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Abstract This paper presents a novel coupled formulation for fluid-structure
interaction (FSI) problems involving free-surface fluid flows, fracture phenom-
ena, solid mutual contact and large displacements. The numerical formulation
combines three different Lagrangian computational methods. The Particle Fi-
nite Element Method (PFEM) is used to solve the free-surface fluid flow,
a Finite Element Method (FEM) with smoothed isotropic damage model is
employed for the solution of solid structures and debris, finally, the Discrete
Element Method (DEM) is used to manage the contact interaction between
different solid boundaries, including the new ones generated by propagat-
ing cracks. The proposed method has a high potential for the prediction of
the structural damages on civil constructions caused natural hazards, such as
floods, tsunami waves or landslides. Its application field can also be extended
to fracture phenomena in structures and soils/rocks arising from explosions
or hydraulic fracking processes. Several numerical examples are presented to
show the validity and accuracy of the numerical technique proposed.

Keywords Fracture Mechanics · Free-Surface Flow · Fluid-Structure
Interaction · Discrete Element Method · Particle Finite Element Method

1 Introduction

This work presents a new coupled numerical method for the simulation of
structures collapsing and fracturing under the impact of free-surface fluids.
This type of FSI problems is of high interest for different engineering applica-
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tions, such as in the case of civil infrastructures affected by natural hazards,
like floods, tsunami waves or landslides.

The numerical simulation of these multi-coupled problems is challenging
due to their high non-linearity and the complexity of the involved phenomena.
Indeed, the numerical method must be able to deal with free-surface fluids
undergoing large changes of topology and interacting with structures that can
break and desegregate into smaller solid debris which, in turn, may eventually
hit other structures.

The complexity of this scenario explains the reduced number of compu-
tational methods for FSI problems with fracture phenomena available in the
literature. Most of these works are focused on the structural failure of pipes
and vessels subjected to shocks and explosions [52,50,49,51,47,48,53]. An-
other important research area in this field refers to the simulation of hydraulic
fracture processes, see [56,57,59,58]. On the other hand, a smaller number of
works analyzed the collapse of civil structures caused by the impact of free-
surface fluid flows, which is the main focus of the present work. In [55], a FSI
formulation with a phase-field fracture model was proposed for the structural
failure caused by the impact of fluid flows in closed domains. In [54], similar
problems were analyzed considering also the fragmentation of the structure
due to the cracks propagation. In [62], free-surface fluids were also consid-
ered using a coupled Smoothed Particle Hydrodynamics - Discrete Element
Method (SPH-DEM) model. Other SPH-based works analyzed the effect of
tsunami waves on civil infrastructures, especially bridges, although fracture
phenomena were not taken into account [44,43,42]. Still in this research line,
it is worth to mention the following coupled methods based on SPH [61],
Immersed Particle Method (IBM) [63,64] and DEM-LBM (Lattice Boltzman
Method) [65].

The Particle Finite Element Method (PFEM) [38] also been used to model
similar fluid-solid interaction, such as in [19,7], but without modeling fracture
phenomena. On the other hand, in the coupled PFEM-DEM model proposed
in [45,46] for bed erosion processes in river dynamics, the river bed domain
was allowed to suffer changes of topology due to the erosion induced by the
fluid flow. However, the detached parts could be modeled either as a set of
dimensionless DEM particles or as rigid bodies, and not as deformable solids
capable of fracturing again, as it is done in the present work.

The FSI problem is here solved with a novel hybrid strategy that combines
three different Lagrangian numerical methods. The free-surface flow problem
is solved with the stabilized PFEM formulation presented in [7], while the solid
deformation, fracture and frictional contact effect are modeled by combining a
Finite Element Method (FEM) with smoothed isotropic damage model [3,16]
and a Discrete Element Method (DEM) [13–15], in the spirit of the so-called
FEM-DEM procedure [1–3].

