Minimum Interference Routing:
The Precomputation Perspective

Gébor Rétvari

High Speed Networks Laboratory, QoS IT Laboratory
Department of Telecommunications and Telematics
Budapest University of Technology and Economics

H-1117, Magyar Tudésok korutja 2., Budapest, HUNGARY
retvari@ttt-atm.ttt.bme.hu

Abstract. This paper focuses on the selection of bandwidth-guaranteed
channels for communication sessions that require it. The basic idea
comes from Minimum Interference Routing: select a feasible path that
puts the least possible restriction on the transmission capacity offered
by the network for other communicating parties. This is achieved by
circumventing some critical bottleneck links. The main contribution of
the paper is a method to assess the degree of link criticality facilitating
efficient route precomputation even in the case, when up to date
resource availability information is not immediately available.

Keywords: QoS routing, Traffic engineering, QoS management

1 Introduction

The deliberate, effective and adaptive selection of dynamic bandwidth-
guaranteed paths in modern data networks has gained substantial research in-
terest recently. Such assured-quality communication channels are essential for
the introduction of various upcoming service classes. Obviously, any service that
requires the transmission of loss and/or delay sensitive data (e.g., audio, video,
etc.) over a packet switched public network infrastructure obligates the assur-
ance of transmission quality guarantees on some prioritized traffic. This paper
deals with the problem of finding a data path in a network for a traffic instance,
which is both feasible and efficient. A path is feasible if it provides enough dedi-
cated resources to satisfy pre-declared bandwidth demands. We say that a path
is efficient, if it manifests some efficiency criteria of the network operator. For
example, an efficient path may use as few resources as possible, or it would be
such that the overall network resource utilization is maximized.

In the broader context the task of selecting feasible and efficient bandwidth
guaranteed paths turns out to be the fundamental problem faced by modern
QoS routing. In view of the serious scalability concerns raised by the Integrated
Services approach, where bandwidth-guaranteed routes must be picked one by
one for individual micro-flows, today’s prevailing QoS management architecture,
Differentiated Services, focuses on the assurance of aggregate QoS to a whole

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 246-258 2003.
© IFIP International Federation for Information Processing 2003

Minimum Interference Routing: The Precomputation Perspective 247

bunch of micro-flows. In accordance with the wider scope of routing decisions,
the emerging Traffic Engineering discipline puts more emphasis on the criterion
of network-global efficiency. In any case, the fundamental problem is to compute
bandwidth driven paths for route requests arriving one at a time. Connections are
fully characterized by their respective bandwidth demand. The set of potential
traffic origin-sink pairs (sessions) is assumed to be known in advance, though, we
do not presume any knowledge on the volume of traffic requested for a particular
source-destination pair.

Nowadays, Internet routing is based on the Shortest-Path-First (SPF) dis-
cipline: some administrative costs are associated with network links and the
path with the least aggregate cost is selected (if all costs equal to 1, we get to
minimum-hop routing). The SPF algorithm proved to be easily implementable
and deployable, thus it gained extreme popularity in the Internet community
throughout the years. However, paths selected by the SPF algorithm are usu-
ally neither feasible nor efficient, thus SPF is deemed to be a major origin of
congestion and unreliability in current Internet.

Several proposals exist to eliminate the shortcomings of the SPF algorithm.
It is relatively easy to ensure path feasibility. The approach that protocol de-
signers usually take is to augment a link state routing protocol to distribute
resource availability information and use this dynamic data set to produce fea-
sible paths. The widest-shortest-path (WSP) routing algorithm selects the path
from the set of shortest paths, which offers the largest bottleneck bandwidth.
The QoSPF routing protocol is a good example of the practical usefulness of the
WSP algorithm [I]. The advantage of the WSP algorithm (and shortest-widest-
path) is the ability to find a feasible path as long as such a path exists in the
network. On the other hand, the signaling bandwidth consumed by frequent link
state updates may substantially enlarge the protocol overhead. Therefore, it is a
widely accepted phenomenon in QoS routing to limit the frequency of link state
updates by means of some link state update triggering policy and precompute
QoS routes no sooner than up to date routing information becomes available [2],
B]. As of the WSP algorithm, the selection rule that decides, which particular
path from the set of feasible paths is to be picked is rather simplified. Hence,
the WSP algorithm often causes various sorts of interference phenomena, such
as alternate path blocking (an extensively utilized alternate path of a session
starves another one). Minimum Interference Routing is the upcoming routing
technology that aims to vigorously eliminate the disadvantages of traditional
QoS routing protocols [4].

