
Available online at www.sciencedirect.com
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
Adaptive embedded and immersed unstructured grid techniques

Rainald Löhner a,*, Juan R. Cebral a, Fernando E. Camelli a, S. Appanaboyina a,
Joseph D. Baum b, Eric L. Mestreau b, Orlando A. Soto b

a Center for Computational Fluid Dynamics, M.S. 6A2, Department of Computational and Data Sciences, College of Sciences,

George Mason University, Fairfax, VA 22030-4444, USA
b Advanced Technology Group, SAIC, SAIC Drive, McLean, VA 22020, USA

Received 20 February 2007; received in revised form 1 September 2007; accepted 4 September 2007
Available online 25 September 2007
Abstract

Embedded mesh, immersed body or fictitious domain techniques have been used for many years as a way to discretize geometrically
complex domains with structured grids. The use of such techniques within adaptive, unstructured grid solvers is relatively recent. The
combination of body-fitted functionality for some portion of the domain, together with embedded mesh or immersed body functionality
for another portion of the domain offers great advantages, which are increasingly being exploited. The present paper reviews the meth-
odologies pursued so far, addresses implementational issues and shows the possibilities such techniques offer.
� 2007 Published by Elsevier B.V.

Keywords: Embedded surface method; Immersed body technique; Finite elements; CFD
1. Introduction

The numerical solution of partial differential equations
(PDEs) is usually accomplished by performing a spatial
and temporal discretization with subsequent solution of a
large algebraic system of equations. The transition from
an arbitrary surface description to a proper mesh still rep-
resents a difficult task. This is particularly so when the sur-
face description is based on data that does not originate
from CAD-systems, such as data from remote sensing,
medical imaging or fluid–structure interaction problems.
Considering the rapid advance of computer power,
together with the perceived maturity of field solvers, an
automatic transition from arbitrary surface description to
mesh becomes mandatory.

To date, most of the field solvers based on unstructured
grids have only considered body-conforming grids, i.e.
grids where the external mesh faces match up with the sur-
face (body surfaces, external surfaces, etc.) of the domain.
0045-7825/$ - see front matter � 2007 Published by Elsevier B.V.

doi:10.1016/j.cma.2007.09.010

* Corresponding author.
E-mail address: rlohner@gmu.edu (R. Löhner).
The assumption was that one the perceived strengths of
field solvers based on unstructured grids is precisely the
ability to mesh arbitrary domains. The present paper will
consider the case when elements and points do not match
up perfectly with the body. Solvers or methods that employ
these nonbody-conforming grids are known by a variety of
names: embedded mesh, fictitious domain, immersed
boundary, immersed body, Cartesian method etc. The
key idea is to place the bodies inside a flow region inside
a large mesh (typically a regular parallelepiped), with spe-
cial treatment of the elements and points close to the sur-
faces and/or inside the bodies. If we consider the general
case of moving or deforming surfaces with topology
change, as the mesh is not body-conforming, it does not
have to move. Hence, the PDEs describing the flow can
be left in the simpler Eulerian frame of reference even for
moving surfaces. At every timestep, the elements/edges/
points close to and/or inside the embedded/immersed sur-
face are identified and proper boundary conditions are
applied in their vicinity. While used extensively [1,15,17–
19,21,22,27,29–32,40,41,45,46,51–53,55,56,62,65,66] this
solution strategy also exhibits some shortcomings:

mailto:rlohner@gmu.edu


2174 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
– the boundary, which, in the absence of field sources has
the most profound influence on the ensuing physics, is
also the place where the worst elements/approximations
are found;

– near the boundary, the embedding boundary conditions
need to be applied, in many cases reducing the local
order of approximation for the PDE;

– no stretched elements can be introduced to resolve
boundary layers;

– adaptivity is essential for most cases;
– for problems with moving boundaries the information

required to build the proper boundary conditions for
elements close to the surface or inside the bodies can
take a considerable amount of time; and

– for fluid–structure interaction problems, obtaining the
information required to transfer forces back to the
structural surface can also take a considerable amount
of time.

In nearly all cases reported to date, embedded or
immersed boundary techniques were developed as a
response to the treatment of problems with:

– ‘dirty geometries’ [1,7,9,30];
– moving/sliding bodies with thin/vanishing gaps [7,63];

and
– physics that can be handled with isotropic grids:

– potential flow or Euler: Quirk [55], Karman [27],
Pember et al. [52], Landsberg and Boris [30], Aftos-
mis et al. [1], Le Veque and Calhoun [32], Dadone
[18], Baum et al. [7],

– Euler with boundary layer corrections: Aftosmis et al.
[2],

– low Reynolds-number laminar flow and/or LES:
Angot et al. [3], Turek [62], Fadlun et al. [20], Kim
et al. [28], Gilmanov et al. [21], Balaras [5], Gilmanov
and Sotiropoulos [22], Mittal and Iaccarino [46], Cho
et al. [14], Yang and Balaras [64].
The human cost of repairing bad input data sets can be
overwhelming in many cases. For some cases, it may even
constitute an impossible task. Consider, as an example, the
class of fluid–structure interaction problems where surfaces
may rupture and self-contact due to blast damage [6,7,37].
The contact algorithms of most computational structural
dynamics (CSD) codes are based on some form of spring
analogy, and hence can not ensure strict no-penetration dur-
ing contact. As the surface is self-intersecting, it becomes
impossible to generate a topologically consistent, body fitted
volume mesh. In such cases, embedded or immersed bound-
ary techniques represent the only viable solution.

Two basic approaches have been proposed to modify
field solvers in order to accommodate embedded surfaces
or immersed bodies. They are based on either kinetic or
kinematic boundary conditions near the surface or inside
the bodies in the fluid. The first type applies an equiva-
lent balancing force to the flowfield in order to achieve
the kinematic boundary conditions required at the
embedded surface or within the embedded domain
[3,5,14,20,25,28,46,47,50,53,54,60,63,64]. The second
approach is to apply kinematic boundary conditions at
the nodes close to the embedded surface [1,18,30,40,41].

At first sight, it may appear somewhat contradictory
to even consider embedded surface or immersed body
techniques in the context of a general unstructured grid
solver. Indeed, most of the work carried out to date
was in conjunction with Cartesian solvers [1,14,15,
18,21,22,27,30,32,45,46,52,61,66], the argument being that
flux evaluations could be optimized due to coordinate
alignment and that so-called fast Poisson solvers (multi-
grid, fast Fourier transform) could easily be employed.
However, the achievable gains of such coordinate align-
ment may be limited due to the following mitigating
factors:

– for most of the high resolution schemes the cost of lim-
iting and the approximate Riemann solver far outweigh
the cost of the few scalar products required for arbitrary
edge orientation;

– the fact that any of these schemes (Cartesian, unstruc-
tured) requires mesh adaptation in order to be successful
immediately implies the use of indirect addressing (and
also removes the possibility of using solvers based on
fast Fourier transforms); given current trends in micro-
chip design, indirect addressing, present in both types of
solvers, may outweigh all other factors;

– three specialized (x,y,z) edge-loops versus one general
edge-loop, and the associated data reorganization
implies an increase in software maintenance costs.

Indeed, empirical evidence from explicit compressible
flow solvers indicates that the gains achievable when com-
paring general, edge-based, unstructured grid solvers ver-
sus optimized cartesian solvers amount to no more than
a factor of 1:4, and in most cases are in the range of 1:2
[42].

For a general unstructured grid solver, surface embed-
ding represents just another addition to a toolbox of mesh
handling techniques (mesh movement, overlapping grids,
remeshing, h-refinement, deactivation, etc.), and one that
allows to treat ‘dirty geometry’ problems with surprising
ease, provided the problem is well represented with isotropic
grids. It also allows for a combination of different surface
treatment options. A good example where this has been used
very effectively is the modeling of endovascular devices such
as coils and stents [13]. The arterial vessels are gridded using
a body-fitted unstructured grid while the endovascular
devices are treated via an embedded technique.

This paper is organized as follows: Section 2 describes in
general terms the treatment of embedded surfaces or
immersed bodies, and details the techniques used to mask
edges crossed by surface faces, as well as the points close



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2175
to it. Sections 3 and 4 deal with deactivation of interior
regions and the extrapolation of the solution for moving
embedded surfaces. Adaptive mesh refinement is consid-
ered in Section 5, the transfer of loads and fluxes in Section
6, the treatment of gaps or cracks in Section 7, and the
direct link to particles in Section 8. Enhancements for visu-
alization of results are mentioned in Section 9, and numer-
ical examples are presented in Section 10. Finally, some
conclusions and an outlook for future developments are
given in Section 11.