In the specific type of FSI problems considered in this work, the solution ac-
curacy strictly depends on the capability of the numerical method to track the
evolving fluid-solid interface. This task is particularly critical for the problems
analyzed here because, on the one hand, the fluids have a free surface which
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changes continuously during the analysis and, on the other hand, the solids
can undergo large displacements/rotations and their contours can change sig-
nificantly due to the propagating cracks and the resulting fragmentation of the
structure. In this work, the fluid-solid interface is detected automatically with
the PFEM during its remeshing step. Remarkably, the remeshing procedure
used in the PFEM not only improves the quality of the finite element dis-
cretization and defines the updated fluid free surface, but also allows to detect
the new contact surfaces with the solid bodies. The Lagrangian nature of the
PFEM guarantees also that all the nodes of the interface belong to both the
fluid and the solid meshes. This allows us to avoid projecting nodal variables
between the solid and the fluid domains. In this sense, the coupled approach
here proposed can be classified as a body-fitted conforming-mesh FSI method
[27]. Compared to mesh-free [29], non-conforming mesh [28,30] and embedded
[37] FSI approaches, body-fitted algorithms allow for an easier transmission
of boundary conditions between fluid and solid domains. Nevertheless, these
methods generally require a similar size of fluid and solid elements at the in-
terface zone and may lead to mesh distortion issues when applied to large
deformation problems. For large and arbitrary motions of the interface, this
latter task can become critical for conforming-mesh methods based on Arbi-
trary Lagrangian-Eulerian (ALE) techniques [35]. Conversely, the PFEM can
naturally track the evolving interface and, at the same time, maintains a good
discretization, also in the presence of large and unpredictable motion of the
fluid-solid interface. This feature represents one of the main advantages of
the PFEM for coupled fluid-solid mechanics analysis and also explains the
extended use of the method for FSI problems [34,20,31,6,32,33,5].

Once the contact interfaces between fluids and solids have been detected,
the FSI time step solution is performed through a Aitken iterative scheme
[60]. A staggered method has been preferred to a monolithic one to avoid the
ill-conditioning of the linear system which could arise due to different orders of
magnitude of the physical parameters of the materials. This situation is prone
to occur in the problems of interest of this work which involves civil structures
that are generally characterized by a high stiffness.

Concerning the solid mechanics solution scheme, the FEM-DEM approach
chosen can be classified as a hybrid continuum-discrete formulation for fracture
mechanics. The onset of cracking is detected using a continuum FEM formula-
tion and an isotropic damage model [16]. On the other hand, the DEM is used
to compute the repulsion forces due to the contact interaction between differ-
ent solid contours, including those of propagating cracks. Before fracturing,
the stiffness degradation of the material and the crack initialization are mod-
elled in a smeared way. During this phase, the mesh topology is not changed
and the fracture is represented by stress softening and localization. When the
inelastic energy dissipation reaches the fracture energy in some zones of the
solid, the finite elements contained therein are removed from the mesh and
replaced by a mass-equivalent set of particles, or discrete elements. A sub-
stepping procedure is employed in the time marching scheme to synchronize
the FEM implicit solution and the DEM explicit one.
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One of the main advantages of the FEM-DEM methodology lays in its ca-
pability to model in a natural way the onset, evolution, merging and branching
of fractures, as well as the eventual detachment of solid blocks, their mutual
contact, and their independent motion under the effect of the fluid flow. This
feature is particularly important for the problems of interest for this work,
because loose solid debris may be at the origin of other damages on structures
or living beings.

The paper has been structured as follows. In Section 2, the governing equa-
tions for the solid and the fracture model are presented. In Section 3, the fluid
governing equations and the PFEM scheme is presented. In Section 4, the FSI
solution algorithm through the proposed PFEM-FEM-DEM approach is de-
scribed. In Section 5, several numerical examples are analyzed to validate the
overall methodology. Finally, the concluding remarks of the work are presented
in Section 6.

2 Solid mechanics problem

The solid parts of the domain are solved with a coupled FEM-DEM approach
[1–3]. This method combines a continuum FEM formulation with the DEM
to simulate fracturing solids and the consequent formation of solid debris. In
this section, we first present the governing equations and the FEM solution
scheme, then we describe the damage and fracture models, and finally the
FEM-DEM algorithm to deal with crack propagation and frictional contact
between the interacting solids.

2.1 Governing equations for the solid

The solid motion is governed by the linear momentum equations formulated
in a Total Lagrangian (TL) framework as

ρsü−DivP− b0 = 0 in Ωs0 × [0, T ] (1)

where ρs is the solid density, u is the displacement field, P is the first Piola-
Kirchhoff stress tensor, b0 is the external body force per current unit volume
over the undeformed solid configuration Ωs0, and T is the total time duration.

