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Abstract. In this study, we present application of the level-set type topology optimization 

analysis for the cavity shape estimation problem in structures based on the non-destructive 

hammering test. The cavity shape is identified so as to minimize a performance function. The 

performance function is defined as the square sum of the residual between computed and the 

observed displacements on structure surface. In this study, accuracy of identified cavity shape 

is investigated by changing numerical parameters in the topology optimization. 
 

 

1 INTRODUCTION 

There are a lot of concrete structures exceeding service life in Japan, and it is necessary to 

perform inspections for the structures. It is desired that we can appropriately find a cavity in 

structures, because there is a possibility that a cavity causes collapse accident. In addition, it is 

important to know shape of cavity accurately due to difference of stress singularity on crack 

boundary line. Therefore, the level-set type topology optimization analysis for cavity in 

structures is carried out in this study. The displacement response data on surface in the 

hammering test is employed for the identification of the cavity shape. In the level-set type 

optimization analysis, sensitivity for the level-set function is calculated based on the adjoint 

variable method [1,2], and iterative computation for estimation of cavity shape is conducted by 

using a reaction diffusion equation with respect to the level-set function. In this study, numerical 

experiments are carried out by changing the value of the regularization parameter in the reaction 

diffusion equation. 

2 TOPOLOGY OPTIMIZATION USING LEVEL-SET FUNCTION 

The performance function is defined as shown in Eq.(1). Here, u and uobs. indicate the 

computational displacement and the observed displacement, respectively. The parameter Q 
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denotes the weighting diagonal matrix. The diagonal component is given as 1 at the 

measurement point, and is given as 0 at the other nodal points. t0 and tf mean initial and terminal 

time. The purpose is to find the distribution of level-set function, i.e., determination of cavity 

region, so as to minimize the performance function J. 

 

 𝐽 =
1

2
∫ (𝒖 − 𝒖𝒐𝒃𝒔.)

𝑇𝑸(𝒖 − 𝒖𝒐𝒃𝒔.)𝑑𝑡
𝑡𝑓

𝑡0
                             （1） 

 

The Lagrange function shown in Eq. (2) is obtained by introducing the adjoint variable and the 

constraint condition, i.e., equation of motion(3) due to obtain surface displacement response by 

the hammering test. Here, the dot mark and λ indicate differentiation with respect to time and 

the adjoint variable vector. In addition, the material and the cavity regions are determined by 

the sign of the level-set function. Therefore, regarding the coefficient matrices of finite element 

equation, i.e., M, C and K , as the level-set function 𝜙, the matrices are represented by 𝑴(𝜙), 

𝑪(𝜙) and 𝑲(𝜙). f denotes the external force vector.  

 

 𝐽∗ = 𝐽 + ∫ 𝝀𝑇(𝑴(𝜙)�̈� + 𝑪(𝜙)�̇� + 𝑲(𝜙)𝒖 − 𝒇)𝑑𝑡
𝑡𝑓

𝑡0
                  （2） 

 

The first variation of the Lagrange function is calculated in order to obtain the stationary 

condition. Consequently, the equation of motion shown in Eq.(3) is obtained by the gradient of 

the Lagrange function with respect to the adjoint variable. In addition, the adjoint equation 

shown in Eq.(4) is obtained by the gradient of the Lagrange function with respect to the 

displacement. The Newmark β method is applied to discretize Eqs. (3) and (4) in time. 

 

𝑴(𝜙)�̈� + 𝑪(𝜙)�̇� + 𝑲(𝜙)𝒖 = 𝒇                                （3） 

 

𝑴𝑻(𝜙)�̈� − 𝑪𝑻(𝜙)�̇� + 𝑲𝑻(𝜙)𝝀 = −𝑸𝑻(𝒖 − 𝒖𝒐𝒃𝒔.)                       （4） 

 

Here, it is assumed that the value of level-set function is propagated by the reaction diffusion 

equation shown in Eq.(5). In Eq.(5), the comma mark indicates differentiation. Applying the 

finite element method for Eq.(5) to discretize in space, the finite element equation shown in 

Eq.(6) is consequently obtained. Here, the parameters 𝜅(𝜙), C, τ, �̃� and Ne denote the positive 

parameter, the parameter adjusting magnitude of 𝐽𝑒,𝜙
∗  , the regularization parameter, the 

fictitious time for optimization and the shape function vector, respectively. For differentiation 

with respect to the fictitious time �̃�, the backward difference method is employed. 

 

𝜙, �̃� − 𝜅(𝜙)𝜏(𝜙,𝑥𝑥 + 𝜙,𝑦𝑦 + 𝜙,𝑧𝑧) = −𝜅(𝜙)𝐶𝐽,𝜙
∗                       （5） 

 

𝑴𝑒𝝓𝑒, �̃� + 𝜅(𝜙)𝜏𝑺𝑒𝝓𝑒 = −𝜅(𝜙)𝐶𝐽𝑒,𝜙
∗ ∫ 𝑵𝑒𝑑Ω

Ωe
                      （6） 
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In Eqs.(5) and (6), 𝐽𝑒,𝜙
∗  is obtained by differentiation of coefficient matrices 𝑴(𝜙), 𝑪(𝜙) and 

𝑲(𝜙)  with the level-set function 𝜙  (See Eq.(7).)．In this study, coefficient matrices 𝑴(𝜙) , 

𝑪(𝜙) and 𝑲(𝜙) are given by 𝜙 ∗ 𝑴, 𝜙 ∗ 𝑪 and 𝜙 ∗ 𝑲, respectively. Consequently, Eq. (8) is 

obtained from Eq.(7). Here,  𝐻𝑒(𝜙) indicates the Heaviside step function. 