2. Treatment of embedded surfaces or immersed bodies

In what follows, we denote by CSD faces the surface of
the computational domain (or surface) that is embedded.
We implicitly assume that this information is given by a tri-
angulation, which typically is obtained from a CAD pack-
age via STL files, remote sensing data, medical images or
from a CSD code (hence the name) in coupled fluid–struc-
ture applications. For immersed body methods we assume
that the embedded object is given by a tetrahedral mesh.
Furthermore, we assume that in both cases besides the con-
nectivity and coordinate information, also the velocity of
the points is given.

2.1. Kinetic treatment of embedded or immersed objects

As stated before, one way of treating embedded objects
is via the addition of suitable force-functions that let the
fluid ‘feel’ the presence of the surface, and push away any
fluid trying to penetrate the same. If we consider a rigid,
closed body, as sketched in Fig. 1, an obvious aim is to
enforce, within the body, the condition v = wb (recall that
rigid body motion is a solution of the Navier–Stokes equa-
tions). This may be accomplished by applying a force term
of the form:

f ¼ �c0ðwb � vÞ ð1Þ
for points that are inside (and perhaps just outside) of the
body. This particular type of force function is known as the
penalty force technique [3,20,25,28,47].
Force Points

Immersed Body

Fig. 1. Kinetic treatment of embedded surfaces.
Of course, other functional forms of wb � v are possible,
e.g. the quadratic form:

f ¼ �c0jwb � vjðwb � vÞ; ð2Þ

exponential forms, etc. The damping characteristics in time
for the relaxation of a current velocity to the final state will
vary, but the basic idea is the same. The advantage of the
simple linear form given by Eq. (1) is that a point-implicit
integration of the velocities is possible, i.e. the stiffness of
the large coefficient c0 can be removed with no discernable
increase in operations [63]. The main problem with force
fields given by Eqs. (1) and (2) is the choice of the constants
c0. Values that are too low do not allow the flow to adjust
rapidly enough to the motion of the body, while values that
are too high may produce artificial stiffness. Moreover, for
body motions that are not completely divergence-free a
large pressure buildup is observed (see [63] for a case of
lobe-pumps). A major improvement was put forward by
Mohd-Yusof [47], who proposed to evaluate first the usual
right-hand side for the flow equations at immersed points
(or cells), and then add a force such that the velocity at
the next timestep would satisfy the kinematic boundary
condition v = vb. Writing the spatially discretized form of
the momentum equations at each point (or cell) i as

M
Dvi

Dt
¼ ri þ f i; ð3Þ

where M, v, ri and fi denote the mass-matrix, nodal values
of the velocity, right-hand side vector due to the momen-
tum equations (advection, viscous terms, Boussinesque
and gravity forces) and body force, respectively, fi is ob-
tained as

f i ¼M
wnþ1

i � vn
i

Dt
� ri: ð4Þ

Here wi denotes the velocity of the immersed body at the
location of point (or cell) i, and n the timestep. For explicit
timestepping schemes, this force function in effect imposes
the (required) velocity of the immersed body at the new
timestep, implying that it can also be interpreted as a kine-

matic boundary condition treatment. Schemes of this kind
have been used repeatedly (and very successfully) in con-
juction with fractional step/ projection methods for incom-
pressible flow [3,5,20,28,40,41,46,49,60,64]. In this case,
while the kinematic boundary condition vn+1 = wn+1 is
enforced strictly by Eq. (3) in the advective–diffusive pre-
diction step, during the pressure correction step the condi-
tion is relaxed, offering the possibility of imposing the
kinematic boundary conditions in a ‘soft’ way.

The imposition of a force given by Eq. (4) for all interior
points will yield a first-order scheme for velocities (uncer-
tainty of O(h) in boundary location). This low-order
boundary condition may be improved by extrapolating
the velocity from the surface with field information to the
layer of points surrounding the immersed body. The loca-
tion where the flow velocity is equal to the surface velocity



2176 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
is the surface itself, and not the closest boundary point. As
shown in Fig. 2, for each boundary point the closest point
on the CSD face is found. Then, two (three) neighbouring
field (i.e., non-boundary) points are found and a triangular
(tetrahedral) element that contains the boundary point is
formed. The velocity imposed at the field point is then
found by interpolation. In this way, the boundary velocity
‘lags’ the field velocities by one iteration. This lagging of
the velocities by one iteration can easily be implemented
in any iterative solver.

For cases where the bodies are not rigid, and all that is
given is the embedded surface triangulation and movement,
the force-terms added take the general form:

f ¼
Z

C
Fdðx� XCÞdC; ð5Þ

where C denotes the location of the embedded surface, XC the
nearest embedded surface point to point x and F is the force.
In theory, F should be applied to the fluid using a Dirac delta
function d in order to obtain a sharp interface. In most cases
the influence of this delta-function is smeared over several
grid points, giving rise to different methods [4,8,23,24,50].
If instead of a surface we are given the volume of the im-
mersed body, then the penalization force may be applied at
each point of the flow mesh that falls into the body.

While simple to program and employ, the force-based
enforcement is particularly useful if the ‘body thickness’
covers several CFD mesh elements. This is because the
pressures obtained are continuous (and computed !) across
the embedded surface/immersed body. This implies that for
thin embedded surfaces such as shells, where the pressure is
different on both sides, this method will not yield satisfac-
tory results [43].
2.1.1. Implementation details
The search operations required for the imposition of

kinetic boundary conditions are as follows:

– given a set of CSD faces (triangulation): find the edges
of the CFD mesh cut by CSD faces (and possibly 1–2
layers of neighbours);

– given a set of CSD volumes (tetrahedrization): find the
points of the CFD mesh that fall into a CSD tetrahe-
dron (and possibly 1–2 layers of neighbours).
CSD
Surface

Active Flowfield Region

Immersed Body Region

Fig. 2. Extrapolation of veloc
The first task is dealt with extensively below (see 2.2.1).
Let us consider the second task in more detail. The prob-
lem can be solved in a number of ways:

(a) loop over the immersed body elements
ity for
– initialization:
– store all CFD mesh points in a bin, octree, or

any other similar data structure [38].

– loop over the immersed body elements:

– determine the bounding box of the element;
– find all points in the bounding box;
– detailed analysis to determine the shape func-

tion values.

(b) loop over the CFD mesh points
– initialization:
– store all immersed body elements in a bin, mod-

ified octree, or any other similar data structure.

– loop over the CFD mesh points:

– obtain the elements in the vicinity of the point;
– detailed analysis to determine the shape func-

tion values.
In both cases, if the immersed body only covers a small
portion of the CFD domain, one can reduce the list of
points stored or points checked via the bounding box of
all immersed body points. Both approaches are easily par-
allelized on shared memory machines.

2.2. Kinematic treatment of embedded surfaces

Embedded surfaces may be alternatively be treated by
applying kinematic boundary conditions at the nodes close
to the embedded surface. Depending on the required order
of accuracy and simplicity, a first or second-order (higher-
order) scheme may be chosen to apply the kinematic
boundary conditions. Figs. 3a and 3b illustrates the basic
difference between these approaches for edge-based solvers
[38]. Note that in both cases the treatment of infinitely thin
surfaces with fluid on both sides (e.g. fluid–structure inter-
action simulations with shells) is straightforward.

A first-order scheme can be achieved by

– eliminating the edges crossing the embedded surface;
– forming boundary coefficients to achieve flux balance;
CSD
SurfaceA

CB

immersed bodies.



CFD Mesh

CSD Surface

CFD Mesh

CSD Surface

+

=

Fig. 3a. First-order treatment of embedded surfaces.

CFD Mesh

CSD Surface

CFD Mesh

CSD Surface

CSD Surface

CFD Mesh

+

=

Fig. 3b. Second-order treatment of embedded surfaces.

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2177
– applying boundary conditions for the end-points of the
crossed edges based on the normals of the embedded
surface.

A second-order scheme can be achieved by

– duplicating the edges crossing the embedded surface;
– duplicating the end-points of crossed edges;
– applying boundary conditions for the end-points of the

crossed edges based on the normals of the embedded
surface.

Note that in either case CFD edges crossed by CSD
faces are modified/duplicated. Given that an edge/face
crossing is essentially the same in 2-D and 3-D, these
schemes are rather general.