A set of initial conditions specifying displacements at time t = 0 are defined
as:

u(t = 0) = û0 in Ω0 (2)

v(t = 0) = v̂0 in Ω0 (3)

where v are the velocities, and û0 and v̂0 are the initial displacements and
velocities, respectively.

The governing equations set is closed by the following boundary conditions
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P ·N = t̂0 in Γσ × [0, T ] (4)

u = û in Γu × [0, T ] (5)

where N is the unit normal vector, t̂0 are the tractions applied on the Neumann
boundary Γσ, and û are the prescribed displacements to the Dirichlet contours
Γu.

In this coupled approach, the traction vector t̂0 is computed as the sum of
three different contributions as

t̂0 = tloads + tcontact + tfluid (6)

where tloads are the tractions arising from standard external loads, tcontact
are the tractions due to the contact with other solid bodies, and tfluid are the
tractions induced by the fluid pressures.

2.1.1 Finite element solution

The solid governing equations (Eq. (1)) are solved with an implicit scheme,
using 3-nodded triangular elements in 2D and 4-nodded tetrahedral in 3D.
Each time step is solved iteratively for the increments of nodal displacements
∆ū (the upper bar ·̄ denotes a nodal variable). The derivation of the fully
discretized and linearized form of the governing equations is considered out of
the scope of the present work. Interested readers may refer to [1–3] for details.
For a generic time step

[
nt; n+1t

]
of duration ∆t, the following linear system

is solved for each iteration k:

K(ūk) ·∆ūk+1 = −r(ūk). (7)

being:

r(ūk) = M āk + C v̄k + fint(ūk)− n+1fext − n+1ffluid − nfcontact (8)

and

K(ūk) =

[
1

β∆t2
M +

γ

β∆t
C + KT (ūk)

]
. (9)

where āk are the nodal accelerations computed at the kth iteration, fint and fext

are the internal and external forces vectors, respectively, ffluid are the equiva-
lent nodal forces due to the fluid pressure, fcontact are the equivalent contact
nodal forces, which are here evaluated at nt, M, C and KT are the mass,
damping and tangential stiffness matrices, respectively, and the parameters
β = 0.25, γ = 0.5 have been used.

For the sake of completeness, all the variables and matrices introduced in
Eqs.(8-9) are defined in Appendix A.
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(a) 2D (b) 3D

Fig. 1: Super-convergent points. Graphical representation of the effective stress
smoothing at the FE edge.

2.2 Damage and fracture models

For the fracture analysis, the isotropic damage model proposed by Oliver et al.
[16] for crack propagation in concrete has been used. In this model, the internal
damage variable d describes the material degradation, varying from 0 (intact
material) to 1 (fully damaged material). The constitutive model relates the
Green-Lagrange strain tensor E with the second Piola-Kirchhoff stress tensor
S as:

S = Cs E = (1− d)C0 E = (1− d) Ŝ, (10)

where Ŝ is the effective second Piola-Kirchhoff stress tensor, Cs = (1 − d)C0

is the secant constitutive tensor, and C0 the elastic constitutive tensor.

The damage parameter d is computed by evaluating the effective stresses
at the mid-sides of the adjacent elements. This allows us to obtain super-
convergence values of the stresses at these points [25,26]. This means that the
error of the computed values at these points decreases with a higher rate of
convergence.

Fig. 1 shows the scheme to compute the effective stress tensor Ŝ at the
edges from the stress tensors evaluated at the integration points of the finite
elements sharing that edge as:

Ŝ
edge

=
1

nelem

nelem∑
i=1

Ŝ
neig,i

(11)

where nelem is the number of elements sharing the edge.



Title Suppressed Due to Excessive Length 7

The effective stress tensor at each element edge is also used to evaluate
whether the material is in elastic or inelastic regime basing on the following
general definition of yield surface Φ

Φ = f(Ŝ
edge

)− στ,edge ≤ 0 (12)

where f(Ŝedge) is the so-called equivalent effective stress whose definition
depends on the yield surface of interest and σedge

τ is the stress threshold which
is computed as:

στ,edge = max(στ0 ,max(f(Ŝ
edge

)t)) t ∈ [0, T ], (13)

where στ0 is the initial yield strength of the material.

This definition guarantees that the material threshold is the maximum
historical equivalent stress achieved and also ensures the irreversibility of the
damaging process.