The basic idea of minimum interference routing is to select paths as to ensure
that the chosen path blocks future requests to the least possible extent. This is
achieved by maximizing some objective function, which describes the transmis-
sion capacity offered by the network for every single session. The full-fledged
minimum interference routing problem is known to be NP hard [4]. However,
there exists an algorithm, the so called Minimum Interference Routing Algo-
rithm (MIRA), which is aimed to give a good approximate solution to the orig-
inal problem. The key point of MIRA is the notion of critical links. A critical
link fulfills the criterion that the admission of some traffic onto the link causes

248 G. Rétvari

the reduction of the available capacity of one or more sessions. Hence, a critical
link is subject to interference. On the other hand, if a link is not critical, then
further traffic can be placed to it without adversely influencing any sessions. The
rationale behind minimum interference routing lies in the ability to distinguish
links based on a well-established criticality criterion and circumvent strongly
critical links in the course the path selection in an attempt to minimize inter-
ference. Several recent research results have pointed out the potential of MIRA
to improve network utilization while efficiently preserving resources for future
requests in the same time. MIRA and some of its derivatives can be found in [4],
[El. [6] and [7].

One inherent limitation of MIRA comes from the fact that in an operational
network environment MIRA’s original intention to rely on the on-demand path
selection model implies several drawbacks. On-demand path selection may result
unbearable initial communication setup delay and the implied computational
stress on routing hardware may be intolerable. In addition, the underlying rout-
ing protocol engine introduces significant inaccuracy in the routing state, because
it may not re-synchronize resource availability information between the arrival
of subsequent routing requests. This inaccuracy invalidates the need to calculate
a unique route for each and every route request. In [4] the authors study MIRA
performance in the case, when link criticality is only calculated once for every
n connection request to limit the extent of calculations needed to perform in
on-demand fashion. They conclude that MIRA does not suffer significant per-
formance degradation due to criticality precomputation. Nevertheless, we shall
show that without some clever modifications MIRA performance falls well under
that of the WSP algorithm in the presence of precomputation.

This paper generalizes the notion of MIRA in a new way. The key point
of MIRA is the decision, whether or not a particular network link is critical.
We shall show that by the cost of some additional computational complexity
introduced it is even possible to assess the extent of link criticality and use
that particular information for routing purposes. Our new approach immediately
gives a good algorithm to solve the problem of A-criticality left open in [4].
We shall present a new routing algorithm: the least-critical-path-first (LCPF)
routing algorithm, and by means of extensive simulations we show that the
proposed algorithm performs route precomputation much more efficiently, than
MIRA or WSP.

The rest of this paper is structured as follows. Section [describes the Min-
imum Interference Routing Algorithm. In Section B we show, how to obtain a
good quantity on link criticality and in Section @l we define the LCPF algorithm
that makes heavy use of this quantity. Simulation studies are presented in Section
and finally, Section [6] concludes our work.

2 The MIRA Algorithm

Experience suggests that in order to achieve efficient routing it is not enough to
simply pick a path from the set of feasible paths. One has to find a sufficient

Minimum Interference Routing: The Precomputation Perspective 249

policy on how to deliberately select a feasible path that manifests some network-
global Traffic Engineering goal and define a good algorithm that implements the
policy. The rationale behind MIRA comes from the recognition that if a network
link acts as bottleneck for a communication session, then admitting traffic of
another session to that critical link will cause interference. The more traffic flows
through critical links, the more interference it will cause leading to inefficient
routing in the long term. Thus, it is a plausible network-wide Traffic Engineering
goal to minimize the interference along the selected path.

