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Abstract. Many reliable and robust turbulence models are nowadays available for the Reynolds-
Averaged Navier-Stokes (RANS) equations to accurately simulate a wide range of engineering
flows. However, turbulence models are not able to correctly predict flow phenomena with low to
moderate Reynolds numbers, which are characterized by strong transitions. Laminar to turbu-
lent transition is common in aerospace, turbomachinery, maritime, and automotive. Therefore,
numerical models able to accurately predict transitional flows are mandatory to overcome the
limits of turbulence models for the efficient design of many industrial applications. A modified
version of the k-ω̃ and Spalart-Allmaras turbulence models is proposed in order to predict tran-
sition due to the bypass and separation-induced modes. The modifications here proposed are
based on the γk-ω and the SA-BCM transition models. Both the models are correlation-based
algebraic transition models that relies on local flow information and include an intermittency
function instead of an intermittency equation. The basic idea behind the models is that, instead
of writing a transport equation for intermittency, an intermittency function multiplies the pro-
duction terms of the turbulent working variables of the formulation of the turbulence models.
In particular, the turbulence production is damped until it satisfies some transition onset re-
quirements. The proposed models are implemented in a high-order discontinuous Galerkin (dG)
solver and validated on different transitional benchmark cases from the ERCOFTAC T3 suite,
with bypass (T3A, T3A- and T3B) and separation-induced (T3L1 and T3L3) transition.
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1 INTRODUCTION

Literature classifies transition models into non-local and local models [3, 4]. The non-local
models are based on correlations and the main drawback is due to the fact that needs the
information on the integral thickness of the boundary layer and the state of the flow at the edge
of the boundary layer. While the local models are based on transport equations for turbulent or
transitional variables, similarly to the classical turbulence model, and require only local variables.
The local formulation guarantees better robustness, accuracy and easiness of implementation
in modern solvers. These models can be divided into correlation-based and phenomenological
transition models.

Transition models have been meanly proposed for finite volume methods (FVM) to predict
the laminar-turbulent transition, but the increasing required level of resolution naturally leads
to consider discretization methods with a higher order of accuracy, such as the discontinuous
Galerkin (dG) methods. In dG methods the solution of the weak or variational form of a
partial differential problem is approximated by polynomial functions over the elements, similarly
to the classical continuous finite element method (FEM). However, unlike continuous finite
element methods, dG methods use an approximation that is in general discontinuous at the
element interfaces. The coupling of the approximate solutions between neighboring elements is
(weakly) enforced by interface, or numerical, fluxes. An appropriate definition of numerical flux
guarantees the consistency and stability of the dG numerical approximation. The main drawback
of this higher accuracy is the increased computational cost compared to standard FVM, but the
compact stencil of dG spatial approximation, involving only one element and its neighbours,
makes the method very well suited for massively parallel computer platforms. Furthermore, the
computational efficiency of dG solvers can be substantially improved by resorting to multilevel
solution approaches, such as the p-multigrid algorithms [11].

A modified version of the k-ω̃ [8] and Spalart-Allmaras [10] turbulence models is here proposed
and implemented in a high-order dG solver, called MIGALE, in order to predict transition due to
the bypass and separation-induced modes. The modifications are based on the γk-ω by Holman
and Fürst [7] and Kubacki et al. [13], and the SA-BCM by Cakmakcioglu et al. [9]. Both the
models are correlation-based algebraic transition models that relies on local flow information and
include an intermittency function instead of an intermittency equation. The basic idea behind
the models is that, instead of writing a transport equation for intermittency, an intermittency
function multiplies the production terms of the classical formulation of the turbulence models.

The choice of the transition models falls in the fact that the starting turbulence models, i.e.,
the k-ω̃ and Spalart-Allmaras models, are yet implemented and widely assessed in the MIGALE
solver (see Fig. 1). Where, the main goal of this work is to develop an easy modification of
traditional turbulence models in order to predict transition, i.e., to write transition models
without the adding of transport equations or the full rewriting of the production and dissipation
terms of the turbulent working variables.