The internal damage variable d is also evaluated at each edge of the ele-
ments using the following exponential softening law:

d(Ŝ
edge

) = 1− στ0

f(Ŝ
edge

)
exp

(
A

(
1− f(Ŝ

edge
)

στ0

))
(14)

in which the parameter A is determined from the energy dissipated in a
uniaxial tension test as [16]

A =

(
GfE

l̂(στ0)2
− 1

2

)−1

(15)

being Gf is the specific fracture energy per unit area (taken as a material

property), E is the Young modulus, l̂ is the characteristic length of the element,
and στ0 is the initial tensile yield strength.

The elemental damage is computed after evaluating the damage variables
at all its edges and all the possible fracture modes, like those represented in
Fig. 2. In 2D, the elemental damage will be always the mean value of the two
highest damage variables of the three edges of the element, thus:

delem =
1

2
(dedge,max + dedge,max−1) (16)

If the damage computed at a certain finite element becomes higher than a
pre-fixed threshold (≈ 0.98), this element is removed from the FE mesh and
a set of DE is placed over the nodes of the erased FE [1–3]. As it will be
explained below, these DE are used to compute the contact forces between
different solids, or between different parts of the same structure.
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(a) 2D version (b) 3 Edged mode (c) 4 Edged mode

Fig. 2: Different fracture modes in 2D and 3D element geometries [3].

2.3 Contact forces computation with the DEM

In order to prevent the inter penetration of solid elements faces, a set of discrete
elements is overlapped to the boundary nodes of the solid. In the case of
a propagating fracture, additional discrete elements are placed over the new
boundary nodes of the crack. Once a DE detects an active contact with another
solid boundary, either with another DE or a FE edge, a repulsive force is
computed and transmitted to the FEM nodes.

The DEM procedure used within the FEM-DEM formulation is based on
the works of Casas et al [17], Oñate et al [13] and Thornton et al. [18].

Considering two colliding particles, whose coordinates are r1 and r2, the
normal vector that aligns the centres of the spheres is computed as follows:

n21 =
r2 − r1
‖r2 − r1‖

, n21 = −n12. (17)

The normal indentation δn between the discrete particles is computed as:

δn = R1 +R2 − ‖r21‖ , r21 = r2 − r1. (18)

where Ri is the radius of particle i.
The total contact force between two particles Fcontact is decomposed into

its normal and tangential components as:

Fcontact = Fn n + Ft t (19)

The normal component of the contact force Fn is obtained as a combination
of an elastic (Fn,el) and a viscous (Fn,damp) contribution, i.e.:

Fn = Fn,el + Fn,damp (20)

Considering a standard Hertzian model, the elastic part is computed as:

Fn,el =
4

3
R̃

1
2 Ẽδ

3
2
n (21)
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where R̃ := (1/R1 + 1/R2)
−1

, Ẽ =
(

1/Ẽ1 + 1/Ẽ2

)−1

with Ẽi := Ei/(1−
ν2
i ), being νi the Poisson ratio, E the Young modulus and R the radius of each

particle.
The viscous damping contribution is computed as:

Fn,damp = cn δ
1/4
n δ̇n. (22)

For particle-particle contact the constant cn is given by

cn = γ

√
8 Ẽ M̃

√
R̃ (23)

being M̃ := (1/m1 + 1/m2)
−1

and γ a viscous damping coefficient.
On the other hand, the tangential component of the contact force (Eq. 19)

is computed as:
Ft = Ft,el td + Ft,damptν (24)

where the directions td and tν are based on the kinematics during tangen-
tial deformation [13].

The elastic tangential contribution is obtained by:

Ft,el = δ1/2
n

∫
8Gδ̇ dt (25)

being G the shear modulus. The tangential viscous contribution as

Ft,damp = ct δ
1/4
n δ̇t (26)

with

ct = 2 γ

√
8 G̃ M̃

√
R̃ (27)

where G̃ = G/(4− 2ν) and G = E/(2 + 2ν).

2.4 FEM-DEM solution scheme

As the FEM solution is obtained via an implicit scheme and the DEM with
an explicit one, the time step increment used in the two methods may be of
different orders of magnitude. Thus, to optimize the computational perfor-
mance of the method, a sub-stepping procedure is used. Thus, for each time
step increment of the FEM solution (∆t), the DEM problem is solved several
times using a smaller time increment (∆te). Note that the time step used for
the FEM solid solution is the same as the one used for the implicit PFEM
solution of the fluid parts of the domain.

