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ABSTRACT 

The bas i c  concepts and processes of s o i l  and rock melting as 
applied to excavation technology are reviewed. 
heated, s m a l l  diameter prototype penetrator development sequence is 
presented. Ehphasis is  placed on the d i f f e ren t  methods of handling 
the f l u i d  rock and s o i l  m e l t s  and t h e i r  significance i n  providing 
new solutions i n  hole support and debris handling problems. 
f rac tory  materials requirements, penetrator l i f e  and electrical 
hea ter  technology are presented. 

The e lec t r i ca l ly  

The re- 

Consolidating penetrators,  which form stable glass-lined holes 
in  low density rocks and soils, require no debris removal and w i l l  
find applications i n  horizontal  holes for u t i l i t i e s ,  cables, and 
pipel ine ins ta l la t ions .  Extruding penetrators are being developed 
to make holes i n  dense, hard rocks. Melt is conditioned i n t o  a 
var i e ty  of debris fonns, i.e., g lass  rods, pellets o r  rock w o o l ,  
se lected to match appropriate debris handling systems. 
use i n  d r i l l i n g  i n t o  very hot  rock or  magma f o r  geothermal explora- 
t ion  or  production w e l l s  is  projected. 
laboratory and f i e l d  tests of these devices are ccmpared w i t h  
theore t ica l ly  derived operating perfonnance. 

Unique 

Some of the r e su l t s  of 

Coring-consolidating penetrators f o r  geological sampling i n  
alluvium are projected t o  larger  diameter self-propelled and guided 
coring devices for  prospecting along proposed tunnel alignments. 
Application t o  the melting of annular shaf t s  for  pipeline support 
piles i n  d i f f i c u l t  conditions such as permafrost has been scoped. 
Conceptual design s tudies  of large diameter tunneling equipmenthave 
indicated the system contributions and economic aspects of rock mele  
Ing relative to material c o d n u t i o n ,  wall  and roof support and 
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INTRODUCTION 

A wide var ie ty  of physical processes forrock fragmentation and 
comminution have been studied and proposed a s  bases f o r  new d r i l l i n g  
and tunneling systems; fo r  example, r e fe r  t o  the reviews of Maurer(1) 
and Olson and Atchison. (2)  Modes of thermally fracturing rock and of 
fusing rock or s o i l ,  as well as some of the research e f f o r t s  i n  th i s  
general area have been reviewed by Carstens. (3) 
bas ic  advantages of the thermal approaches, noting spec i f ica l ly  t h a t  
thermal processes can del iver  energy t o  a working face with greater  
in tens i ty  than mechanical systems, a r e  subjected t o  l e s s  wear, and 
can be re la t ive ly  insensi t ive t o  wide variations i n  strength and 
hardness of the formation. 

He indicates the 

This  paper reviews the r e su l t s  of a research and development 
project  t h a t  is directed toward perfecting the rock- and soil-melting 

' process into prac t ica l  excavation tools. The work is a r e s u l t  of 
ear ly  studies,(4-5) and the i n i t i a l  experimental e f fo r t s  which se- 
lected the approach of developing e l ec t r i ca l ly  heated, refractory- 
metal penetrators t h a t  are  mechanically thrust in to  the working face 
and t ransfer  heat  primarily by conduction and radiation. This se- 
lection was based upon the controlled formation of the "debris" i n  
the form of a f luid.  
basis  fo r  new excavation systems that can simultaneously: (1) form 
the required shape of the bore hole or tunnel, (2) support the exca- 
vation by ch i l l ing  the m e l t  i n t o  a glass-l ike l ining on the walls, 
and (3) make the  "muck" o r  cutt ings i n t o  forms t h a t  can be selected 
t o  match e f f i c i en t  materials handling equipment su i tab le  f o r  the 
par t icu lar  project.  Major objectives of the program have been t o  ex- 
plore the var ie ty of available melting modes, t o  perfect  the possible 
melt-handling techniques, t o  provide analyt ical  models of system op- 
erat ing performance, to extend system performance re la t ive  t o  pene- 
t r a t ion  r a t e  and operating l i f e ,  and t o  demonstrate the importance 
and potent ia l  of a t o t a l  system approach t o  new solutions i n  excava- 
t ion technology. 
"Subterrenes" . 