In order to better capture the notion of interference one has to invoke the
elaborated toolset of network flow theory [§] [9]. Let G(V, E, R) be a digraph. Let
V be the set of nodes, E the set of edges and R the set of edge capacitiesEI We
assume that G is such that there is only one (u,v) edge connecting any pair of
nodes u,v € V (if there are more parallel edges, these can always be aggregated
into one edge). We examine flow problems for source-destination pairs (s, d), all
of which are members of a known set P. Such (s, d) pairs are called sessions for
short. Let f be a maximum flow in G for some session (s,d). Then, Fg(s,d)
notes the value of the maximum flow |f|, f(u,v) notes the flow traversing a
particular edge (u,v) € E, Gy notes the flow residual graph induced by f and
Csq is a set of edges, which belong to one or more minimum cuts.

A useful feature of maxflow theory is that the maxflow of a session defines
an upper limit on the available transmission capacity offered to that session. By
linear programming duality, associated with each maxflow there is a minimum
cut. Edges belonging to the union set of the minimum cuts (Cyq) share the
property that decreasing the capacity of the edge reduces the maxflow. Hence,
we shall say that an (u, v) edge is critical for a session (s, d), if the edge is included
in the minimum cut set for the session, i.e., (u,v) € Csq. Recall that any edge in
Cjsq is subject to interference. Therefore, for every link MIRA assigns an additive
link weight, which is proportional to the number of sessions the link is critical
for, and computes the minimum cost path to minimize overall interference.

Hence, the path selection for a traffic instance in session (a, b) € P of demand
D involves the following basic steps in MIRA:

1. Critical link identification: compute the maxflow and the critical link set
Csq for each (s,d) € P\ (a,b). This yields cost contribution factors x (k
describes the contribution of session (s,d) to the cost of link (¢,7)) in the
form:

(i) _ OMazxFlow(s,d) {1 if (4,7) € Csa (1)

fad " = OR(i,7) | 0 otherwise

2. Cost assignment: for each (i,j) € E compute the link cost:

wij)= > aw= Y. ol (2)
(5,d):(4,5)€ECsa (s,d)€P\(a,b)
! For the sake of simplicity we assume that all edge capacities are integral (either inte-

ger valued or can be expressed as an integer multiple of some bandwidth quantum).
The actual implementation of the LCPF algorithm does not rely on this assumption.

250 G. Rétvari

where ag4 represents the relative importance of the session (s, d). In order to
force path feasibility, a link with inappropriate resources (R < D) is either
omitted at the SPF computation, or its cost is set to infinity.

3. Path selection: compute the shortest weighted path over the cost set de-
fined by w.

The computational complexity of MIRA is dominated by the p — 1 maxflow
computations needed for critical link identification. Without Step 1, MIRA boils
down to a simple SPF calculation, which raises the idea of criticality precom-
putation: CPU intensive critical link identification is performed offline, once for
every n route request. Setting n means to trade-off between routing accuracy
and implied computational complexity.

In a situation, where one decision on link criticality may impact the routing
of several subsequent requests, it would be of extreme usefulness to somehow
detect if there is a chance that a link turns to critical in the near future. In this
case, the routing algorithm could prevent routing further traffic onto that link
to avoid interference until criticality precomputation is performed again. This
brings us to the definition of A-criticality: a A-critical link for a session is a link
such that if the capacity of the link is decreased by A, the maxflow value for the
session decreases (by any value). [4] concludes that an algorithm that effectively
detects A-criticality has the potential to increase routing performance, though,
the authors do not supply an exact algorithm, neither they give an advice how
to set A for maximum sensitivity.

3 The Criticality Threshold

In the previous section we concluded that the identification of critical links is the
most important and CPU intensive process of MIRA. In this step, MIRA solves
the following decision question: given an edge and a session, is it the case that
the edge is included in one or more minimum cuts for the session? Throughout
this paper, we use simplified form of the link criticality conditions proposed in
[M]. The purpose of the alternative formulation is not really a practical one, but
rather to provide further insight into the nature of link criticality.