The iterative FEM solution (Eqs.(7)-(9)) is obtained considering the con-
tact forces computed at the end of the previous time step. Once the numerical
solution of the solid has converged, the kinematic information of the FEM
boundary nodes is transferred to the respective discrete element. In case of
having an active solid-solid interaction, the kinematic information is used to
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compute the new contact forces through a sub-stepping loop. At each explicit
time step (et), the kinematic information of each particle is updated by inter-
polating the FEM results obtained at the previous time step (nt) and those
of the converged one (n+1t). This information is used to compute the corre-
sponding contact force contribution Fcontact from Eq.(19), which is added to
the accumulated impulse I(et) as

I(et) = I(e−1t) +∆te · Fcontact (28)

Once the sub-stepping is finalized (et = n+1t), the contact forces needed
in the FEM solution of the following time step (Eq.8) are computed as

fcontact =
I(et)

∆t
(29)

Algorithm 1 summarizes the solution scheme of the FEM-DEM method.

3 Fluid dynamics problem

3.1 Governing equations of the fluid

The governing equations for the fluid dynamics problem are the linear mo-
mentum balance and the mass conservation equations. The problem is solved
in an Updated Lagrangian framework as in the standard PFEM [19]. Calling
Ωf the updated fluid domain, the fluid governing equations read

ρf
∂v

∂t
−5 · σ − ρfg = 0 in Ωf × (0, T ) (30)

5 · v− 1

κf

∂p

∂t
= 0 in Ωf × (0, T ) (31)

where v is the velocity vector, t is the time, σ is the fluid Cauchy stress tensor,
g is the gravity acceleration vector, and ρf and κf are the fluid density and
bulk modulus, respectively.

For Newtonian fluids, the Cauchy stress tensor is splited as

σ = pI + 2µf d’ (32)

where p is the pressure, I is the 2nd order identity tensor, µf is the fluid
dynamic viscosity, and d’ is the deviatoric part of the deformation rate tensor
d computed as

d’ =
1

2

(
5v + (5v)T

)
− 1

3
dvI (33)

where dv = 5 · v is the volumetric deformation rate.
Following [20,21,10], the mass conservation equation (Eq.(31)) is here

solved not in the standard divergence-free form of the Navier-Stokes prob-
lem (5 · v = 0), but considering a certain (small) compressibility of fluid
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Algorithm 1: FEM-DEM solution algorithm for a generic time step[
nt; n+1t

]
of duration ∆t.

Initialization of the implicit transient dynamic scheme for the FEM:
k ← 0, ū0 ← nū
Apply the DE contact forces obtained at the last time step as equivalent nodal

force for the FEM (nfcontact of Eq.8)
while

∥∥reff,dyn

∥∥ > tol do
for Elements do

Compute the effective stresses σ̄ = C0 : ε
Smoothing of the effective stress field at the FE edges
Compute the damage d at the edges by Eq. (14)
Obtain the elemental damage by Eq. (16)

Calculate the elemental tangent stiffness matrix K
(e)
T and internal forces

vector f
(e)
int

Assemble elemental contributions: KT ← K
(e)
T and fint ← f

(e)
int

end

Calculate the displacement increments ∆uk+1 = K−1
T rk

k += 1
end
for Elements do

if Damage ≥ 0.98 then
Erase the FE
Generate the Discrete Elements (DE) at the nodes of the damaged FE

end

end
Initialization of the explicit transient dynamic scheme for the DEM
et← nt
while et ≤ n+1t do

et += ∆te
Obtain the FEM kinematic information for the DE by interpolating the FEM

results between the initial time (nt) and the final one (n+1t)
Compute the contact forces Fcontact using Eq. (19)
Update the explicit contact impulses at each particle using Eq. (28)
Integrate the equations of motion for the free particles
Compute the displacements, velocities, and accelerations of free particles

end

Compute the updated equivalent contact nodal forces n+1fcontact using Eq. (29)

material. For values of bulk modulus going to infinity the divergence-free form
of the continuity equation is recovered.