The following sections describe in more detail each one
of the steps required, as well as near-optimal techniques to
realize them.
2.2.1. First-order treatment

The first-order scheme is the simplest to implement.
Given the CSD triangulation and the CFD mesh, the
CFD edges cut by CSD faces are found and deactivated.
Considering an arbitrary field point i, the time-advance-
ment of the unknowns ui for an explicit edge-based time
integration scheme is given by Löhner [38]

MiDui ¼ Dt
X
ijX

CijðF i þ F jÞ: ð6Þ

Here C, F, M denote, respectively, the edge-coefficients,
fluxes and mass-matrix. For any edge ij crossed by a
CSD face, the coefficients Cij are set to zero. This implies
that for a uniform state u = const. the balance of fluxes
for interior points with cut edges will not vanish. This is
remedied by defining a new boundary point to impose to-
tal/normal velocities, as well as adding a ‘boundary contri-
bution’, resulting in

MiDui ¼ Dt
X
ijX

CijðF i þ F jÞ þ Ci
CF i

" #
: ð7Þ

The ‘boundary contribution’ is the numerical equivalent of
the boundary integral that would appear if a boundary fit-
ted mesh had been placed instead. The point-coefficients Ci

C

are obtained from the condition that Du = 0 for u = const.
Given that gradients (e.g. for limiting) are also constructed
using a loop of the form given by Eq. (6) as

Migi ¼
X
ijX

Cijðui þ ujÞ; ð8Þ

it would be desirable to build the Ci
C coefficients in such a

way that the constant gradient of a linear function u can be
obtained exactly. However, this is not possible, as the num-
ber of coefficients is too small. Therefore, the gradients at
the boundary are either set to zero or extrapolated from
the interior of the domain.

The mass-matrix Mi of points surrounded by cut edges
must be modified to reflect the reduced volume due to
cut elements. The simplest possible modification of Mi is
given by the so-called ‘cut edge fraction’ method.

In a pass over the edges, the smallest ‘cut edge fraction’
n for all the edges surrounding a point is found (see Fig. 4).
The modified mass-matrix is then given by

Mi
� ¼

1þ nmin

2
Mi: ð9Þ

Note that the value of the modified mass-matrix can never
fall below half of its original value, implying that timestep
sizes will always be acceptable. For edges that are along
embedded boundaries (see Fig. 5), the original edge-coeffi-
cient must be modified to reflect the loss of volume result-
ing from the presence of the boundary. In principle, a
complex quadrature may be used to recompute the edge-
coefficients. A very simple approach to obtain an approxi-
mation to these values is again via the ‘cut edge fraction’



CSD Surface

A

C

B

=CA/BAξ

Fig. 4. Cut edge fraction.

ξ

CSD Surface

k

i

l

j

=li/ki

Active CFD Domain

Fig. 5. Modification of boundary edge coefficients.

2178 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
technique. Given the ‘cut edge fraction’ of the end-points,
we simply modify Cij as follows:

Cij
� ¼

1þmaxðni; njÞ
2

Cij: ð10Þ
2.2.2. Boundary conditions

For the new boundary points belonging to cut edges the
proper PDE boundary conditions are required. In the case
A

CSD/Immersed Body Surface

Fig. 6. Extrapolati

A

CSD/Immersed Body Surface

n

Fig. 7. Extrapolation of no
of flow solvers, these are either an imposed velocity or an
imposed normal velocity. For limiting and higher-order
schemes, one may also have to impose boundary condi-
tions on the gradients. The required surface normal and
boundary velocity are obtained directly from the closest
CSD face to each of the new boundary points.

These low-order boundary conditions may be improved
by extrapolating the velocity from the surface with field
information. The location where the flow velocity is equal
to the surface velocity is the surface itself, and not the clos-
est boundary point. As shown in Fig. 6, for each boundary
point the closest point on the CSD face is found. Then, two
(three) neighbouring field (i.e., non-boundary) points are
found and a triangular (tetrahedral) element that contains
the boundary point is formed. The velocity imposed at the
field point is then found by interpolation. In this way, the
boundary velocity ‘lags’ the field velocities by one iteration
(for iterative implicit schemes) or timestep (for explicit
schemes).

The normal gradients at the boundary points can be
improved by considering the ‘most aligned’ field (i.e.,
non-boundary) point to the line formed by the boundary
point and the closest point on the CSD face (see Fig. 7).
2.3. Higher-order treatment

As stated before, a higher-order treatment of embedded
surfaces may be achieved by using ghost points or mirrored
points to compute the contribution of the crossed edges to
the overall solution. This approach presents the advantage
of not requiring the modification of the mass matrix as all
edges (even the crossed ones) are taken into consideration.
It also does not require an extensive modification of the
various solvers. On the other hand, it requires more
C B

A

CSD/Immersed Body Surface

on of velocity.

p,n

p,n

A

CSD/Immersed Body Surface

rmal pressure gradient.



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2179
memory due to duplication of crossed edges and points, as
well as (scalar) CPU time for renumbering/reordering
arrays. Particularly for moving body problems, this may
represent a considerable CPU burden.

2.4. Boundary conditions

By duplicating the edges, the points are treated in the
same way as in the original (non-embedded) case. The
boundary conditions are imposed indirectly by mirroring
and interpolating the unknowns as required. Fig. 8 depicts
the contribution due to the edges surrounding point i. A
CSD boundary crosses the CFD domain. In this particular
situation point j, which lies on the opposite side of the CSD
face, will have to use the flow values of its mirror image j 0

based on the crossed CSD face.
The flow values of the mirrored point are then interpo-

lated from the element the point resides in using the follow-
ing formulation for inviscid flows:

qm ¼ qi; pm ¼ pi; vm ¼ vi � 2½ðvi � wcsdÞ � n�n; ð11Þ
where wcsd is the velocity of the crossed CSD face, q the
density, v the flow velocity, p the pressure and n the unit
surface normal of the face. Proper handling of the interpo-
lation for degenerate cases is also required, as the element
used for the interpolation might either be crossed (Fig. 9a)
or not exist (Fig. 9b).

A more accurate formulation of the mirrored pressure
and density can also be used taking into account the local
radius of curvature of the CSD wetted surface:

pm ¼ pi � qi
½vi � ðvi � wcsdÞ � n�2

Ri
D; qm ¼ qi

pm

pi

� �1
c

; ð12Þ
i

j

j’

a

i

j

j’

b
Boundary of CFD Domain

Fig. 9. Problem cases.

i

j

j’

w
CSD Surface

CFD Mesh

Fig. 8. Higher-order boundary conditions.
where Ri is the radius of curvature and D the distance be-
tween the point and its mirror image. This second formula-
tion is more complex and requires the computation of the 2
radii (3-D) of curvature at each CSD point [18]. The radius
of curvature plays an important role for large elements but
this influence can be diminished by the use of automatic
h-refinement.

For problematic cases such as the one shown in Fig. 9,
the interpolation will be such that the point at which the
information is interpolated may not be located at the same
normal distance from the wall as the point where informa-
tion is required.

With the notation of Fig. 10, and assuming a linear
interpolation of the velocities, the velocity values for the
viscous (i.e. no-slip) case are interpolated as

w ¼ ð1� nwÞvc þ nwvi; nw ¼
ho

ho þ hi
; ð13Þ

i.e.

vc ¼
1

1� nw
w� nw

1� nw
vi: ð14Þ

Here w is the average velocity of the crossed CSD face, vi

the interpolated flow velocity and the distance factor
nw 6 0.5.
2.5. Determination of crossed edges

Given the CSD triangulation and the CFD mesh, the
first step is to find the CFD edges cut by CSD faces. This
is performed by building a fast spatial search data struc-
ture, such as an octree or a bin for the CSD faces (see
Fig. 11). Without loss of generality, let us assume a bin
for the CSD faces. Then, a (parallel) loop is performed over
the edges. For each edge, the bounding box of the edge is
built.

From the bin, all the faces in the region of the bounding
box are found. This is followed by an in-depth test to deter-
mine which faces cross the given edge. The crossing face
closest to each of the edge end-nodes is stored. This allows
vc

hi

h0

v i

inside

outside

CSD Surface W

Fig. 10. Navier–Stokes boundary condition.



Bin For Faces (a) Edge

(c) Faces From Bin (d) Detailed Test

(b) Bounding Box

Fig. 11. Bin storage of faces and search.

CFD Mesh

CSD Surface

Deactive Point

Fig. 12. Deactive point.

2180 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
to resolve cases of thin gaps or cusps. Once the faces cross-
ing edges are found, the closest face to the end-points of
crossed edges is also stored. This information is required
to apply boundary conditions for the points close to the
embedded surface. For cases where the embedded surfaces
only cut a small portion of the CFD edges, a considerable
speedup may be realized by removing from the list of edges
tested all those that fall outside the global bounding box of
the CSD faces. The resulting list of edges to be tested in
depth may be reduced further by removing all edges whose
bounding boxes do not fall into an octree or bin filled with
faces covering that spatial region. One typically finds that
using these two filters, the list of edges to be tested in detail
has been reduced by an order of magnitude.