The techniques of handling t h i s  melt form the 

These rock melting systems have been termed 

ROCK MJ3LTING PENETRATOR FUNDAMENTALS 

The known melting temperatures of refractory metals, for  struc- 
t u r a l  components, graphites €or e l e c t r i c a l  heaters and thermal in- 
sulators, and a var ie ty  of n i t r i des  and oxides f o r  e l e c t r i c a l  insula- 
tors show(6) t h a t  materials with su f f i c i en t  temperature margin rela- 
t i v e  to rock and s o i l  melting temperature ranges a r e  available f o r  
construction of penetrators. 
r icated from molybdenum and tungsten of the required configurations 
can be designed to  have prac t ica l  creep-rupture l i ves  i n  excess of 
1000 hr. Material temperatures i n  the range of 1300 to 1900 Kelvin 
(1880 t o  2960'F) have been found to be su f f i c i en t  to  melt most rocks 
and s o i l s  of in te res t .  

I n  pract ice ,  s t ruc tu ra l  components f a b  

u 
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Figure 1 i l l u s t r a t e s  schematically the penetrator system. 
physics of melting by *e penetrator yields the following relat ion 
between melting energy Em and penetration r a t e  V, 

The 

*m 

Equation (1) can be rearranged i n t o  the form 

which is the basic  operating re la t ion ,  
where: 

p = density of rock o r  s o i l  

C = spec i f i c  heat  
P 

Tm = melting temperature 

= ambient temperature 
TO  AH^ = ef fec t ive  hea t  of fusion 

Am 
0 

iH = heater  power 

K = a factor  containing the rock or s o i l  properties. 

= melted cross-sectional area 

= efficiency factor  to account fo r  heat  losses t o  s t e m  
coolant and surrounding rock o r  s o i l  

Equation ( 2 )  shows t h a t  the penetration r a t e  is predicted by a rela- 
t i o n  which is essent ia l ly  d i rec t ly  proportional t o  a heater power, 
i.e., an increase i n  r a t e  is achieved by increasing heater power. 
Also +e equation indicates t ha t  maximum r a t e  is limited by the heat  
f l w  (EH/%) t h a t  can be transferred from the heater,  through the 
in te rna l  s t ruc ture  of the penetrator, through the melt layer and t o  
the m e l t  layer-to-rock interface.  
maximum prac t ica l  temperature levels a t  which the in te rna l  componenb 
of the penetrator can operate(7,8); which i n  turn are related to op- 
erat ing l i f e  of the device. 
thermal analysis(9) and laboratory experiments and component tests. 

This l i m i t  is determined by the 

These limits can be established by 

Figure 1 also  i l l u s t r a t e s  the formation and growth of the rock- 
melt layer around the penetrator body. This layer serves t o  par- 
t i a l l y  pro tec t  the refractory metal body from abrasion. There is 
another l i f e  l imiting factor  which resu l t s  from the interact ion of 
the melt w i t h  the high temperature refractory metal. This resu l t s  
i n  a slow removal of material  from the surface by interact ion with 
the f l u i d  m e l t ,  however a s t ab le  complex of so l id  oxides and sili- 
cides has been shown t o  s ignif icant ly  re tard this ef fec t .  Service 
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l i f e  evaluations i n  both laboratory and f i e l d  tests conducted thus 
f a r  have indicated the poten t ia l  fo r  long operating l ifetimes.  