The fluid governing equations are completed by the following boundary
conditions at the Dirichlet (Γ vf ) and Neumann (Γ tf ) boundaries

v = v̂ on Γ vf

σ · n = t̂ on Γ tf
(34)

being n the normal vector to the fluid boundaries, v̂ the prescribed velocities
at the Dirichlet boundaries and t̂ the prescribed tractions at the Neumann
ones.
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3.2 Finite element solution

The fluid governing equations are solved in a standard FEM fashion following
the implicit stabilized velocity-pressure strategy presented in [9]. The domain
is discretized with simplicial elements (triangles in 2D and tetrahedra in 3D)
using linear shape functions for both the velocity and pressure fields. The for-
mulation is stabilized with the Finite Increment Calculus (FIC) technique [22,
9,23]. In the FIC scheme for Lagrangian formulations [9], the stabilization
terms are added to the continuity equation only. The derivation of the FIC-
FEM stabilized form of the fluid governing equations is considered out of the
scope of this work. Details can be found in [9]. In this section, only the final
fully-discretized and linearized form is given.

The time step solution is obtained through an iterative two-step procedure
where the linear momentum equations are solved for the increments of nodal
velocities ∆v̄ and the stabilized continuity equation is solved for the nodal
pressures p̄.

Considering a generic time step
[
nt; n+1t

]
of duration ∆t (same time step

used for the FEM solution of the solid mechanics problem), at each iteration
k, the increment of nodal velocities are obtained from the discretized form of
the linear momentum equations (Eq. (30)) as

(Kρ + Km)∆v̄k+1 = rk (35)

with

Kρ
IJ = I

∫
Ω

2ρf
∆t

NINJdΩ, Km
IJ =

∫
Ω

BT
I CBJdΩ

rIi =

∫
Ω

ρfNINJdΩ ¯̇vJi +

∫
Ω

∂NI
∂xj

σijdΩ −
∫
Ω

ρfgiNIdΩ

(36)

where NI is the linear shape functions for node I and matrices B and C are
defined for a two dimensional problem as follows

BI =



∂NI
∂x

0

0
∂NI
∂y

∂NI
∂y

∂NI
∂x

 , C =


κ̂f∆t+

4µf
3

κ̂f∆t−
2µf

3
0

κ̂f∆t−
2µf

3
κ̂f∆t+

4µf
3

0

0 0 µf

 (37)

The pseudo-bulk modulus κ̂f used in the fluid constitutive matrix C is ob-
tained by reducing ad hoc the real fluid bulk modulus κf to avoid ill-conditioning
the algebraic linear system [10].

After solving solution of Eq. (35) and updating the fluid kinematic with the
new velocities, the fluid nodal pressures p̄ are computed from the discretized
FIC-stabilized form of the continuity equation (Eq. (31)) as follows

(M + Sτ ) p̄k+1 = Mnp̄−QT v̄k+1 + fτk+1 (38)
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(a) Erase elements (b) Delaunay triangulation (c) Alpha Shape method

Fig. 3: PFEM remeshing steps. Not active fluid-structure interaction.

(a) Erase elements (b) Delaunay triangulation (c) Alpha Shape method

Fig. 4: PFEM remeshing steps. Active fluid-structure interaction.

with

MIJ =

∫
Ω

NINJ
κf∆t

dΩ, QIJ =

∫
Ω

BT
I mNJdΩ (39)

where, for two dimensional problems, m = [1, 1, 0]T .

Sτ and fτ are the stabilizing terms arising from the FIC method [9] and
are given in Appendix B.

Eq.(35) and Eq.(38) are solved iteratively within each fluid time step in-
crement until the fulfillment of the convergence criterion chosen.

3.3 Remeshing procedure with the PFEM

The fluid governing equations are solved using a Lagrangian mesh. For fluid dy-
namics problems, this strategy leads inevitably to a deterioration of the mesh
quality. This inconvenience is circumvented in the PFEM by building a new
discretization from the nodes of the previous mesh, whenever this mesh has ex-
ceeded a threshold level of distortion. The remeshing step of the PFEM is done
by combining Delaunay triangulation [12] and the Alpha Shape method [11].
Figs. 3 and 4 show graphically the PFEM remeshing steps for two different
situations of FSI analysis. In particular, Fig. 3 shows a time instant in which
the fluid and the solid domains are not interacting, whereas Fig. 4 represents
a situation in which the fluid-solid interaction is active.