For transient problems, the procedure described above
can be improved considerably. The key assumption is that
the CSD triangulation will not move over more than 1–2
elements during a timestep. If the topology of the CSD tri-
angulation has not changed, the crossed-edge information
from the previous timestep can be re-checked. The points
of edges no longer crossed by a face crossing them in the
previous timestep are marked, and the neighbouring edges
are checked for crossing. If the topology of the CSD trian-
gulation has changed, the crossed-edge information from
the previous timestep is no longer valid. However, the
points close to cut edges in the previous timestep can be
used to mark 1–2 layers of edges. Only these edges are then
re-checked for crossing.

3. Deactivation of interior regions

For highly distorted CSD surfaces, or for CSD surfaces
with thin reentrant corners, all edges surrounding a given
point may be crossed by CSD faces (see Fig. 12). The best
way to treat such points is to simply deactivate them.

This deactivation concept can be extended further in
order to avoid unnecessary work for regions inside solid
objects. Several approaches have been pursued in this
direction: seed points and automatic deactivation.

(a) Seed points: In this case, the user specifies a point
inside an object. The closest CFD field point to this
so-called seed point is then obtained. Starting from
this point, additional points are added using an
advancing front (nearest neighbour layer) algorithm,
and flagged as inactive. The procedure stops once
points that are attached to crossed edges have been
reached.

(b) Automatic seed points: For external aerodynamics
problems, one can define seed points on the bound-
aries of the bounding box. At the beginning, all
points are marked as deactive. Starting from the
external boundaries, points are activated using an
advancing front technique into the domain. The pro-
cedure only activates neighbour points if at least one
of the edges is active and attached to an active point.

(c) Automatic deactivation: For complex geometries with
moving surfaces, the manual specification of seed
points becomes impractical. An automatic way of
determining which regions correspond to the flow-
field one is trying to compute and which regions cor-
respond to solid objects immersed in it is then
required. The algorithm employed starts from the
edges crossed by embedded surfaces. For the end-
points of these edges an in/outside determination is
attempted. This is non-trivial, particularly for thin
or folded surfaces (Fig. 13). A more reliable way to
determine whether a point is in/outside the flowfield
is obtained by storing, for the crossed edges, the faces
closest to the end-points of the edge. Once this in/out-
side determination has been done for the end-points
of crossed edges, the remaining points are marked
using an advancing front algorithm. It is important
to remark that in this case both the inside (active)
and outside (deactive) points are marked at the same
time. In the case of a conflict, preference is always
given to mark the points as inside the flow domain



out

out

in

in

Fig. 13. Edges with multiple crossing faces.

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2181
(active). Once the points have been marked as active/
inactive, the element and edge-groups required to
avoid memory contention (i.e. allow vectorization)
are inspected in turn. As with spacemarching
[35,38,48,49] the idea is to move the active/inactive
if-tests to the element/ edge-groups level in order
to simplify and speed up the core flow solver.

4. Extrapolation of the solution

For problems with moving boundaries, mesh points can
switch from one side of a surface to another or belong/no
longer belong to an immersed body (see Fig. 14). For these
cases, the solution must be extrapolated from the proper
state. The conditions that have to be met for extrapolation
are as follows:

– the edge was crossed at the previous timestep and is no
longer crossed;

– the edge has one field point (the point donating
unknowns) and one boundary point (the point receiving
unknowns); and

– the CSD face associated with the boundary point is
aligned with the edge.

For incompressible flow problems the simple extrapola-
tion of the solution from one point to another (or even a
more sophisticated extrapolation using multiple neigh-
bours) will not lead to a divergence-free velocity field.
Therefore, it may be necessary to conduct a local ‘diver-
gence cleanup’ for such cases.
CSD Surface at: t_{n}

CFD Mesh

CSD Surface at: t_{n+1}

Point Switches Sides
(Requires Update/Extrapolation)

Fig. 14. Extrapolation of solution.
5. Adaptive mesh refinement

Adaptive mesh refinement is very often used to reduce
CPU and memory requirements without compromising the
accuracy of the numerical solution. For transient problems
with moving discontinuities, adaptive mesh refinement has
been shown to be an essential ingredient of production codes
[6,31,37]. For embedded CSD triangulations, the mesh can
be refined automatically close to the surfaces [1,40]. One
can define a number of refinement criteria, of which the fol-
lowing have proven to be the most useful:

– refine the elements with edges cut by CSD faces to a cer-
tain size/level;

– refine the elements so that the curvature given by the
CSD faces can be resolved (e.g. 10 elements per 90�
bend);

– refine the elements close to embedded CSD corners with
angles up to 50� to a certain size/level;

– refine the elements close to embedded CSD ridges with
angles up to 15� to a certain size/level.

The combination of adaptive refinement and embedded/
immersed grid techniques has allowed to automate com-
pletely certain application areas, such as external aerody-
namics. Starting from a triangulation (e.g. an STL data set
obtained from CAD for a design or a triangulation obtained
from a scanner for reverse engineering), a suitable box is
automatically generated and filled with optimal space-filling
tetrahedra. This original mesh is then adaptively refined
according to the criteria listed above. The desired physical
and boundary conditions for the fluid are read in, and the
solution is obtained. In some cases, further mesh adaptation
based on the physics of the problem (shocks, contact discon-
tinuities, shear layers, etc.) may be required, but this can also
be automated to a large extent for class-specific problems.
Note that the only user input consists in flow conditions.
The many hours required to obtain a watertight, consistent
surface description have been eliminated by the use of adap-
tive, embedded flow solvers.
6. Load/flux transfer

For fluid–structure interaction problems, the forces
exerted by the fluid on the embedded surfaces or immersed



2182 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
bodies need to be evaluated. For immersed bodies, this
information is given by the sum of all forces, i.e. by Eq.
(4). For embedded surfaces, the information is obtained
by computing first the stresses (pressure, shear stresses) in
the fluid domain, and then interpolating this information
to the embedded surface triangles. In principle, the integra-
tion of forces can be done with an arbitrary number of
Gauss-points per embedded surface triangle. In practice,
one Gauss-point is used most of the time. The task is then
to interpolate the stresses to the Gauss-points on the faces
of the embedded surface. Given that the information of
crossed edges is available, the immediate impulse would
be to use this information to obtain the required informa-
tion. However, this is not the best way to proceed, as

– the closest (end-point of crossed edge) point corresponds
to a low-order solution and/or stress; i.e. it may be bet-
ter to interpolate from a field point;

– as can be seen from Fig. 15, a face may have multiple
(F1) or no (F2) crossing edges; i.e. there will be a need
to construct extra information in any case.

For each Gauss-point required, the closest interpolating
points are obtained as follows:

– obtain a search region to find close points; this is typi-
cally of the size of the current face the Gauss-point
belongs to, and is enlarged or reduced depending on
the number of close points found;

– obtain the close faces of the current surface face;
– remove from the list of close points those that would

cross close faces that are visible from the current face,
and that can in turn see the current face (see Fig. 16);
CFD Mesh
CSD Surface

F1 F2

Fig. 15. Transfer of stresses/fluxes.

B

D

A C

CFD Mesh
CSD Surface

F

Fig. 16. Transfer of stresses/fluxes.
– order the close points according to proximity and
boundary/field point criteria;

– retain the best np close points from the ordered list.

The close points and faces are obtained using octrees for
the points and a modified octree or bins for the faces. We
remark that for many fluid–structure interaction cases this
step can be more time-consuming than finding the crossed
edges and modifying boundary conditions and arrays, par-
ticularly if the characteristic size of the embedded CSD
faces is smaller than the characteristic size of the surround-
ing tetrahedra of the CFD mesh, and the embedded CSD
faces are close to each other and/or folded.
7. Treatment of gaps or cracks

The presence of ‘thin regions’ or gaps in the surface def-
inition, or the appearance of cracks due to fluid–structure
interaction has been an outstanding issue for a number
of years. For body fitted grids (Fig. 17a), a gap or crack
is immediately associated with minuscule grid sizes, small
timesteps and increased CPU costs.