The prediction capabilities of these transition models are proved and assessed by computing
the flow over the flat plates of the ERCOFTAC T3 series with zero pressure gradients, inves-
tigated experimentally by Coupland [6]. These test cases are mainly characterized by bypass
and separation-induced transition, with different Reynolds number and freestream turbulent
intensity. In particular in the ERCOFTAC zero pressure gradient flat plats, e.g., T3A, T3B and
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Figure 1: Representative scheme of the MIGALE solver, where compressible and incompressible
Euler, Navier-Stokes and RANS equations are discretized and solved in an high-order spatial
and temporal dG framework. Below the RANS equations box the first line of boxes represents
the turbulence models, while the second line the transition models. The red boxes spotlight the
transition models here proposed, as a further development of the k-ω̃ and Spalart-Allamaras
turbulence models

T3A- cases, the transition is in the bypass mode, while in the ERCOFTAC rounded leading
edge flat plates, e.g., T3L1 and T3L3 cases, the transition is in the separation-induced mode.
Where in the latter cases the separation is due to the geometry and only the reattachment has
to be triggered by the model. This testsuite proves the well behaviour of the proposed transi-
tion models, in terms of the skin friction coefficient distribution on the wall in comparison with
experiments and numerical results from literature [7, 15].

2 SA-BCM MODEL

The incompressible Spalart-Allmaras BCM transition model [9] equation can be written as

∂ν̃

∂t
+

∂
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]
where the density is a constant and p∗ = p/ρ, τ̂∗ji = τ̂ji/ρ, and τ∗ji = τji/ρ. The turbulent
viscosity and the closure functions are given by

νt = max (0, ν̃) fv1, fv1 =
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.
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where ν̃ is kept non negative in the turbulent viscosity. The equation for r∗ represents the
standard definition of the r closure function which is modified according to

r =

{
max(r∗, rmax) r∗ < 0

min(r∗, rmax) r∗ ≥ 0
. (1)

This approach, which avoids the sign inversion of the source terms, greatly improves the stability
of the solution procedure, particularly in a high-order solver [10]. The intermittency function
γBC is defined as

γBC = 1− exp
(
−
√
Term1 −

√
Term2

)
, (2)

with two different functions, e.g., the Term1 and Term2, defined as

Term1 =
max (Reθ −Reθc, 0)

χ1Reθc
, T erm2 = max

(
νt
χ2ν

, 0

)
, (3)

where Reθ = Red2Ω/2.193 is the momentum thickness Reynolds number and Red2Ω = d2Ω/ν
is the vorticity Reynolds number. The threshold value Reθc is a critical momentum thick-
ness Reynolds number, which is written with a formulation based on experiments, i.e., Reθc =
803.73 (Tu∞ + 0.6067)−1.027. Term1 is mainly responsible for the production of the intermit-
tency function, in fact starts the production which is supported downstream by the Term2.
Where Term1 is not able to generate intermittency inside the boundary layer, and Term2

has been added recently [9] to overcome this limitation. The transition model constants are
tabulated in Tab. 1. The model constant cw2 is replaced by cw2LRe according to Spalart and
Garbaruk [16], defined as

cw2LRe = cw4 +
cw5( χ

40 + 1
)2 ,

to introduce the dependence from the turbulence model working variable χ. In the original
model [9] the inlet or freestream working variable ν̃∞ is set from 0.015ν to 0.025ν. Notice that
the influence of the freestream turbulent intensity Tu∞ is taken into account through Reθc, and
not by the working variable ν̃∞/ν. Finally, the standard ν̃wall = 0 condition is used at the wall
boundaries.

3 γk-ω̃ MODEL

The compressible γk-ω̃ transition model equations can be written as
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Table 1: Constants of the γk-ω̃ model (top) and of the SA-BCM model (bottom), where only
the constants of the transitional model are here reported. While α, α∗, β, β∗, σ and σ∗ are the
constants of the original k-ω̃ model [8]

A0 = 4.04 AS = 2.12 Aν = 5.20
ATH 1 = 0.2 ATH 2 = 0.2 ATH 3 = 0.1
CTH 1 = 21 CTH 2 = 1.05 CTH 3 = 0.002
CS = 1.7 Cλ = 2.495 CINT = 0.95
Cµ,std = 0.09 Ck = 6 Cχ = 10
ASI = 1000 CSI = 2 CKleb = 1/2
CKleb, γ = 2 bγ = 150 aγ = 0.95
aω = 20 bω = 5
χ1 = 0.002 χ2 = 50

χ1 = 0.002 χ2 = 50 rmax = 103

cb1 = 0.1355 cb2 = 0.622 σ = 2/3

cw1 =
cb1
κ2 + 1+cb2

σ cw3 = 2 cw4 = 0.21
cw5 = 1.5 cv1 = 7.1 κ = 0.41

where µt = α∗ρke−ω̃r and k = max (0, k). The transition model constants are tabulated in
Tab. 1. The bypass transition prediction capabilities are represented by different damping
functions, e.g., the shear-sheltering fSS , the wall fW and the viscous fν function, the turbulent
viscosity coefficient Cµ and the intermittency function γi. In comparison with the original γk-
ω model proposed by Kubacky et al. [13] and Holman and Fürst [7], where only the shear
sheltering function is defined, here several damping functions are added according to the local
and phenomenological k-kL-ω̃ transition model proposed by Lorini et al. [3, 4]. The kinematic
wall effect is included through an effective wall-limited turbulent length scale λeff and the wall
damping function fW , as