As shown in Figs. 3a and 4a, the first step of PFEM remeshing consists of
erasing all the fluid elements of the previous distorted mesh. It is important
to note that the nodes of the previous mesh are preserved together with all
the problem information (nodal unknowns and physical parameters) and the
solid mesh is not affected by the PFEM remeshing.
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In the second step of remeshing, the Delaunay triangulation is built over
the cloud of points formed by the nodes of the previous mesh. As shown in Figs.
3b and 4b, the Delaunay mesh is built also considering the nodes belonging to
rigid contours and the boundary nodes of the solid domain (interface nodes).

In order to recognize the actual boundaries of the fluid domain (both the
free surface and the new interface with the solid and rigid boundaries), the
Alpha Shape method is applied. This technique evaluates the quality of all the
elements created by the Delaunay triangulation and removes from the mesh
those elements that exceed a limit value of distortion or size. In this way, the
algorithm is capable to recognize the updated boundaries of the computational
domain with good accuracy, as shown in Fig. 3c and 4c. This step is crucial
to establish whether the fluid and the solid domains are in contact or not. In
the positive case, the fluid and the solid solutions will be coupled, as in the
situation described in Fig. 4. In the opposite case (Fig. 3), the fluid solution
will not be affected by the solid one and vice versa, at least for the duration
of the next time step increment.

More details about the PFEM remeshing process and its implications can
be found in [24,7,8].

The overall PFEM solution scheme for a generic time step
[
nt; n+1t

]
of

duration ∆t is summarized in Algorithm 2.

Algorithm 2: PFEM solution algorithm for free-surface fluid solution
and fluid-solid interface detection for a generic time step

[
nt; n+1t

]
of

duration ∆t.
Initialization of the implicit transient dynamic scheme for the PFEM:
k ← 0, v̄0 ← nv̄, p̄0 ← np̄

while
‖∆v̄k+1‖
‖v̄0‖

and
‖p̄k+1 − p̄k‖
‖p̄0‖

> tolerance do

Compute the linear momentum equations for ∆v̄k+1 (Eq. 35).
Update the kinematics: x̄k+1, v̄k+1, āk+1.
Compute the continuity equation for p̄k+1 (Eq. 38).
k += 1

end
if Mesh distortion > tolerance then

Erase the fluid elements and maintain the nodes (Figs. 3a and 4a).
Create Delaunay Triangulation over the cloud of nodes (Figs. 3b and 4b).
Do Alpha Shape check to recognize the free-surface boundaries and the

fluid-solid interface (Figs. 3c and 4c).
end

4 PFEM-FEMDEM solution scheme for FSI

The FSI problem is solved by combining the FEM-DEM approach for solving
non-linear solid mechanics problem (Section 2) and the PFEM to simulate the
free-surface fluid flow and to detect the fluid-solid interface (Section 3.3).
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Fig. 5: Strong coupling between the fluid (Ωf ) and the solid (Ωs) with the
Aitken relaxation technique. Exchange of pressures p and relaxed velocities v
at the fluid-solid interface Γfs.

The Lagrangian nature of PFEM and its efficient remeshing procedure al-
low for an easy transmission of boundary conditions between the fluid and the
solid. Indeed, at the interface the PFEM and the FEM-DEM nodes coincide
and there is no need of using any projector operator to transfer the kinematics
and/or the pressures between the different domains. As the fluid-solid inter-
face may vary during the computation, either because the fluid free-surface
has changed or because some new solid contours have been formed from crack
propagation, this operation must be carried out continuously during the com-
putation (in practice at each time step). Once the new fluid mesh has been
built, the FSI time step is solved maintaining as fixed the connectivity of the
elements.

The solution of the coupled problem is obtained with an iterative staggered
scheme. At each iteration, the fluid dynamics problem is solved implicitly with
the PFEM keeping fixed the velocity at the solid boundary. The fluid pressures
obtained at the interface are then transferred to the FEM-DEM as equivalent
nodal forces ffluid (Eq.(8)) and the solid mechanics solution is obtained. In case
of contact between two solids, also the equivalent nodal forces due to contact
fcontact of Eq. (8) are computed using the DEM particles placed at the solid
boundaries (Section 2.3).

To improve the convergence and stability of the FSI scheme, an Aitken
relaxation technique is adopted, analogously to [5]. A schematic representation
of the algorithm is shown in Fig. 5.