For embedded grids (Fig. 17b), the gap or crack may not
be seen. A simple solution is to allow some flow through
the gap or crack without compromising the timestep. The
key idea is to change the geometrical coefficients of crossed
edges in the presence of gaps. Instead of setting these coef-
ficients to zero, they are reduced by a factor that is propor-
tional to the size of the gap d to the average element size h

in the region:

Cij
k ¼ gCij

0k; g ¼ d=h: ð15Þ

Gaps are detected by considering the edges of elements
with multiple crossed edges. If the faces crossing these
edges are different, a test is performed to see if one face
can be reached by the other via a near-neighbour search.
If this search is successful, the CSD surface is considered
watertight. If the search is not successful, the gap size d is
determined, and the edges are marked for modification.
8. Direct link to particles

One of the most promising ways to treat discontinua is
via so-called discrete element methods (DEMs) or discrete
(a) Body Fitted (b) Embedded

Fig. 17. Treatment of gaps.



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2183
particle methods (DPMs). A considerable amount of work
has been devoted to this area in the last two decades, and
these techniques are being used for the prediction of soil,
masonry, concrete and particulates [16]. The filling of space
with objects of arbitrary shape has also reached the matu-
rity of advanced unstructured grid generators [39], opening
the way for widespread use with arbitrary geometries.
Adaptive embedded grid techniques can be linked to DPMs
in a very natural way. The discrete particle is represented as
a sphere. Discrete elements, such as polyhedra, may be rep-
resented as an agglomeration of spheres. The host element
for each one of the discrete particles is updated every time-
step and is assumed as given. All points of host elements
are marked for additional boundary conditions. The clos-
est particle to each of these points is used as a marker.
Starting from these points, all additional points covered
by particles are marked (see Fig. 18).

All edges touching any of the marked points are subse-
quently marked as crossed. From this point onwards, the
1

1
1

R

2

Fig. 18. Link to discrete particle method.

CSD
Surface

CSD
Surface

Active Flowfield Region

Immersed Body Region

(c) Movement of Active Flow Points (d

(a) Original Mesh (b

Fig. 19. Coordinate mo
procedure reverts back to the usual embedded mesh or
immersed body techniques. The velocity of particles is
either imposed at the endpoints of crossed edges (embed-
ded) or for all points inside and surrounding particles
(immersed).
9. Coordinate movement for display

The display of information from a CFD field solver with
embedded CSD faces or immersed bodies requires some
attention. The easiest way to visualize the location of the
CSD surface is by removing the elements that contain the
embedded surface, yielding cut-outs close to embedded sur-
faces that have a staircase boundary (Fig. 19b). In order to
achieve a more precise, continuous surface representation,
the points close to embedded surfaces are moved to the sur-
face itself before display (Fig. 19c and d). This may pro-
duce some distortion in the contour lines close to the
embedded surfaces, but produces a more faithful geometry
representation.

Close to corners or ridges multiple surface normals
will appear. For each of these multiple normals, a
separate direction of movement is determined. The
final point movement is obtained as the sum of all
of these.
10. Examples

Adaptive embedded and immersed unstructured grid
techniques have been used extensively for a number of
years now. In this section, we include a few of these. The
aim is to highlight the considerable range of applicability
of these methods, show their limitations, as well as the
CSD
Surface

CSD
Surface

) Movement of Closest Points

) Staircase Display

vement for display.



2184 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
combination of body-fitted and embedded/ immersed tech-
niques. We start with compressible, inviscid flow, where we
consider the classic Sod shock tube problem, a shuttle
ascend configuration and two fluid–structure interaction
problems. We then consider incompressible, viscous flow,
where we show the performance of the different options
in detail for a sphere. The contaminant transport calcula-
tion for a city is then included to show a case where obtain-
ing a body-fitted, watertight geometry is nearly impossible.
Finally, we show results obtained for complex endovascu-
lar devices in aneurysms, as well as the external flow past
a car.
Fig. 20. Shock tube problem: (a) embedded surface;
10.1. Sod shock tube

The first case considered is the classic [58] shock-tube
problem (q1 = p1 = 1.0, q2 = p2 = 0.1) for a ‘clean-wall’,
body fitted mesh and an equivalent embedded CSD mesh.
The flow is treated as compressible and inviscid, with no-
penetration (slip) boundary conditions for the velocities
at the walls.

The embedded geometry can be discerned from Fig. 20a.
Fig. 20b shows the results for the two techniques. Although
the embedded technique is rather primitive, the results are
surprisingly good. The main difference is slightly more
(b) density contours. (c) Pressure time history.



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2185
noise in the contact discontinuity region, which may be
expected, as this is a linear discontinuity. The long-term
effects on the solution for the different treatments of
boundary points can be seen in Fig. 20c, which shows the
pressure time history for a point located in the high pres-
sure side (left of the membrane). Both ends of the shock
tube are assumed closed. One can see the different reflec-
tions. In particular, the curves for the boundary fitted
approach and the second-order (ghost-point) embedded
Fig. 21. (a, b) Shuttle: general view and detail, (c, d) surface pressure and field M
mesh (cut plane), surface pressure and field Mach-Nr.
approach are almost identical, whereas the first-order
embedded approach exhibits some damping.

10.2. Shuttle ascend configuration

The second example considered is the Space Shuttle
Ascend configuration shown in Fig. 21a. The external flow
is at Ma = 2 and angle of attack a = 5�. As before, the flow
is treated as compressible and inviscid, with no-penetration
ach-Nr., surface pressure and mesh (cut plane), (e, f) Surface pressure and



Fig. 22. Surface and pressure in cut plane at (a) 20 ms and (b) 50 ms.

Fig. 23. CSD/flow velocity and pressure/mesh at (a–c) 68 ms and (d–f) 102 ms.

2186 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197



Fig. 24. (a) Sphere: surface grids (body fitted, embedded/immersed). (b) Coarse vs. fine body-fitted (left: jvj, right: p). (c) Body-fitted vs. embedded 1 (top:
coarse; bottom: fine). (d) Body-fitted vs. embedded 2 (top: coarse; bottom: fine). (e) Body-fitted vs. immersed (top: coarse; bottom: fine). (f) Velocity/
pressure along line: y,z = 0.0 (top: coarse; bottom: fine).

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2187
(slip) boundary conditions for the velocities at the walls.
The surface definition consisted of approximately
161 Ktria faces. The base CFD mesh had approximately
1.1 Mtet. For the geometry, a minimum of 3 levels of
refinement were specified. Additionally, curvature-based
refinement was allowed up to five levels. This yielded a



Fig. 24 (continued)

2188 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
mesh of approximately 16.9 Mtet. The grid obtained in this
way, as well as the corresponding solution are shown in
Fig. 21b and c. Note that all geometrical details have been
properly resolved. The mesh was subsequently refined
based on a modified interpolation theory error indicator
[33,34] of the density, up to approximately 28 Mtet.
This physics-based mesh refinement is evident in Fig. 21c
and d.



-0.2

0

 0.2

 0.4

 0.6

 0.8

1

2 3 4 5 6 7 8

x-
ve

lo
ci

ty

x

Body Fitted
CSD Embedded 1
CSD Embedded 2
CSD Immersed T
DPM Immersed C

DPM Embedded A
DPM Embedded C

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 3 4 5 6 7 8

pr
es

su
re

x

Body Fitted
CSD Embedded 1
CSD Embedded 2
CSD Immersed T
DPM Immersed C

DPM Embedded A
DPM Embedded C

-0.2

0

 0.2

 0.4

 0.6

 0.8

1

2 3 4 5 6 7 8

x-
ve

lo
ci

ty

x

Body Fitted
CSD Embedded 1
CSD Embedded 2
CSD Immersed T
DPM Immersed C

DPM Embedded A
DPM Embedded C

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 3 4 5 6 7 8

pr
es

su
re

x

Body Fitted
CSD Embedded 1
CSD Embedded 2
CSD Immersed T
DPM Immersed C

DPM Embedded A
DPM Embedded C

f

Fig. 24 (continued)

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2189
10.3. Blast interaction with a generic ship hull

Fig. 22 shows the interaction of an explosion with a gen-
eric ship hull. For this fully coupled CFD/CSD run, the
structure was modeled with quadrilateral shell elements,
the (inviscid) fluid as a mixture of high explosive and air,
and mesh embedding was employed. The structural ele-
ments were assumed to fail once the average strain in an
element exceeded 60%. As the shell elements failed, the
fluid domain underwent topological changes. Fig. 22a–d
show the structure as well as the pressure contours in a
cut plane at two times during the run. The influence of
bulkheads on surface velocity can clearly be discerned.
Note also the failure of the structure, and the invasion of
high pressure into the chamber. The distortion and inter-
penetration of the structural elements is such that the
traditional moving mesh approach (with topology recon-
struction, remeshing, ALE formulation, remeshing, etc.)
will invariably for this class of problems. In fact, it was this
particular type of application that led to the development
of the embedded CSD capability for unstructured grids.
10.4. Generic weapon fragmentation

Fig. 23 shows a generic weapon fragmentation study.
The CSD domain was modeled with approximately 66
Khex elements corresponding to 1,555 fragments whose
mass distribution matches statistically the mass distribu-
tion encountered in experiments. The structural elements
were assumed to fail once the average strain in an element
exceeded 60%. The high explosive was modeled with a
Jones–Wilkins–Lee equation of state [36]. The CFD mesh
was refined to three levels in the vicinity of the solid sur-
face. Additionally, the mesh was refined based on the mod-
ified interpolation error indicator [33,34] using the density
as indicator variable.