λeff = min (Cλd, λT ) , fW =

(
λeff

λT

) 2
3

,

where λT =
√
k/ω is the turbulent length scale and d is the wall distance. The viscous wall

effect is incorporated through a viscous damping function defined as

fν = 1− exp

(
−
√
ReT
Aν

)
,

where ReT = f2
Wk/

(
νeω̃
)
is the effective turbulence Reynolds number. The turbulent viscosity

coefficient takes the form

Cµ =
1

A0 +AS

(
S
eω̃

) .
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The shear-sheltering effect is included through the damping function fSS that can be alterna-
tively defined with different characteristic Reynolds number, as

RekΩ =
k

νΩ
, fSS = exp

[
−
(
CSS

νΩ

k

)2
]
,

Re√k d =

√
kd

ν
, fSS = exp

[
−
(
CSS

ν√
kd

)2
]
.

Kubacky et al. [13] introduced a modification of the model constant CSS to take into account
damping or amplification of Klebanoff streaks in accelerating or decelerating flows, for example
due to geometry of separation bubbles. In particular

CSS = CS (1 + fkχ) , χ = tanh

[−Ω (S − Ω)

Cχ (β∗eω̃)

]
, fk = 1− tanh

(
k

Ckνeω̃

)
, (4)

where the CS , Cχ and Ck are model constants. The effect of acceleration, or deceleration, is
taken into account by the χ function, which is positive in accelerating flow due to the curvature,
and increases the model constant, thus enlarging the shear sheltering and delaying the transition.
The fk function equals unity near the walls and becomes zero away from walls, and allows to
limit the modification of the model constant to the middle part of a pre-transitional boundary
layer.

The production term of the turbulent kinetic energy due to separation-induced transition is
written as the maximum function between two different contributions to the production of the
tubulent kinetic energy, as

PSI = max (PSI 1, PSI 2) , (5)

PSI 1 = (1− γ)max (2.8Tu∞µ− µt, 0)CSIFSIµS
2, (6)

PSI 2 = CKlebfKlebkS, fKleb = fγfω (7)

Red2 S =
Sd2

ν
, FSI = exp

[
−
(

ASI

Red2 S

)]
= exp

[
−
(
ASI

ν

Sd2

)]
.

fγ =
1

1 + exp [bγ (γ − aγ)]
,

fω =
1

1 + exp [−bω (Reω − aω)]
=

1

1 + exp
[
−bω

(
eω̃d2

ν − aω

)] ,
The first term PSI 1 models the breakdown of the separated shear layer due to the Kelvin-
Helmholtz instabilities under low freestream turbulent intensity levels, while the second term
PSI 2 adjusts the production for moderate and high turbulent intensities. FSI and fKleb are the
detection functions for the separated shear layers to allow the production of the turbulent kinetic
energy for the separation-induced mode cases. In comparison with Kubacki et al. [13], where
PSI 1 = (1− γ)CSIFSIµS

2 and FSI = min [max (Red2 S/ (2.2ASI)− 1, 0) , 1], the term here pro-
posed adds an exponential function to increase the smoothness, similarly to the intermittency
and the shear-sheltering damping functions. Furthermore, the term max (2.8Tu∞µ− µt) is
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added to limit the production of the turbulent kinetic energy downstream near the reattach-
ment region of the flow, and is similar to the term proposed by Menter et al. [14]. In particular,
3µ is replaced with 2.8Tu∞µ to introduce an influence to the freestream turbulent intensity also
in the separation-induced transition cases. Without this term, in plates with a blunt leading
edge, there is an unphysical creation of turbulence due to normal straining, and this is important
for low freestream turbulence intensities, where the turbulent intensity in the separation region
shows an over-prediction [7].