The sketch i n  Figure 1 a l so  shows two other basic  features of 
The need f o r  a stem coolant penetrator systems under development. 

system, usually provided by a water or  gas ( a i r )  flow. This coolant 
performs the primary function of cooling the non-refractory s t e m  
(fabricated from steel  pipe) and the most important secondary task of 
providing a controlled ch i l l i ng  of the m e l t  to a so l id  state, 
the configuration sketched in Fig. 1, as a glass-l ike l in ing  on the 
hole depicted i n  Fig. 2. This melt-conditioning function of the cool- 
a n t  i s  e s sen t i a l  to the operation of the penetrator systems. A sharp 
temperature t r ans i t i on  between the hot  refractory melting body and 
the m e l t  forming-chilling structure is essential t o  prevent m e l t  
s t i ck ing  and this transmission is  provided by a heat  blocking insula- 
tor (usually formed from pyrolytic graphite).  Proper thermal design 
of the glass  forming sect ion has been accomplished by a conbination 
of thermal and hea t  t ransfer  analysis and experimental work. (10) 

For 

I 

The detai led theoret ical  prediction of rock melting penetrator 
performance and optimization s tudies ( l1)  require the knowledge of the 
thermal and physical properties of rock, s o i l s  and m e l t s .  Most of 
these data  are  available (12,13) i n  su f f i c i en t  quantity and qual i ty  to 
predic t  the hea t  loss  from p e n e t r a t ~ r s ( 1 4 , l S )  and to select geome- 
tries to minimize heat  losses. The basic  rock melting relationships 
given i n  equations (1) and (2) have been ve r i f i ed ( l6 )  by instrumented 
laboratory experiments and f i e l d  t e s t  data. The re l a t ive  insensi t ivi-  
t y  of performance t o  a wide range of rocks and s o i l s  has a l s o  been 
established by these tests. This work has confirmed the  general 

b a s s  Liner Heater, i,? 
Hot Penetrator Body 1 ROC& M e L  

Fig. l--Schematic section of Fig. 2--Typical glass l ined hole 
melted i n  l o w  density tuf f  

Ld 
e l e c t r i c a l l y  heated, con- 
sol idat ing penetrator. by consolidating penetrator. 



I 

provided a f i r m  basis fo r  cal- 
a1 designs of d i f fe ren t  excava- 

established the a b i l i t y  to 
culating the 

S AND MELT HANDLING 

de range of projected applica- 
t ion  of Subterrene systems is based upon the var ie ty  of available 
melting modes and m e l t  handling techniques. Figure 3 i l l u s t r a t e s  
four of these basic schemes. The simplest configuration, Fig, 3a, 
termed the consolidation mode, shows a full-face melting penetrator. 
The u n i t  advances i n  l o w  density rock o r  loose s o i l s  by melting the 
material i n  the hole and su f f i c i en t  additional material to form a 
higher density glass-l ike lining. 
no debris removal requirement. 
cooled penetrator designed(17) on the consolidation principle and 
Fig. 5 is a photograph of one of these devices after extensive test- 
ing. The thickness of the glass  l ining f o r  a circular cross section 
hole is given by the equation 

Thus, a stable hole is formed w i t h  
Figure 4 is a section view of a gas 

1 r 
2, 
rh J- 

where r = outer  radius of glass  l in ing  
9. 

h r = radius of hole 

pR - density of the parent rock o r  s o i l  

pL = density of the l in ing  {pL > pR)- 

(31 

Fig. 3--Section sketch of various penetrator melting modes and 
m e l t  handling techniques. 



Figure 6 is a photograph of the ex ter ior  of a glass  l i ned  hole formed 
i n  a sample of  loose gravel by a consolidating penetrator. 

The second mode of melting and m e l t  handling is shown i n  Fig. 3b. 
This configuration is used in dense and hard rocks where consolida- 
t i o n  is not possible. The melt is  extruded through a melt flow hole 
(or  holes) i n  the penetrator body. The m e l t  then e x i t s  through a 
c h i l l  nozzle, where the s t e m  coolant c h i l l s  the melt i n to  a so l id  
debris. Figure 7 shows a section view of t h i s  design(l8) w i t h  a 
s ing le  extruding channel. A variety of debris types o r  cu t t ings  
can be formed w i t h  extruding penetrators. Figures 8 and 9 show typi- 
cal holes and debris. 
( t u f f )  and g lass  rods removed (Fig. 9) indicates the universal nature 
of these extruding penetrators i n  their a b i l i t y  to penetrate lower 
density materials i n  addition t o  denser formations, 

The hole formed i n  a low density rock type 

Figures 3c and 3d illustrate two additional nodes of melting, 
Figure 3c is a consolidating-coring penetrator designed t o  take 
glass cased cores i n  loose s o i l s  and gravels. 
indicate  the  d e t a i l s  of the design,(l9) a photograph of the  pene- 
t o r  body and a section of core re t r ieved during i n i t i a l  tests of the 
unit .  
ing mode and m e l t  handling concept to be applied to coring i n  dense 
rock. 