Adaptive refinement was invoked every five timesteps
during the coupled CFD/CSD run. The CFD mesh started
with 39 Mtet, and ended with 72 Mtet. Fig. 23a–f show the
structure as well as the pressure contours in a cut plane at
two times during the run. The detonation wave is clearly
visible, as well as the thinning of the structural walls and
the subsequent fragmentation.
10.5. Flow past a sphere

This simple case is included here as it offers the possibil-
ity of an accurate comparison of the different techniques
discussed in this paper. The geometry considered is shown
in Fig. 24. Due to symmetry considerations only a quarter
of the sphere is treated. The physical parameters were set as
follows: D = 1, v1 = (1,0,0), q = 1.0, l = 0.01, yielding a



2190 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
Reynolds-number of Re = 100. Two grids were considered:
the first had an element size of approximately h = 0.0450
in the region of the sphere, while the corresponding size
for the second was h = 0.0225. This led to grids with
approximately 140 Kels and 1.17 Mels, respectively. The
coarse mesh surface grids for the body fitted and embedded
options are shown in Fig. 24a. We implicitly assumed that
the body-fitted results were more accurate and therefore
considered them as the ‘gold standard’. Fig. 24b show the
same surface contour lines of the absolute value of the
velocity, as well as the pressures, obtained for the body-fit-
ted coarse and fine grids. Note that although some differ-
ences are apparent, the results are quite close, indicating
a grid-converged result on the fine mesh. The drag coeffi-
cients for the two body-fitted grids were given by
cd = 1.07 and cd = 1.08, respectively, in good agreement
with experimental results (Schlichting et al. [57]).
Fig. 24c–e show the same surface contour lines for the
body-fitted and the different embedded/immersed options
for the two grids. Note that the contours are very close,
and in most cases almost identical. This is particularly
noticeable for the second-order embedded and the
immersed body cases. Fig. 24f depict the x-velocity and
pressure along the line y,z = 0 (i.e. the axis of symmetry).
Fig. 25. (a, b) Blueprint of Manhattan, zoom into MSG. (c, d) Cut planes at 5
and contours of vertical velocity. (g–j) SW case: plume patterns for continuou
As seen before in the contour lines, the results are very
close, indicating that even the first-order embedded scheme
has converged. For more information, see Löhner et al.
[44].

10.6. Dispersion in an inner city

This case, taken from Camelli and Löhner [9], considers
the dispersion of a contaminant cloud near Madison
Square Garden in New York city. The commercial building
database Vexcel (see Hanna et al. [26]) was used to recover
the geometry description of the city. Fig. 25a and b shows
the wireframe of the information contained in the
database.

The area of buildings covered in the simulation is 2.7 km
by 1.9 km. The computational domain is 3.3 km by 2.6 km
and a height of 600 m. The building database simply con-
sists of disjoined polygons that can cross and are not water-
tight. Cleaning up this database, even with semi-automatic
tools, in order to obtain a body-fitted mesh would have
taken many man-months. The adaptive embedded
approach reduced dramatically the man-hours required
for reconstructing the geometry of buildings, making a
run like the one shown here possible. A VLES simulation
and 100 m above ground level. (e, f) SW case, z = 100 m: velocity vectors
s release.



Fig. 25 (continued)

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2191
was performed with a mesh of 24 Mtet elements. The ele-
ment size was of 2 m close to the building surfaces. Two
cut planes of the volume mesh are shown in Fig. 25c and
d at 5 and 100 m above ground level. These two cut planes
illustrate clearly the use of adaptive gridding based on
edges crossed by the embedded surfaces, and the relatively
high resolution of the mesh used close to buildings and the
ground. A typical velocity field obtained for a South-Wes-
terly wind is shown in Figs. 25e and f, and the dispersion
pattern for a continuous release may be discerned from
Fig. 25g and h.

10.7. Complex endovascular devices

Stents are currently being considered as an interesting
alternative treatment for aneurysms. While the pipeline
from images to body-fitted grids to flow calculation to visu-
alization is a rather mature process [10,11,13], the place-
ment of stents or coils represents considerable challenges.
In Cebral and Löhner [13] the use of embedded grids was
first proposed as a way to circumvent lengthy input times
without compromising accuracy. Fig. 26 shows the com-
parison of a body-fitted and embedded stent calculation
for an idealized aneurysm geometry. The body-fitted ideal-
ized aneurysm is obtained by first merging a sphere with a
cylinder, obtaining the isosurface of distance d = 0 [10–12],
and meshing this discrete surface (Fig. 26a). The stent is
described as a set of small spheres (beads), and is placed
in the idealized aneurysm domain. The isosurface of dis-
tance d = 0 is again used as the starting point to mesh
the complete domain (Fig. 26b). For the embedded case,
the spheres describing the stent are simply placed in their
position, and the proper boundary conditions are applied
as described above. Fig. 26c shows the comparison of



Fig. 26. (a) Idealized aneurysm with stent. (b) Idealized aneurysm with stent: body-fitted mesh. (c) Comparison of velocities in mid-plane.

2192 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
velocities for the idealized aneurysm with and without the
stent. One can see that the velocities for the body-fitted
and embedded approaches are nearly identical. This proce-
dure has also been used successfully for coils [13].

10.8. Flow past a VW GOLF 5

This case considers the flow past a typical passenger car,
and is taken from Tilch et al. [59]. For external vehicle
aerodynamics, the car industry is contemplating at present
turnaround times of 1–2 days for arbitrary configurations.
For so-called body fitted grids, the surface definition must
be water-tight, and any kind of geometrical singularity, as
well as small angles, should be avoided in order to generate
a mesh of high quality. This typically presents no problems
for the main ‘shape’ of the car (the part visible to a street-
side observer), but can be difficult to obtain in such a short
time for the underhood and undercarriage of a typical car



Fig. 27. (a, b) VW GOLF 5: surface definition (body fitted). (c, d) VW GOLF 5: surface grids (body fitted). (e, f) VW GOLF 5: surface grids (underhood
detail). (g, h) VW GOLF 5: surface grids (body fitted, embedded). (i) VW GOLF 5: surface grid (body fitted and embedded). (j) Cut mesh in mid-plane.
(k) Undercarriage detail. (l) Pressure (contours) on ground and x-planes, velocity (shaded) in back x-plane. (m) Velocities in mid-plane (top: body-fitted;
bottom: body-fitted + embedded).

R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2193
or truck. Experience indicates that even with sophisticated
software toolkits, manual cleanup in most cases takes sev-
eral days for a complete car. At first sight, the solution of
high Reynolds-number flows with grids of this type seems
improper. Indeed, for the external shape portion the sur-
face is smooth, and the interplay of pressure gradient and
viscous/advective terms is what decides if separation will
occur. Therefore, for this portion of the vehicle, a highly
detailed, body-fitted RANS is considered mandatory.
However, for the underhood and undercarriage, many
abrupt changes in curvature occur, the flow is massively
separated, and an LES run seems sufficient. For embedded
grids, this presents no problem. One is therefore in a rather
fortunate position: the region where the geometry is the
‘dirtiest’ happens to be the region where isotropic grids
are sufficient, making this region a good candidate for
embedded grids. The key idea is then to obtain, quickly,
the external shape of the vehicle and grid it with typical
body-fitted RANS grids. Note that this portion of the sur-
face is typically ‘clean’, i.e. a turnaround of 1–2 days is



Fig. 27 (continued)

2194 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
possible. The underhood and undercarriage, on the other
hand, is then inserted into the RANS mesh generated for
the external shape of the vehicle as an embedded surface.
As such, it can have crossing faces (stemming, for example,
from different parts of the undercarriage), and does not
require elements of very high quality. A run is then con-
ducted with the embedded mesh.