The intermittency function is traditionally defined according to the definition of the shear-
sheltering function, i.e., to the characteristic Reynolds number used in the shear-sheltering
function, as

Re√k d =

√
kd

ν
, γ∗1 = min

(
max

(√
kd

ν
− CTH 1, 0

)
, 1

)
, (8)

RekΩ =
k

νΩ
, γ∗2 = min

(
max

(
k

νΩ
− CTH 2, 0

)
, 1

)
, (9)

where CTH is the threshold value of transition. According to Kubacki et al. [13] the intermittency
formulation can be based also on the dissipation rate of the turbulent kinetic energy, as

Rekω =
keω̃r

νΩ2
, γ∗3 = min

(
max

(
keω̃r

νΩ2
− CTH 3, 0

)
, 1

)
, (10)

where an exponential law is here used to improve the smoothness of the intermittency function
and the transition, i.e., γi = 1 − exp (γ∗i /ATH i). Furthermore, the performance of these for-
mulations of the intermittency function is compared with an alternative formulation from the
SA-BCM transition model [9], i.e., from Eqs. (2) and (3), here called γ4.

Both the production terms of the turbulent kinetic energy and the specific dissipation rate in-
clude the intermittency function, differently from the models proposed by Holman and Fürst [7]
and Kubacki et al. [13]. In fact, as spotlighted in Lorini et al. [3, 4], the presence of the inter-
mittency in the production term of the specific dissipation rate avoids shorter transition flow
regions. The same intermittency function is used for both production terms without any limiter.
The intermittency is also activated when a large value of the turbulent kinetic energy appears
together with a relatively large value of the distance to the wall, which occurs with a large sepa-
ration zone caused by a very strong adverse pressure gradient combined with a high freestream
turbulence level.

At solid walls the homogeneous Neumann condition for the specific dissipation rate is pre-
scribed and, since the velocity is equal to zero due to the no-slip condition, the turbulent kinetic
energy at the wall is also zero, i.e., kwall = 0. At inflow or freestream the specific dissipation
rate and turbulent kinetic energy values are computed according to the definition of freestream
turbulent intensity Tu∞ and turbulent viscosity ratio (µT /µ)∞.

4 ZERO PRESSURE GRADIENT FLAT PLATES

The T3A, T3B and T3A- flat plates of the ERCOFTAC T3 series with zero pressure gradient
are here used to validate and calibrate the transition models with bypass transition mode. These
cases are characterized by different values of the Reynolds number and turbulence intensity at
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Figure 2: Zero pressure gradient flat plates. Skin friction coefficient cf along the plate for the
zero pressure gradient flat plates, T3A (top,left), T3B (top, right) and T3A- (bottom), with the
γk-ω̃ model, from P1 to P4 solution approximation. DG − P1, DG − P2, DG − P3,

DG− P4, Holman and Fürst γk-ω, Coupland exp.

the leading edge. The inlet turbulent quantities of the γk-ω̃ model, e.g, Tu∞ and (µT /µ)∞,
are chosen in order to match the experimental turbulent intensity at the leading edge and the
decay of the turbulent intensity along the domain. In particular the turbulence intensity at
the leading edge of the plate is Tu = 3.0% in the T3A case, Tu = 6.0% in the T3B case, and
Tu = 0.9% in the T3A- case, while the freestream velocity is 5.4, 9.4, and 19.8m/s, respectively.
The same mesh, made of 8 800 quadrilateral elements with linear edges, is used for all the
cases. All the intermittency functions proposed for the γk-ω̃ model are similar and can be used
indiscriminately.

Figures 2 and 3 show the skin friction coefficient distribution on the plates with the γk-ω̃
model and different solution approximation and with the SA-BCM model and different inlet
working variable ν̃∞/ν = 1.5 × 10i with i = {3, . . . ,−14}. With both the models the solutions
show a better prediction of the transition in comparison to Holman and Fürst [7] in every case.
The best values of the inlet working variable ν̃∞/ν for the T3A and T3B cases are similar of the
recommendation by Cakmakcioglu et al. [9], while for the T3A- case the value must be decreased
to the limit (1.5 × 10−14). The motivation of this value, out of the prescribed range, can be
found in the very low level of the turbulent intensity, which allows to get closer to a natural
transition mode case.
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Figure 3: Zero pressure gradient flat plates. Skin friction coefficient cf along the plate for the
zero pressure gradient flat plates, T3A (top,left), T3B (top, right) and T3A- (bottom), with the
SA-BCM model and different inlet working variables ν̃∞, P4 solution approximation. T3A:
ν̃∞/ν = 1.5×10−1, ν̃∞/ν = 1.5×10−2, ν̃∞/ν = 1.5×10−3, ν̃∞/ν = 1.5×10−4, T3B:

ν̃∞/ν = 1.5× 100, ν̃∞/ν = 1.5× 10−1, ν̃∞/ν = 1.5× 10−2, ν̃∞/ν = 1.5× 10−3,
and T3A-: ν̃∞/ν = 1.5 × 10−2, ν̃∞/ν = 1.5 × 10−12, ν̃∞/ν = 1.5 × 10−13,
ν̃∞/ν = 1.5× 10−14. Holman and Fürst γk-ω, Coupland exp.