Figures 10 through 1 2  

The coring-extruding combination shown i n  Fig. 3d is the m e l t -  

The successful design, fabr icat ion and tes t ing  of the above 
var ie ty  of melting penetrators has formed the  technological base f o r  
a wide range of excavation applications. (20) 
required f o r  the  various devices have a l so  been developed and tech- 
n i ca l  approaches t o  provide advanced heater  subsystems estab- 
lished. (21) 
can now be designed and developed based upon combinations of the 
basic melting configurations and m e l t  handling techniques established 
i n  the developnent. 

The electric heaters 

Various types of spec ia l  d r i l l i n g  and tunneling tools  

EXPERIMENTAL AND THEORETICAL RESULTS 
RND FIELD TESTS 

The theore t ica l  prediction models fo r  the Subterrene devices 
have been fonnulated i n  computer programs which y ie ld  detai led ther- 
m a l  and hea t  t ransfer  representations, (22) s t ruc tu ra l  analysis f o r  
creep and thermal stress evaluations(23) and operating performance 
predictions. (11) 
data  obtained i n  laboratory experiments as i l l u s t r a t e d  i n  Fig. 13. 

These ana ly t ica l  r e su l t s  have been ver i f ied  by 

Simple modularized, portable field tes t  and demonstration uni t s  
(24,251 have been designed and used to provide f i e l d  test experienceo 
Field tests of both v e r t i c a l  and horizontal  holes(26) have confirmed 
operating parameter relationships. 
with a 50 mm ( 2  inch) diameter consolidating penetrator has been 

The f i e l d  u n i t  designed f o r  use bl 
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uti l ized(27)  to m e l t  drainage holes i n  the f loors  of Indian ruins i n  
collaboration w i t h  the National Park Service. 

EXCAVATION SYSTEMS 

Based upon the  development e f fo r t s  completed thus far a number 
of excavation systems have been projected. 
horizontal holes  i n  f i e l d  tests (Fig. 14 )  have indicated t h a t  a 
systen fo r  melting small diameter, horizontal  holes with controlled 
deviations from straightness ,  Fig. 15, can be developed.(28) This 
type o f  equipment w i l l  f ind many uses i n  forming glass-lined holes 
f o r  L I B  i n s t a l l a t ion  of  u t i l i t i e s ,  cables and pipelines i n  construc- 
t ion  ppjec ts .  Signif icant  advantages f o r  ins ta l la t ions  i n  loose 
gravel's and d i f f i c u l t  s o i l s  are foreseen. Development of posit ion 
sensor and guidance subsystems f o r  hole straightness and programmed 
deviation control  are possible w i t h  this systemo 

The r e su l t s  of melting 

! 

Increasing the diameter of the  equipment and providing f o r  
coring capabili ty,  the design of equipment f o r  accomplishing geo- 
logic  surveys of the  alignment of a proposed tunnel route is  possi- 
ble.(29) This device can include an in-hole packer-thruster uni t ,  
posi t ion sensors, automatic feed back f o r  path control, and formation 
logging instrumentation. 
projected. 

Application as a mini-tunneler is a l so  
A sketch of the equipnent i s  shown i n  Fig. 16. 