Theorem 1 (Formulation of link criticality). For an edge (i,j) and a ses-
sion (s,d): (i,7) is critical (i.e., (i,7) € Csa) if all the following conditions hold:

i) f(i,7) >0 and
i) Fa,(i,7) =0

Herein we do not present the proof of the theorem. In words, Theorem [IJ
states that a link (,7) is critical for a session, if it carries nonzero flow from
the session’s maxflow and the endpoints of the link happen to reside in different
cuts of the graph (i.e., there is no path from 4 to j in the residual graph Gy).
The main contribution of this paper is the observation that there exists a well-
defined threshold on the capacity of any link, the so called criticality threshold,
such that if the capacity of the link falls beyond this threshold then the link
turns to critical.

Minimum Interference Routing: The Precomputation Perspective 251

Definition 1. Given a non-negative number K, a session (s,d) and an edge
(i,7), K is criticality threshold, if:

Criticality: 0 < R(i,7) < K = (i,7) € Csq ,
Non-criticality: R(i,j) > K = (i,7) ¢ Csq .

The significance of the criticality threshold is twofold. First, given a band-
width demand of size A the criticality threshold tells whether admitting the
demand to any (¢, 7) edge would render the edge critical. This is simply done by
checking R(i,j) — A < K. Observe that this gives an exact algorithm to detect
A-criticality. Furthermore, the criticality threshold supplies a unique way to as-
sess the criticality (or non-criticality) of any link. For example, a good measure
would be K/R(i,j) or K — R(i, j).

The approach that we take to find the criticality threshold is to investi-
gate the maxflow problem while changing the capacity of a particular link. For
a graph G(V,E, R), we define the unconstrained graph w.r.t. link (i,j) as a
graph GY(V, E, RY), in which we choose the capacity of (i,) to infinity. The
maxflow in GY is called unconstrained mazflow. On the contrary, in the con-
strained graph w.r.t. link (i,7) we set R (i, j) = 0. The maxflow in G¢ is called
constrained mazflow. One can characterize the constrained, the original and the
unconstrained maxflows as Foe < Fg < Fgu.

From Theorem [I] we know that a link, which carries nonzero flow is critical if
both its residual capacity is zero and all parallel augmenting paths are saturated
in the flow residual graph. This sheds light on the rationale behind the definition
of the unconstrained graph: instantiating some maxflow f in the unconstrained
graph for which f(i,7) > 0 and setting K = f(4,j) will generate a candidate for
the criticality threshold. Such unconstrained maxflows constitute the so called
feasible maxflow set F& w.r.t. link (i, j):

Fit = {f: fisa (s,d) maxflow in GY} . (3)

Recall that there are no i — j augmenting paths in the flow residual graph
when (i, 7) is critical. In other words, from a critical link no flow can be relocated
to other flow paths, which would decrease the flow on (,7). This implies that
the flow generating criticality sends a minimum flow onto (4,7) in some sense.
This idea is captured in the following definition.

Definition 2 (Committed flow). The committed flow for a session (s,d) and
a link (i,7) is defined as:

¥ = inf f(0,9) - (4)

The notion of committed flow insists that there are various ways to accom-
modate the maxflow in a graph, however, there is a certain amount of flow
committed to a particular link in all cases. The following theorem proves that
the choice K = 1*%(i,) indeed yields the criticality threshold:

252 G. Rétvari

Theorem 2. For an edge (i,7) and a session (s,d) in graph G:
0 < R(i,5) < ¢*'(i,j) = (i.4) € Caa - (5)

And conversely:

R(i,) > ¢v*(i, j) = (i,§) & Csa . (6)

Proof. First we prove that in case of R(i,7) = ¥*%(i,j) > 0, all conditions in
Theorem [hold, therefore (i, 7) is critical. Let G'(V, E, R") be a graph, such that
R'(i,§) = ¢*%(i, j). Then, Fgu(s,d) = Fg(s,d). Let f be a maxflow in G’, such
that f(i,) = ¥*%(i, j), i.e., the flow on edge (i, j) is the least possible.

i) f(Z,]) = '(!JSd(i’j) >0

i) We need to see that (a) Rf(i, j) = 0 and (b) there are no i — j feasible paths
in the flow residual graph. (a) holds, because Rs(i,7) = R(¢,7) — f(4,7) =
¥3e(i,7) — *4(i,5) = 0. (b) is also true, because if a i — j alternative path
happens to exist, then some flow can be shifted from (i, j) to the alternative
path. This yields a flow f’, for which f’(i,5) < f(4,7). Observe that f’ is
a maxflow for the unconstrained graph too, therefore f'(i,5) < f(i,j) =
(i, j) = inffeféd f(i,7) is a contradiction.

