smooth response can be observed, in Figure 6b, for all the pro-
files at subsequent times, even when they involve material points in softening range
and also in released stress states (profiles #, to #s ). The reason for this is that the
traction-separation law (13), induced at the crack by the CSDA via the projection of
the continuum constitutive Equation (2), though exhibiting an initial infinite secant
stiffness (which would correspond to an infinite value of the dummy stiffness in the
cohesive model) is integrated in its continuum format in Equation (2)-(4), without
involving that singular initial stiffness (see Remark 3).
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Figure 6. Notched three-point beam test: a) Force-displacement curve, b) Profiles of the normal trac-
tion component distribution at different stages of the analysis.

4.1.3. Stress mismatch

Another observed problem in classical cohesive models, pointed out by Elices et
al. (2002) and Planas et al. (2003) and termed cohesive model mismatch, is related to
the distribution and properties of the stress states in bulk points at the immediate
neighborhood of the crack tip.

These authors observed that, using classical cohesive models and a propagation
criterion based on the maximum principal stress, the directions of maximum princi-
pal stresses in those points becomes parallel to the crack path and their magnitude
are greater than the ultimate tensile stress o .

Is in this context that the numerical solution in Figure 7, obtained in a CSDA for-
mat, is analyzed regarding the role of the initial continuum softening modulus, Hcon,
described in Section 3.

The continuum format of the CSDA allows accounting for the energy dissipation
during the loading process in points undergoing stable softening. This leads to the
stress state presented, in terms of the principal stress vectors in Figure 7, as the crack
propagation length reaches 17% (&~ 17mm) of the total beam height. There, it can be
observed that the stress state at the crack tip neighborhood is, approximately, hydro-
static (both principal stresses are similar) in agreement with the literature. In addi-
tion, near the consolidated crack, the largest principal stress holds orthogonal to the
crack path and smaller than the peak stress. The stress mismatch is, then, not present
in the results. It is also noticed in Figure 7 the existence of a singular point (o =0)
nearby the crack tip and in front of it. The appearance of this singular point (all the
directions are principal) could be the source of the reported difficulties (see (Mosler
and Moschke, 2003) for instance) when tracking algorithms and too coarse finite ele-
ment meshes are used.

4.1.4. Stress field smoothness

In Figure 8 the stress fields for two limit cases are shown. Figure 8a corresponds
to a very small stable damage zone achieved by using a very large (negative) value
of the initial softening modulus, H.,,, whereas Figure 8b corresponds to a large
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Figure 7. Notched three-point beam test: Principal stress field in the neighborhood of the crack.

stable damage zone achieved by using an almost null (but still negative) initial soft-
ening modulus Hg,,. Therefore, results in Figure 8a would match the ones obtained
with a classical cohesive model where the behavior in the bulk is assumed totally elas-
tic.

The figures also display, in a grey scale, the elements exhibiting a maximum prin-
cipal stress larger than the tensile material strength o,. Comparison of both figures
clearly shows the beneficial effects of the bulk dissipation mechanisms in the smooth
character and consistency of the resulting stress fields.

4.1.5. Fracture process zone

Let us focus on the role played by the initial continuum softening modulus, Hco,
of the softening rule in Figure 4a, and its influence on the fracture process zone
structure. In order to allow a clearer and more complete development of that frac-
ture process zone, the analysis is carried out on a beam higher than the preceding
one (the beam height in Figure 5a is now changed to 0.24m).

Curves in Figure 9a show the dependence of the fracture process zone length,
Lrpz, on the fracture energy, G, as a function of the material characteristic length
parameter (L., = EGy/a?) characterizing the material brittleness (see Elices et al.
(2002)). In the figure it can be observed that £rp, depends clearly on G, but it
barely changes with those substantial changes of H.,,. Thus, the experiment assesses
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Figure 8. Notched three-point beam test. Principal stresses and elements (in a grey scale) with a prin-
cipal stress larger than the material peak strength. (a) Null stable damage zone (b) Large stable dam-
age zone.

the exclusive dependence, stated in Equation (23), of the total length of the fracture
process zone on the fracture energy, G y.

In Figure 9b, it is shown the dependence of the stable damage zone size, €,;, with
the H.on and G values. Results are parameterized in terms of the normalized length,
X (X =—Hconlcn). Plots of curves £,(x), for different values of £.,(G f), are then pre-
sented. In agreement to the assertion in Bazant (1996), about the changing length of the
micro cracking zone in front of the crack tip, the numerical simulations show a similar
behavior. Therefore, all lengths in Figure 9b have been measured at the time as stresses
are completely released at the notch tip (complete stress release). It can be observed
that, for a given value of G, increasing values of |Hcon|, diminish the stable damage
zone size £, as stated in Equation (23) (the lower bound is, approximately, the size
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Figure 9. Fracture process zone development in a three-point bending test of a notched beam: (a)
Plots of the fracture process zone lengths, £pz, versus the material characteristic length ¢.,; (b) Sta-
ble damage zone length, ¢,, versus the initial softening modulus H.,; (c,d.e) Snap shots of the FPZ
(dissipating finite elements in light grey) for different cases.

of one finite element 0.004 — 0.007 m). Typical developments of the FPZ, for different
material parameter values, are displayed in Figure 9c—e (finite elements undergoing dis-
sipation are plotted in light grey color). There, the stable damage zone (round shaped
in front the crack tip) can be clearly differentiated from the remaining of the FPZ.