5 ROUNDED LEADING EDGE FLAT PLATES

The T3L1 and T3L3 rounded leading edge flat plates of the ERCOFTAC T3 series with zero
pressure gradient are here used to validate and calibrate the transition models with separation-
induced transition mode. These cases are characterized by different values of the Reynolds
number and turbulent intensity at the leading edge. The inlet turbulent quantities of the γk-ω̃
model, e.g, Tu∞ and (µT /µ)∞, are chosen in order to match the experimental turbulent intensity
at the leading edge and the decay of the turbulent intensity along the domain. In particular
the turbulence intensity at the leading edge of the plate is Tu = 0.2% in the T3L1 case and
Tu = 2.3% in the T3L3 case, while the freestream Reynolds numbers is ReD = 3450, based
on the diameter of the leading edge of the plate and the freestream flow conditions. The same
mesh, made of 15 500 quadrilateral elements with quadratic edges, is used for all the testcases.

Figures 4 and 5 show the skin friction coefficient distribution on the plates with the γk-ω̃
model and different solution approximation and with the SA-BCM model and different inlet
working variable ν̃∞/ν = 1.5 × 10i with i = {1, . . . ,−2}. With both the models the solutions
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Figure 4: Rounded leading edge flat plates. Skin friction coefficient cf along the domain for
the rounded leading edge flat plates, T3L1 (left) and T3L3 (right), with the γk-ω̃ model, from
P1 to P4 solution approximation. The vertical dashed line represent the experimental length
of the laminar separation bubble [6]. The references from Vlahostergios et al. [15] are here
reported with linear kL-k-ω model. DG− P1, DG− P2, DG− P3, DG− P4,
Vlahostergios et al. kL-k-ω, Bassi et al. ILES, Coupland exp.

show a better prediction of the transition in comparison to Vlahostergios et al. [15] in every case.
Also on this testsuite, a lower level of the turbulent intensity needs a lower value of the inlet
working variable for the SA-BCM model, in fact on the T3L1 case the more accurate solution is
with ν̃∞/ν = 1.5× 10−2. The distributions of the skin friction coefficient in the reattached and
fully turbulent boundary layer of both the model are in agreement with experiments [6] and the
numerical results of Vlahostergios et al. [15], while underestimate the numerical results of Bassi
et al. [12]. In fact, the higher skin friction coefficient distribution of the (unsteady) high-fidelity
simulations of Bassi et al. [12] is due the the unsteadiness of the flow and in particular to the
velocity fluctuations. The (steady) transition models underestimate the distribution of the skin
friction coefficient after the reattachment of the boundary layer, due to a natural inability to
predict the velocity fluctuations.

6 CONCLUSIONS

The implementation of a modified version of the k-ω̃ [8] and Spalart-Allmaras [10] turbulence
models in a high-order dG solver to predict transition due to the bypass and separation-induced
modes is here presented. The modifications of these turbulence models are based on the γk-ω
by Holman and Fürst [7] and Kubacki et al. [13], and the SA-BCM by Cakmakcioglu et al. [9].
Both the proposed transition models are correlation-based algebraic transition models that relies
on local flow information and include an intermittency function instead of an intermittency
equation.

The accuracy of both the transition models is demonstrated in comparison with experiments
and numerical results from literature, on different benchmark cases and for increasing order of
accuracy. The solutions are in good agreement with the references in all the cases, starting
from a sufficient solution approximation, where a good choice of the inlet or freestream working
variable for the SA-BCM model is mandatory. In particular cases with a low level of the
freestream turbulent intensity need lower values of the working variable at the boundary, which
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Figure 5: Rounded leading edge flat plates. Skin friction coefficient cf along the domain for the
rounded leading edge flat plates with the SA-BCM model and different inlet working variables
ν̃∞, T3L1 (left) and T3L3 (right), P4 solution approximation. The vertical dashed line represent
the experimental length of the laminar separation bubble [6]. The references from Vlahostergios
et al. [15] are here reported with linear kL-k-ω model. ν̃far/ν = 1.5 × 101, ν̃far/ν =
1.5× 100, ν̃far/ν = 1.5× 10−1, ν̃far/ν = 1.5× 10−2, Vlahostergios et al. kL-k-ω,
Bassi et al. ILES, Coupland exp.

are out of the prescribe range of values [9]. The work is in progress in the application of the
models on more complex testcases, as turbine or compressor cascades.
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