It is also true that reducing the capacity of a critical edge both reduces the
maxflow and leaves the edge as critical. This proves (B). On the other hand, for
any G'(V,E,R') : R(i,7) > ¢*(4, §), the (4,) link is not critical. This is because
any flow that is a maxflow in the unconstrained graph GV is also a maxflow in G’
and there exists a maxflow f such that f(i,7) = ¥*¥(4, j), which leaves non-zero
residual capacity on (i, 7). This proves ({@). O

A naive way to find the criticality threshold would be to search through
all feasible maxflows and find the one that commits the minimum flow to the
selected edge. Though, this method would not be too effective. The following
fundamental flow theory result gives an easy way to compute the criticality
threshold.

Theorem 3. For a graph G, an edge (i,j) and a session (s,d), the committed
flow is the difference of the unconstrained and the constrained mazflow for (i,7):

VUi, j) = Fgu(s,d) — Fge(s,d) . (7)

Proof. We need to show that Fou (s,d)—Fge(s,d) = inf rer, f(4, 7). It is easy to
show that there exists a flow f in GY, such that f(i,j) = Fqu(s,d) — Fge(s, d).
Now, we need to show that this is indeed the infimum. Suppose that there ex-
ists a maxflow f’ in GV, such that f’(i,5) < f(i,7). Invoke flow decomposition
to eliminate all flow from the graph that traverses the (i,7) edge, furthermore,
remove the (i,) edge from the graph. Observe that the resultant graph is iden-
tical to the constrained graph with respect to (4, j), and such, the resultant f”
flow is a maxflow in G¢. Hence, Fgo(s,d) = |f"| = Fgu(s,d) — f'(i,5) >
Fgu(s,d) — f(i,j) = Fge(s,d), which is a contradiction. This proves that
Fgu(s,d) — Fgeo(s,d) is indeed the infimum. O

Minimum Interference Routing: The Precomputation Perspective 253

W) A ®

Fig. 1. Cost contribution profile in stan- Fig. 2. Cost contribution profile for A-
dard MIRA criticality

4 The Least-Critical-Path-First Routing Algorithm

So far we have seen that the cost of a link is composed of asdﬁgijj) per-session
contributions. The notion of criticality threshold provides a comprehensible way
to represent the cost contribution as the function of the link capacity. Such a
k(R) graph is called cost contribution profile. The cost contribution profile for
standard MIRA is depicted in Figure [[l The cost contribution profile used to
detect A-criticality is shown in Figure 2l Note that MIRA does not compute
the criticality threshold, instead, MIRA solves the decision question using an
alternative of Theorem [

Nevertheless, the notion of criticality threshold elaborated in the previous
section provides an impressing mean to not only solve the decision question, but
to even calculate a quantity on the actual extent of link criticality. The basic
idea of the least-critical-path-first (LCPF) routing algorithm is to determine the
criticality threshold and use that sophisticated piece of information to compute
bandwidth-guaranteed dynamic paths. In order to manifest the criticality of link
(i,7) for session (s,d), we use the following intuitive cost contribution profile:

_ wsd (Zv]) +D

T RG))
where the requested bandwidth is D units. Recall that the cost contribution pro-
file should implement both path feasibility and efficiency. We chose the unit con-
tribution at the point, where sending D flow to the link would practically drive it
right at the edge of criticality. This choice is called to represent effectiveness: any
link with contribution less than 1 is able to tolerate a request of D size without
the risk of turning to critical. On the other hand, as the link capacity converges
to zero, the contribution increases dramatically to force path feasibility. Without
the restriction of generality, we can assume that Z(s,d)eP\(a,b) asq = 1, thus, for
the link cost we get:

k(R)

wi)= Y ol D _¥@)+D o)

(o) eP\(ah) R(i, j) R(i, j)
where ¥ (4, j) is the so called committed load. In its simplest form the committed
load is the average of the committed flows over the set of sessions (asq = —1=).