4.2. DOUBLE CANTILEVER BEAM (DCB TEST)

Another typical example of a Mode I crack propagation problem, the double canti-
lever beam test (DCB) of Figure 10, has been solved considering a plain stress model
(of Im width) with dimensions and material data similar to those presented in Zi
et al. (2003). The crack propagation path has been set to the horizontal line start-
ing at the notch tip. A structured finite element mesh, of linear triangles with 7.0 mm
side length, has been constructed to model the cohesive zone. This mesh size is one
order larger than in the mesh reported in (Zi and Belytschko, 2003).

4.2.1. Predicted peak-load values
This test emphasizes the effects on the predicted peak loads, of the inclusion in the
simulation of the stable dissipation zone via the initial continuum softening modulus,
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Figure 10. Double cantilever beam test. (a) Geometrical model and material data; (b) load-
displacement (CMOD) curves; (c) and (d) normal traction component along the crack path at
different times.

H.on. Like in previous cases, the problem has been solved using two different proce-
dures. In Procedure A, an elastic response is imposed at the bulk, like in standard
cohesive models, by using a very large (negative) value of the initial softening modu-
lus, H.on (stable dissipation zone does not exist); in Procedure B, bulk dissipation is
admitted by specifying a softening modulus H,, =0 (large stable dissipation zone).
In both cases the same value for the fracture energy G is considered. Figure 10b dis-
plays the corresponding force-displacement (CMOD) curves. It can be checked that
allowing dissipation on the bulk has a non-negligible effect on the predicted peak
load, in the sense of lowering them.

4.2.2. Consistency of the stress profiles

Figure 10c plots the distribution of the crack normal stress component, #,, along
the crack path (stress profile), at the three different times, #;,# and #;, specified in
the equilibrium curves of Figure 10b. Those curves computed with the Procedure A
(standard cohesive model) show peak values greater than the material tensile strength
(0, =3MPa). This inconsistency has also been detected by Zi et al. (2003) using
a similar procedure. These authors claim that this unwelcome effect disappears, or
diminishes, with mesh refining. Results obtained with Procedure B (bulk dissipation
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Figure 11. Double cantilever beam test. Stress stages at different material points

is allowed) show, on the contrary, consistent stress profiles. They are not spike-shaped,
as in the previous case, and the maximum stress level remains always below o,, even
for the relatively coarse mesh used in the analysis.

4.2.3. Fracture stages

Figure 11 shows the evolution of the traction normal component, ¢,, provided by
the CSDA using the previous Procedure B, at three different points A, B and C in the
cohesive zone. The abscissa of these curves is the vertical displacement of the load
application point, which defines the loading process evolution. There, typical stages
in the fracturing process of a material point can be clearly observed: (i) the elastic
pre-critic stage, before crack activation, showing increasing values of the stress; (ii) a
plateau in the stress evolution corresponding to the stable damage stage in the frac-
ture process zone; (iii) the cohesive stage characterized by the descending branch and
(iv) the stress released stage characterized by the final horizontal branch.

5. Conclusions

Along this work, the ability of the CSDA to capture fracture phenomena has been

examined. The additional contribution of the CSDA to simulating fracturing pro-

cesses lies on its intrinsic capability to describe in the same modeling setting (i.e. a

unique continuum constitutive model), the dissipation phenomena at both the bulk

material and the crack interface. This is achieved by introducing the following spe-

cific ingredients:

® The strong discontinuity kinematics (7), the inner traction continuity Equation (8)
and the continuum softening regularization (9).

® A more precise description of the fracture process zone in terms of the stable
damage zone and the cohesive zone (see Figure 4). Unlike in the standard cohe-
sive models, the continuum format of the CSDA allows considering dissipation
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in softening materials in a stable (non-localized) mode before singularity of the

localization tensor, signaling the onset of a strain discontinuity, takes place

(Oliver and Huespe, 2004). One can take advantage of this fact to model that part

of the fracture process zone were bulk dissipation occurs which, as it was remarked

in Bazant (1996), is not done in standard cohesive models. The specific sizes and
influence of both zones can be, then, modeled, for every material, in terms of the
following properties defining the softening rule in the continuum model:

— The classical fracture energy, G, that governs the total size of the fracture
process zone.

— The initial continuum softening modulus, H.,,, an additional fracturing prop-
erty to be experimentally determined, that governs the size of the stable dam-
age zone and the corresponding dissipation phenomena at the material bulk.
The greater is |H.on| the smaller is the stable damage zone, ¢; and, therefore,
the total dissipated energy is more approximately described by G .

® The use of specific finite elements with embedded discontinuities. They allow cap-

turing the crack propagation, inside the elements, along a crack path that is not a

priori determined.

The degeneration of the selected continuum constitutive model into a projected
traction-separation law at the fracture interface provides a direct link of the CSDA
with the classical cohesive models. In this context, it has been shown that some
drawbacks and inconsistencies of simulations using standard cohesive models and
reported in the literature can be overcome, i.c.:
® The lack of time continuity of the traction-separation law and its numerical oscil-

latory character.
® The stress mismatch effect and the lack of smoothness of the stress field near the

crack tip.
® The inconsistency of the numerical obtained stress profiles exceeding the peak
stress.
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