 

𝐽𝑒,𝜙
∗ = ∫ 𝝀𝑒

𝑇(𝑴𝑒,𝜙𝒖�̈� + 𝑪𝑒,𝜙𝒖�̇� + 𝑲𝑒,𝜙𝒖𝑒)𝑑𝑡
𝑡𝑓

𝑡0
                           （7） 

 

𝐽𝑒,𝜙
∗ = ∫ 𝝀𝑒

𝑇(𝑴𝑒𝒖�̈� + 𝑪𝑒𝒖�̇� + 𝑲𝑒𝒖𝑒)𝐻𝑒(𝜙)𝑑𝑡
𝑡𝑓

𝑡0
                          （8） 

 

Here, the computational flow is shown as follows. 

 

1. Select the finite element mesh, the boundary conditions, the initial conditions, the numerical 

parameters and initial the value of number of iteration : k=0. 

2. Solve the equation of motion, i.e., Eq.(3), and calculate the performance function, i.e., 

Eq.(1). 

3. If the judgement equation |J(k)－J(k-1)/J0| is lower than convergence criterion ε , this 

calculation finalizes. Otherwise, go to next step. 

4. Solve the adjoint equation, i.e., Eq.(4), and calculate Eq.(6) for each element. 

5. Compute distribution of the level-set function for each node by Eq.(6) superposed for all 

elements. 

6. If the level-set function is positive value, the node exists in body region. And, if the level-

set function is negative value or zero, the node exists in cavity region or exists on the 

boundary between body and cavity regions, respectively. Based on the above, update of 

topology of structure, and return to step 2. 

3 NUMERICAL EXPERIMENTS 

The computational model used in numerical experiments are shown in Fig.1, and numerical 

parameters are show in Tab.1. The hammering force is give by the Gaussian pulse wave, i.e., 

F(t)=Fmaxexp(-(t-tpeak)
2/s2), and Fmax, tpeak and s are respectively given as 2000N, 10-3s and 10-

4s. In this study, the numerical result of displacement for the right hand side target shape shown 

in Fig.2 is used as the measurement value. The topology optimization analysis is carried out 

from the left hand side initial shape shown in Fig.2. The regularization parameter τ is adjusted 

as Case-A : τ=0.001，Case-B : τ=0.005 and Case-C : τ=0.010, and numerical experiments were 

carried out. As the measurement result, the displacement for z direction is only employed. 

The variation of performance function is shown in Fig.3. It is found that if τ is big value, the 

value of performance function converges to small value. Fig.4 shows the estimated cavity shape. 

It is seen that if τ is big value, the size of cavity region become to small. From this result, it 

appears that if we’d like to obtain appropriate cavity shape, we have to pay attention not only 

for setting of the regularization parameter τ but also position of the observation points. 
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Figure 1: Setup of design domain and size of computational domain 

  
Table 1: Numerical conditions 

Number of nodes 112761 

Number of elements 100000 

Number of time steps 256 

Time increments Δt 39.0625 

Young’s modulus E, GPa 35.096 

Poisson’s ratio ν 0.16 

Mass density ρ, kg/m3 2300 

Damping coefficient c
M

, c
K  ( Reyleigh damping ) 90.0, 1.0×10-6 

Weight parameters q
u
, q

v
, q

w  ( Diagonal component in matrix Q ) 0, 0, 1.0×109 

Virtual time increment Δ�̃� 1.0×10-8 

Convergence criterion ε 1.0×10-3 

 

  

×
x

y

z



T. Kurahashi, Y. Murakami, S. Toyama, F. Ikeda, T. Iyama and I. Ihara 

 5 

 

            
Initial shape 

 
Target shape 

Figure 2: Initial and target shapes of cavity 
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Figure 3: Variation of normalized performance function 

 

Case-A : τ=0.001 
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Case-B : τ=0.005 

 
Case-C : τ=0.010 

Figure 4: Comparison of cavity shape for each regularization parameter τ 

4 CONCLUSIONS 

In this study, we presented application of the topology optimization analysis using the level 

set function for judgement of cavity shape in the hammering test. The finite element method 
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was applied to discretize the governing equation in space, and the discretized equation was 

employed as the constraint condition of the performance function. The Newmark β method was 

applied to discretize the finite element equations for the state and the adjoint variables in time.  

According to numerical results, it was found that if we’d like to obtain appropriate cavity 

shape, we have to pay attention not only for setting of the regularization parameter τ but also 

position of the observation points. In future, this analysis will be applied to practical problems. 
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