. p—1
Otherwise, it represents the relative importance of sessions as well.

254

G. Rétvari

Hence, (@) yields the Least-Critical-Path-First-Routing Algorithm:

INPUT: A graph G(V,E,R) with the set of link capacities R, a set of

OUTPUT: The least critical feasible path between a and b.
ALGORITHM: 1. For all (s,d) € P and for all (i,j) € E compute

Least-Critical-Path-First Routing Algorithm (LCPF):

potential sessions P, an ingress node a and an egress node b between
which a flow of D units have to be routed.

the constrained maxflow Fgeo(s,d) and the unconstrained maxflow
Fgu (s, d). This yields the criticality threshold in the form ¢s4(4, j) =
FGU (S, d) — FGC (S, d)

2. For all (i,5) € E compute the committed load ¥(i,j) and execute
the cost assignment w(i, j) = %

3. Compute the shortest weighted path over the link weight set defined
by w and route the demand of D units along that path

Remarks:

Flow priorization: the algorithm facilitates for the network operator to repre-

sent his or her precedence of sessions by setting « factors accordingly. If the
« factor is set to a high value for some important session, then the LCPF
algorithm will do its best to circumvent the critical links of that session.

Complexity: according to [4] the computational complexity of MIRA is dom-

inated by the set of p — 1 maxflow computations. LCPF involves 2P|E|
maxflow computations (2 for every session and every link), thus, its worst-
case complexity is | E| times as high as that of MIRA. For the first glance, the
huge number of necessary maxflow computations is disappointing. However,
it must be mentioned that in its current form, LCPF lends itself to various
sorts of optimizations, which have not been exploited herein (for example,
Ysali,j) = 0 for any link, such that j = s, or ¢ = d, etc.). Therefore, we
developed an optimized algorithm that provides an average running time
comparable to that of standard MIRA, though, the detailed discussion of
this algorithm is beyond the scope of this document. For now, it suffices to
claim that the worst case complexity of LCPF is no worse than |F| times of
MIRA’s complexity

Criticality precomputation: criticality precomputation implies that the

CPU intensive criticality calculations are performed only after every mth
connection request. As we shall see in the next section, simulation results
obtained on large graph sets demonstrate that owing to the sophisticated
“criticality-detection” LCPF significantly outperforms MIRA in the pres-
ence of criticality precomputation. Hence, reducing LCPF to a simplistic
shortest path computation in the average case and doing criticality compu-
tations offline makes the LCPF algorithm an overly effective and lightweight
solution.

Minimum Interference Routing: The Precomputation Perspective 255

Fig. 3. The KL graph

Feasibility: one may argue that while MIRA returns a feasible path as long as
such a path exists in the graph, LCPF does not. MIRA omits all links with
inappropriate resources (R < D) before the path selection takes place. On
the contrary, LCPF represents path feasibility in the contribution profile —
LCPF orders high contribution to infeasible links, which probably yields a
path consisting of feasible edges exclusively. We can say that LCPF applies
“soft feasibility” on path selection. In the presence of criticality precompu-
tation the accuracy of link state information is doubtful, so MIRA might
blindly omit feasible links based on outdated link state information. There-
fore soft feasibility transforms into better call acceptance in such cases.

We say that LCPF is a generalization of MIRA, as MIRA boils down to a
special case of LCPF when used with the cost contribution profile depicted in
Figure [0

5 Simulation Results

Several research results [3], demonstrate that in a realistic QoS routing
environment some sort of precomputation is inevitable due to the inherent nature
of the underlying protocol architecture. Therefore, in the course of the simulation
studies presented in this section our main goal was to compare the routing
performance of the LCPF algorithm to that of MIRA, WSP and SPF in the
presence of route precomputation (for details on precomputed WSP, please refer
to the Appendices of [I]).

In the scientific literature related to MIRA the so called KL graph (Figure B])
has slowly become the de facto simulation topology [7], [5], [4]. In the illustrative
example, the capacity of the light links is 12K units and the dark links is 48K
units and each link is bidirectional. In all the simulation experiments described
in this paper, requests are uniformly distributed over all sessions and arrive
randomly at the same average rate.