The scale up to larger  diameters t o  provide conceptual designs 
of tunneling systems(30) is a l so  possible due to the pred ic tab i l i ty  
of the melting process. Power requirements, subsystem specifications 
and costs(31) can be readily projected. These systems analyses and 
conceptual design studies have shown t h a t  rock-melting tunnelers for 
Use i n  s o f t  ground, Fig. 17, may show the largest advantages as com- 
pared t o  presently used equipment. 
poss ib i l i ty  of  melting the periphery and formation of a glass  l in ing  
f o r  temporary support i n  d i f f i c u l t  ground and accomplishing t h i s  
immediately behind the working face. A mock up of such a formed-in- 
place tunnel support system is  shown i n  Fig. 18. 
demonstration of tunnel l ining w a s  performed by successively melting 
para l le l ,  hor izontal  holes with a 50 mm ( 2  inch) diameter consolidat- 
ing penetrator i n  such a manner that the  successive glass  tubes over- 
lappea and fused together. A stable and continuous l ining w a s  formed 
and the loose alluvium fill of the embankment w a s  eas i ly  excavated 
from within the l ining. The extension to the placement of a complete 
s e t  of special ly  shaped penetrators located continuously around the 
periphery of an exis t ing s o f t  ground tunmling machine is eas i ly  
visualized. 

Th i s  is  primarily a r e s u l t  of the 

This par t icu lar  

Current penetrator design and development e f fo r t s  are concen- 
t r a t ed  on a prototype penetrator (Fig. 19) su i tab le  fo r  geothermal 
w e l l  d r i l l ing .  This 85 nun (3-1/2 inch) diameter extruding system is 
undergoing f i e l d  trials i n  basalt using a d r i l l  r i g ,  Fig. 20, which 
can handle % 300 m (1000 f t )  of s t e m .  



DISCUSSION AND CONCLUSIONS 

The development of rock melting penetrators has reached the 
s tage where the preliminary design of spec i f ic  excavation equipment 
can be considered. The power and coolant requirements and handling 
equipment can be defined. 
t r a t o r  configurations can be predicted and optimized using available 
analyt ical  techniques. 
ment developed f o r  practical use w i l l  be applied to the  formation of 
s m a l l  diameter, horizontal, g lass  l ined holes i n  d i f f i c u l t  ground 
for u t i l i t y ,  cable and pipeline ins ta l la t ions .  

The operating parameters and special  pene- 

It is  f e l t  t ha t  the f i r s t  comerc ia l  equip- 
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Fig.rl--Cross section of consoli- Fig. 5-Photograph of 50 xmn (2  inch) 
dating penetrator design. diameter consolidator after 

t e s t ,  
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\ 

Fig. 6--Photograph of exterior of glass lined hole formed in  loose 
gravel with consolidating penetrator. 



Pyrolytic Graphite 
Thermal insulator 

Fig .  7--Cross section of single f l a w  channel, 
extruding penetrator design. 



Fig. 9--Hole melted i n  low density tuff with extruding 
N o t e  thin glass lining and glass- penetrator. 

rod debris form. 
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Molybdenum 
melting body 
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‘Pyrolytic graphite / cylindrical heater 

‘Coring region 

F i g .  lO--Design concept of consolidating- 
coring penetrator. 



Fig. ll--Photograph of molybdenum penetrator 
body for coring-consolidating penetrator. 

Fig. 12--Cross section of glass cased core removed from alluvium 
sample by coring-consolidating penetrator. 
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Fig. 13--Comparison of theoretical predictions for advance 
rate and surface temperature of 75 mm. 
penetrator w i t h  laboratory experimental data. 

Consolidating 



t? 

. 



, . 

Fig. 16--Conceptual sketch of a mini-tunneling machine for 
geological surveys of tunnel routes. 
is self propelled and returns a continuous coreo 

N o t e  that unit 

Materials Remod 

utilities, 

b Fig. 17--Conceptual design of a large tunneling machine for soft, 
unstable ground. 

I for tunnel face. 

Peripheral kerf melter provides a glass  
, l ining for support while mechanical cutters remove material 



Fig. 18--Mock up of a fomed-in-place glass tunnel periphery lining, 
melted sequentially with a 50 mm (2  inch) diameter consoli- 
dating penetrator into a loose gravel bank. 

Fig.  19--Prototype geothermal penetrator for hot, hard rock. Note 
coating of basalt glass from testing. 



Fig. 20-Mobile drill r i g  for f i e l d  t r i a l s  of melting 
penetrators. 
of 125 nun (5  inch) stem and has automatic hydraulic 
controls for programmed rate, thrust or position. 

R i g  can handle up to 300 m (1000 f t )  