The example shown here compares a body-fitted and an
embedded run of the type described above for a typical
passenger car. The body-fitted mesh was obtained after



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2195
several weeks of cleanup, and may be seen in Fig. 27a and
b. Note that all the undercarriage details have been taken
into account. The corresponding surface grids are shown
in Fig. 27c–e. For the embedded case, the starting point
was given by two NASTRAN-files which came from differ-
ent departments at VW. The surface which was meshed
using the body-fitted approach was given by 12 patches
(one surface for the top, one for the bottom, two for the
mirrors), whereas the surface which was treated with the
embedded approach was given by 106 parts, most of which
were single patches. The complete surface triangulation
used to define the car had 1.1 Mtria. The body-fitted mesh
consisted of approximately 5.68 Mpts and 32.03 Mtets.
Five RANS layers were used. For the car body, the first
point was yw = 0.758 mm away from the wall, and the
mesh was increased by a factor of ci = 1.5 between layers.
For the ground, the first point was yw = 0.914 mm away
from the ground, and the mesh was increased by a factor
of ci = 1.4 between layers. The surface of the body-fitted
domain, the embedded surface, as well as the complete
vehicle, are shown in Fig. 27f–i. A closeup of the undercar-
riage, together with the mesh in a cut plane, is shown in
Fig. 27j. The physical parameters were set as follows:
v1 = (33.33,0,0) m/s, q = 1.2 kg/m3, l = 1.4 Æ 10�5 kg/m,
yielding a Reynolds-number of approximately Re = 107.
A Smagorinsky turbulence model was used. The run was
initialized with approximately 103 timesteps using local
timesteps. This was followed by a time-accurate run of
104 timesteps, integrating explicitly the advective terms in
order to obtain an accurate wake. The results obtained
are shown in Fig. 27l and m.

The drag-coefficient obtained was cd = 0.309, based on a
reference velocity of v1 = 33.33 m/s and an area of
A = 2.2 m2. Experiments conducted at VW measured a
drag-coefficient of cd = 0.330. However, the windtunnel
model exhibited an open grille. From past experience,
one can infer that performing the experiment with a closed
front, as was done for the present run, would reduce the cd

by 5–10% percent in comparison with an open grille. At
VW, the estimated value for the closed grille case was
cd = 0.305. The purely body-fitted CFD run with the same
code yielded a drag-coefficient of cd = 0.320. Overall, this
leads to the conclusion that the combined body-fitted/
embedded approach leads to results that are within 5% of
experimental values, not bad considering the reduction in
set-up times, and well within a range to make them of inter-
est for designers. Moreover, as experience with this
approach accumulates, one may reasonably expect to be
able to obtain even better results.
11. Conclusions and outlook

The use of embedded mesh, immersed body or fictitious
domain techniques within adaptive, unstructured grid solv-
ers has matured rapidly over the last decade. As could be
seen from the examples shown, as well as the considerable
body of literature on this subject, these methods work well
for problems characterized by:

– ‘dirty geometries’,
– moving/sliding bodies with thin/vanishing gaps; and
– physics that can be handled with isotropic grids (poten-

tial, Euler, Euler and boundary layers, low-Re Navier–
Stokes, LES).

Given that due to the continuing advances in computer
hardware the envelope of problems that can be solved with
isotropic grids is encompassing ever more flow regimes,
and that the human cost of obtaining a body-fitted mesh
for complex geometries has stagnated or even increased
in recent years, it is foreseeable that these methods will find
widespread use. In fact, for metier-specific applications
such as external car or missile aerodynamics, a direct link
of STL-triangulation output from CAD systems to adap-
tive, embedded grids is already in place. The user only
inputs the desired flow conditions, the mesh is automati-
cally refined to a pre-specified level obtained from ‘best
practice’ experience, and the run proceeds automatically.
The combination of body-fitted functionality for some por-
tion of the domain, together with embedded mesh or
immersed body functionality for another portion of the
domain offers great advantages, which are increasingly
being exploited.

Future research topics include:

– faster crossed edge/ immersed body detection, particu-
larly for transient, moving/ deforming body problems;

– faster embedded face/flowfield interpolation procedures,
particularly for overlapped embedded (i.e. really dirty)
geometries; and

– improved boundary conditions, particularly for implicit
time-dependent solvers.

References

[1] M.J. Aftosmis, M.J. Berger, G. Adomavicius, A Parallel Multilevel
Method for Adaptively Refined Cartesian Grids with Embedded
Boundaries, AIAA-00-0808, 2000.

[2] M.J. Aftosmis, M.J. Berger, J. Alonso, Applications of a Cartesian
Mesh Boundary-Layer Approach for Complex Configurations,
AIAA-06-0652, 2006.

[3] P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take
into account obstacles in incompressible viscous flows, Numer. Math.
81 (1999) 497–520.

[4] F.P.T. Baaijens, A fictitious domain/mortar element method for
fluid–structure interaction, Int. J. Numer. Methods Fluids 35 (2001)
734–761.

[5] E. Balaras, Modeling complex boundaries using an external force field
on fixed cartesian grids in large-eddy simulations, Comput. Fluids 33
(2004) 375–404.

[6] J.D. Baum, H. Luo, E. Mestreau, R. Löhner, D. Pelessone, C.
Charman, A Coupled CFD/CSD Methodology for Modeling
Weapon Detonation and Fragmentation, AIAA-99-0794, 1999.

[7] J.D. Baum, E. Mestreau, H. Luo, R. Löhner, D. Pelessone, Ch.
Charman, Modeling structural response to blast loading using a



2196 R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197
coupled CFD/CSD methodology, in: Proc. Des. An. Prot. Struct.
Impact/Impulsive/Shock Loads (DAPSIL), Tokyo, Japan, Decem-
ber, 2003.

[8] F. Bertrand, P.A. Tanguy, F. Thibault, Three-dimensional fictitious
domain method for incompressible fluid flow problems, Int. J.
Numer. Methods Fluids 25 (1997) 136–719.

[9] F.E. Camelli, R.Löhner, VLES Study of Flow and Dispersion
Patterns in Heterogeneous Urban Areas, AIAA-06-1419, 2006.

[10] J.R. Cebral, R. Löhner, From medical images to anatomically
accurate finite element grids, Int. J. Numer. Methods Engrg. 51 (2001)
985–1008.

[11] J.R. Cebral, R. Löhner, P.L. Choyke, P.J. Yim, Merging of
intersecting triangulations for finite element modeling, J. Biomech.
34 (2001) 815–819.

[12] J.R. Cebral, F.E. Camelli, R. Löhner, A feature-preserving volumet-
ric technique to merge surface triangulations, Int. J. Numer. Methods
Engrg. 55 (2002) 177–190.

[13] J.R. Cebral, R. Löhner, Efficient simulation of blood flow past
complex endovascular devices using an adaptive embedding tech-
nique, IEEE Trans. Med. Imag. 24 (4) (2005) 468–476.

[14] Y. Cho, S. Boluriaan, P. Morris, Immersed Boundary Method for
Viscous Flow Around Moving Bodies, AIAA-06-1089, 2006.

[15] D.K. Clarke, H.A. Hassan, M.D. Salas, Euler Calculations for
Multielement Airfoils Using Cartesian Grids, AIAA-85-0291, 1985.

[16] B.K. Cook, R.P. Jensen (Eds.), Discrete Element Methods, ASCE,
2002.

[17] R. Cortez, M. Minion, The Blop projection method for immersed
boundary problems, J. Comp. Physiol. 161 (2000) 428–453.

[18] A. Dadone, B. Grossman, An Immersed Boundary Methodology for
Inviscid Flows on Cartesian Grids, AIAA-02-1059, 2002.

[19] J. Deng, X.-M. Shao, A.-L. Ren, A new modification of the
immersed-boundary method for simulating flows with complex
moving boundaries, Int. J. Numer. Meth. Fluids 52 (2006) 1195–1213.

[20] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined
immersed-boundary finite-difference methods for three-dimensional
complex flow simulations, J. Comp. Physiol. 161 (2000) 35–60.

[21] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction
algorithm for simulating flows with complex 3D immersed boundaries
on Cartesian grids, J. Comp. Physiol. 191 (2) (2003) 660–669.

[22] A. Gilmanov, F. Sotiropoulos, A hybrid Cartesian/immersed bound-
ary method for simulating flows with 3-D, geometrically complex
moving objects, J. Comp. Physiol. 207 (2005) 457–492.

[23] R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for
external incompressible flow modeled by the Navier–Stokes equa-
tions, Comput. Meth. Appl. Mech. Engrg. 112 (1–4) (1994) 133–148.

[24] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, A distributed
lagrange multiplier/fictitious domain method for particulate flows,
Int. J. Multiphase Flow 25 (5) (1999) 755–794.

[25] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow
boundary with an external force field, J. Comp. Physiol. 105 (1993)
354366.