256 G. Rétvari

©
=3
X

SR — MIRA —+— LCPF ——
) LCPF(16) —x— ¢ IRA >
. K*\%\ LCPF(128) - 80K WSP ¥ _|
= [N e, WSP & | SPF B
EDB 30K e *y Pr |
» = %\%\%\ @ 70k FX
2] o Ky T
2 25K -1 iy S
i % oo
5 - ’ g
= 20K . \ 8
£ w O *} $ 50K
% N X
3 m O \
= 15K o X N 40K
- Ku e
X
10K L2 30K
0 1000 2000 3000 4000 5000 6000 1 2 4 8 16 32 64 128 256 512 1k 2k
#Connection Precompute period (logarithmic scale)

Fig. 4. MaxFlow for session S1-D1 after Fig. 5. Successfully routed connections as
every connection is routed the function of the precomputation period

Preserving the available transmission capacity offered for communicating ses-
sions is the key objective towards minimum interference routing. Figure 4 shows
that LCPF is indeed able to bring this policy into effect even in the presence
of criticality precomputation. In the figure, the maxflow for session S1-D1 is de-
picted after setting up long-lived connections one by one in the KL graph. All
requests are of equal size (10 units). Precomputation was not applied to MIRA
and WSP, however, LCPF is run at precomputation period n = 16 and n = 128.
The diagram implies that LCPF is, almost irrespective of the precomputation
period, able to preserve the transmission potential of the S1-D1 session, thus it
manifests minimum interference almost as effectively, as MIRA in this case.

Now we show that in the presence of criticality precomputation the deliberate
criticality detection of LCPF transforms into better call acceptance. First, we
experienced how many unit-sized, long-lived connections a particular algorithm
is able to accommodate in the KL graph one after another until all sessions are
blocked. Figure [l depicts the result of this experiment as the function of the
precomputation period. Both MIRA and LCPF are able to fill up the network
to the theoretical maximum (84000 units of traffic) when precomputation is not
applied, however, as the precomputation period increases MIRA (and WSP) suf-
fers significant performance degradation. Nonetheless, regardless of the degree
of applied precomputation, each algorithm outperforms SPF (which is, by na-
ture, not sensitive to the precomputation period). The graph also shows that
both LCPF and MIRA are superior to WSP in the case of on-demand routing
(n = 1), however, LCPF is able to retain the precedence as long as the precom-
putation period remains reasonable (take note of the logarithmic scale on the x
axis).

Similar behavior can be deduced from Figure[6] which shows the average call
blocking ratio (CBR) as the function of the Poisson request arrival intensity at
a precomputation period of n = 20. The request size was uniformly distributed
between 10 and 30 units. MIRA performs reasonably better than WSP for n = 1
[M]. However, when n = 20 MIRA produces non-zero call blocking even at a
request arrival intensity, where LCPF or WSP does not. LCPF performs better
than any other algorithms at all request arrival rates.

Minimum Interference Routing: The Precomputation Perspective 257

0.6 = 0.35
’ K LCPF —+—
e KT T MIRA —-—

05 » X WSP % X
2 xS 2 03 g
© e @ e K
x 5 ¥ T X ¥
2 04 = 2 -
3 5 g o= g
@ 03 o o ,/ -
© © . *
S S 02 P
S 02 A S s /
o & g
Qo < [P
z 8 X, LCPF —— z 015 ¥

0.1 A MIRA -] Pes

XA WSP % P
[SPF —8 e
0 e 017
2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 8 16 32 64 128 256 512
Lambda [1/sec] Precompute period (logarithmic scale)

Fig. 6. Average CBR as the function of Fig.7. Average CBR in 30 pseudo-
request arrival intensity random graphs as the function of n