[26] S.R. Hanna, M.J. Brown, F.E. Camelli, S.T. Chan, W.J. Coirier, O.R.
Hansen, A.H. Huber, S. Kim, R.M. Reynolds, Detailed simulations
of atmospheric flow and dispersion in downtown Manhattan: an
application of five computational fluid dynamics models, Bull. Am.
Meteorol. Soc. (2006) 1713–1726, December 2006.

[27] S.L. Karman, SPLITFLOW: A 3-D Unstructured Cartesian/Pris-
matic Grid CFD Code for Complex Geometries, AIAA-95-0343,
1995.

[28] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume
method for simulation of flow in complex geometries, J. Comp.
Physiol. 171 (2001) 132–150.

[29] M.C. Lai, C.S. Peskin, An immersed boundary method with formal
second-order accuracy and reduced numerical viscosity, J. Comp.
Physiol. 160 (2000) 132–150.

[30] A.M. Landsberg, J.P. Boris, The Virtual Cell Embedding Method: A
Simple Approach for Gridding Complex Geometries, AIAA-97-1982,
1997.
[31] R.J. LeVeque, Z. Li, The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources, SIAM
J. Numer. Anal. 31 (1994) 1019–1044.

[32] R.J. LeVeque, D. Calhoun, Cartesian grid methods for fluid flow in
complex geometries, in: L.J. Fauci, S. Gueron (Eds.), Computational
Modeling in Biological Fluid Dynamics, IMA Volumes in Mathe-
matics and its Applications 124, Springer-Verlag, 2001, pp. 117–143.

[33] R. Löhner, An adaptive finite element scheme for transient problems
in CFD, Comput. Meth. Appl. Mech. Engrg. 61 (1987) 323–338.

[34] R. Löhner, J.D. Baum, Adaptive h-refinement on 3-D unstructured
grids for transient problems, Int. J. Numer. Meth. Fluids 14 (1992)
1407–1419.

[35] R. Löhner, Computational Aspects of Space-Marching, AIAA-98-
0617, 1998.

[36] R. Löhner, C. Yang, J.D. Baum, H. Luo, D. Pelessone, C. Charman,
The numerical simulation of strongly unsteady flows with hundreds of
moving bodies, Int. J. Numer. Meth. Fluids 31 (1999) 113–120.

[37] R. Löhner, C. Yang, J. Cebral, J.D. Baum, H. Luo, E. Mestreau, D.
Pelessone, C. Charman, Fluid–structure interaction algorithms for
rupture and topology change, in: Proc. 1999 JSME Computational
Mechanics Division Meeting, Matsuyama, Japan, November, 1999.

[38] R. Löhner, Applied CFD Techniques, John Wiley & Sons, 2001.
[39] R. Löhner, E. Oñate, A general advancing front technique for filling

space with arbitrary objects, Int. J. Numer. Meth. Engrg. 61 (2004)
1977–1991.

[40] R. Löhner, J.D. Baum, E. Mestreau, D. Sharov, C. Charman, D.
Pelessone, Adaptive embedded unstructured grid methods, Int. J.
Numer. Meth. Engrg. 60 (2004) 641–660.

[41] R. Löhner, J.D. Baum, E.L. Mestreau, Advances in Adaptive
Embedded Unstructured Grid Methods, AIAA-04-0083, 2004.

[42] R. Löhner, H. Luo, J.D. Baum, D. Rice, Selective Edge Deactivation
for Unstructured Grids with Cartesian Cores, AIAA-05-5232, 2005.

[43] R. Löhner, J.D. Baum, E.L. Eric L. Mestreau, D. Rice, Comparison
of Body-Fitted, Embedded and Immersed 3-D Euler Predictions for
Blast Loads on Columns, AIAA-07-1133, 2007.

[44] R. Löhner, S. Appanaboyina, J. Cebral, Comparison of Body-Fitted,
Embedded and Immersed Solutions for Low Reynolds-Number
Flows, AIAA-07-1296, 2007.

[45] J.E. Melton, M.J. Berger, M.J. Aftosmis, 3-D Applications of a
Cartesian Grid Euler Method, AIAA-93-0853-CP, 1993.

[46] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev.
Fluid Mech. 37 (2005) 239–261.

[47] J. Mohd-Yusof, Combined Immersed-Boundary/B-Spline Methods
for Simulations of Flow in Complex Geometries, CTR Annual
Research Briefs, NASA Ames Research Center/Stanford Univ., 1997,
pp. 317–327.

[48] H. Morino, K. Nakahashi, Space-Marching Method on Unstructured
Hybrid Grid for Supersonic Viscous Flows, AIAA-99-0661, 1999.

[49] K. Nakahashi, E. Saitoh, Space-Marching Method on Unstructured
Grid for Supersonic Flows with Embedded Subsonic Regions, AIAA-
96-0418, 1996, see also AIAA J. 35(8) (1997) 1280–1285.

[50] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski, T.W. Pan, A
new formulation of the distributed Lagrange multiplier/fictitious
domain method for particulate flows, Int. J. Multiphase Flow (April)
(1999).

[51] N. Peller, A. LeDuc, F. Tremblay, M. Manhart, High-order stable
interpolations for immersed boundary methods, Int. J. Numer. Meth.
Fluids 52 (2006) 1175–1193.

[52] R.B. Pember, J.B. Bell, P. Colella, W.Y. Crutchfield, M.L. Welcome,
An adaptive Cartesian grid method for unsteady compressible flow in
irregular regions, J. Comp. Physiol. 120 (1995) 278.

[53] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002)
479–517.

[54] S. Del Pino, O. Pironneau, Fictitious Domain Methods and
Freefem3d, in: Proc. ECCOMAS CFD Conf., Swansea, Wales, 2001.

[55] J.J. Quirk, A Cartesian Grid Approach with Hierarchical Refinement
for Compressible Flows, NASA CR-194938, ICASE Report No. 94-
51, 1994.



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2173–2197 2197
[56] A.M. Roma, C.S. Peskin, M.J. Berger, An adaptive version of the
immersed boundary method, J. Comp. Physiol. 153 (1995) 509–534.

[57] H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1979.
[58] G. Sod, A survey of several finite difference methods for systems of

nonlinear hyperbolic conservation laws, J. Comp. Physiol. 27 (1978)
1–31.

[59] R. Tilch, A. Tabbal, M. Zhu, F. Dekker, R. Löhner, Combination of
Body-Fitted and Embedded Grids for External Vehicle Aerodynam-
ics, AIAA-07-1300, 2007.

[60] M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in
complex and moving rigid geometries using the immersed boundary
method, Int. J. Numer. Methods Fluids 48 (2005) 691–722.

[61] K. Tsuboi, K. Miyakoshi, K. Kuwahara, Incompressible flow
simulation of complicated boundary problems with rectangular grid
system, Theor. Appl. Mech. 40 (1991) 297–309.
[62] S. Turek, Efficient solvers for incompressible flow problems, Springer
Lecture Notes in Computational Science and Engineering, vol. 6,
Springer, 1999.

[63] J. vande Voorde, J. Vierendeels, E. Dick, Flow simulations in
rotary volumetric pumps and compressors with the fictitious
domain method, J. Comput. Appl. Math. 168 (2004) 491–
499.

[64] J. Yang, E. Balaras, An embedded-boundary formulation for large-
eddy simulation of turbulent flows interacting with moving bound-
aries, J. Comp. Physiol. 215 (2006) 12–40.

[65] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian
grid method for viscous incompressible flows with complex immersed
boundaries, J. Comp. Physiol. 156 (1999) 209–240.

[66] D. de Zeeuw, K. Powell, An Adaptively-Refined Cartesian Mesh
Solver for the Euler Equations, AIAA-91-1542, 1991.


	Adaptive embedded and immersed unstructured grid techniques
	Introduction
	Treatment of embedded surfaces or immersed bodies
	Kinetic treatment of embedded or immersed objects
	Implementation details

	Kinematic treatment of embedded surfaces
	First-order treatment
	Boundary conditions

	Higher-order treatment
	Boundary conditions
	Determination of crossed edges

	Deactivation of interior regions
	Extrapolation of the solution
	Adaptive mesh refinement
	Load/flux transfer
	Treatment of gaps or cracks
	Direct link to particles
	Coordinate movement for display
	Examples
	Sod shock tube
	Shuttle ascend configuration
	Blast interaction with a generic ship hull
	Generic weapon fragmentation
	Flow past a sphere
	Dispersion in an inner city
	Complex endovascular devices
	Flow past a VW GOLF 5

	Conclusions and outlook
	References