One may argue that the performance benefits implied by LCPF (and MIRA)
may be limited to the scope of the KL graph, and in other scenarios minimum
interference routing may not prove so prosperous. Therefore, we carried out
simulations on a set of 150 random graphs, which were obtained by relocating
links in the KL graph. In all random graphs it was assured that there are at least
two link-disjoint paths between any particular session source and destination. A
random number of sessions (3 < p < 7) was located randomly in the graphs.
Per-session Poisson request generation intensity (J\;), exponential holding time
(1;) and mean request size (B;) is set as to assure that the average load is kept at

a constant rate (}_7_; B,l);— = const). Figure [[ldepicts the average call blocking

i

ratio (precomputation period is again represented in a logarithmic scale). First,
in the absence of criticality precomputation, MIRA and LCPF produces similar
outstanding routing performance. In fact, MIRA performs slightly better, which
seems to be a consequence of the “soft feasibility” approach of LCPF. However,
as the interval between subsequent link state updates increases (as it would be
the case in a realistic traffic engineering environment), and hence the effects of
precomputation efficiency become dominant, MIRA loses precedence over WSP
and the revenue of sophisticated criticality detection and soft feasibility of LCPF
emerges (SPF, irrespective of n produces 0.48 average call blocking ratio). For
n > 2, LCPF outperforms every other algorithms and preserves the same good
efficiency at modest precomputation periods. Only at the extreme case of n =
1024, LCPF performance falls into the range of WSP and MIRA.

6 Conclusions

In this paper we investigated the impacts of precomputation on several QoS rout-
ing algorithms. By means of extensive simulation studies we have shown that
the overly effective MIRA algorithm is not sufficient for route precomputation,
though, precomputation is an inevitable and straight consequence of the under-
lying protocol architecture. Therefore, we elaborated the notion of committed
flow and criticality threshold and showed that these are fundamental properties

258 G. Rétvari

in network flow theory. We exploited the potential of the criticality threshold
to implement sophisticated proactive criticality detection in order to design the
least-critical-path-first routing algorithm. We have shown that the LCPF algo-
rithm manifests the minimum interference policy more deliberately than MIRA
even in the case of large precomputation periods. Nevertheless, we concluded
that the new routing algorithm is far more expensive in terms of offline com-
putational requirements than MIRA, though, further work is necessary in this
field.

Acknowledgement. This work has been done within the research cooperation
framework between HSNLab at DTT-BUTE and Ericsson Research. The author
is grateful to Miklés Boda (Ericsson), Tamés Henk and Tibor Cinkler (HSNLab)

for their support.

References

1. R. Guerin, A. Orda, and D. Williams, “QoS routing mechanisms and OSPF ex-
tensions.” IETF RFC 2676, 1999.

2. A. Orda and A. Sprintson, “QoS routing: the precomputation perspective,” in
INFOCOM (1), pp. 128-136, 2000.

3. G. Apostolopoulos, R. Guerin, and S. Kamat, “Implementation and performance
measurements of QoS routing extensions to OSPF,” in INFOCOM (2), pp. 680—
688, 1999.

4. K. Kar, M. Kodialam, and T. Lakshman, “Minimum interference routing of band-
width guaranteed tunnels with MPLS traffic engineering applications,” IEEE Jour-
nal on Selected Areas in Communications, vol. 18, December 2000.

5. K. Kar, M. Kodialam, and T. V. Lakshman, “MPLS traffic engineering using
enhanced minimum interference routing: An approach based on lexicographic
max-flow.” Proceedings of Eighth International Workshop on Quality of Service
(IWQoS), Pittsburgh, USA, June 2000.

6. I. Iliadis and D. Bauer, “A new class of online minimum-interference routing al-
gorithms,” in Networking 2002, Proceedings of Second the International I[FIP-TC6
Networking Conference, p. 959 ff., May 19-24 2002.

7. S. Suri, M. Waldvogel, D. Bauer, and P. R. Warkhede, “Profile-based routing and
traffic engineering,” Computer Communications, vol. 26, pp. 351-365, 2003.

8. R. K. A. snd T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

9. M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network
Flows. John Wiley & Sons, January 1990.

10. G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “Quality of service
based routing: A performance perspective,” in SIGCOMM, pp. 17-28, 1998.

	Introduction
	The MIRA Algorithm
	The Criticality Threshold
	The Least-Critical-Path-First Routing Algorithm
	Simulation Results
	Conclusions