Following the Aitken method, at each iteration i of the coupled problem,
the velocities obtained at the fluid-solid interface Γfs from the solid FEM
solution (ṽi+1

Γfs
), are transferred to the fluid interface nodes as an intermediate

relaxed velocity vi+1
Γfs

, computed as:

vi+1
Γfs

= ωi+1 ṽi+1
Γfs

+ (1− ωi+1)viΓfs
(40)
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where the Aitken relaxation parameter ωi is computed as:

ωi+1 = −ωi Ri+1T

(Ri+1 −Ri)∥∥Ri+1 −Ri
∥∥2 (41)

being Ri = ṽiΓfs
− viΓfs

.
In this work, the initial value of the Aitken parameter has been set to 0.825.
The iterative FSI loop concludes when the following converge criterion is

fulfilled: ∥∥Ri
∥∥

Number of DoF
< tol, (42)

Being tol a certain error tolerance, usually 10−5 m/s.
The FSI coupling method of the proposed PFEM-FEM-DEM approach is

summarized in Algorithm 3.

Algorithm 3: PFEM-FEM-DEM coupled solution scheme for a time
step.

For each time step:
Detect the new fluid-solid interface position with the PFEM (Section 3.3)
while

∥∥Ri∥∥ /Number of DoF > tol do
Fix the velocity and position of the interface nodes of the solid.
Solve the free-surface fluid flow with the PFEM (do Alg. 2)
Free the velocities and position of the boundary nodes of the solid
Update the values of the fluid pressure loads on the solid part (Eq. 6)
Solve the FEM-DEM part of the calculation (do Alg. 1)
Relax the interface nodal velocities via Aitken relaxation (Eq. 40)
Check convergence of velocities at the interface Γi (Eq. 42)

end

5 Numerical examples

Five numerical examples are presented to validate the proposed PFEM-FEM-
DEM formulation and to highlight specific features of the method. The first
example shows the capacity of the formulation to deal with submerging solid
objects in a free-surface fluid. In the second example, the accuracy of the FSI
method for the solution of impacts of fluids against deformable structures is
proved by analyzing a benchmark test for FSI problems in presence of free-
surface fluids and large displacements of the solid structure. The same problem
is then solved modifying the material parameters in order to allow the fracture
and breakage of the solid. Next, the progressive collapse of a 3D solid slab due
to the accumulation of a free-surface fluid is reproduced. Finally, a structural
failure of a concrete wall under the action of a tsunami wave is presented.
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Parameter Value
Solid Young’s modulus (E) 10 GPa

Solid Poisson’s ratio (ν) 0.0
Solid Density (ρs) 466.07 kg/m3

Fluid Viscosity (µ) 0.001 Pa · s
Fluid Density (ρf ) 1000 kg/m3

Table 1: Wedge water entry. Material data.

5.1 Wedge water entry

This first test has been chosen to show the capability of the method to simulate
the interaction between free solid debris and a free-surface fluid. A situation
that may occur after the desegregation of a structure. The experimental test
used as reference is the one presented in [39]. In the experiment, a solid wedge
was made falling on a tank filled with water from an initial height of 1.3 m.
Here, the two-dimensional adaptation of the experimental test is presented.
The initial geometry of the example is depicted in Fig. 6. The material prop-
erties used are defined in Table 1. To reproduce the rigid behavior of the solid
observed in the experiment, a very high value for the Young modulus of the
solid has been used. The analysis has been run using a fixed time step duration
of 10−4s.

The solid domain has been discretized with 5,833 3-nodded triangles whereas
the fluid domain is composed of 65,586 triangles. The numerical results have
been compared to the experimental observations of [39] and to the numeri-
cal results obtained by the monolithic PFEM formulation [41] and the SPH
method [40].

In Fig. 7 the numerical results obtained at four different time steps are
shown. The pictures show the impact of the wedge against the water at rest.
The edge almost maintains the initial inclination and penetrates into the water
without rotating. On the other hand, two symmetric streams of water depart
laterally due to the impact of the solid object. Fig. 8 shows the time evolution
of the obtained velocity of the wedge and the experimental solution. After an
initial free-fall regime, the wedge decelerates progressively from a peak velocity
of around 5 m/s. To better appreciate the wedge deceleration phase, Fig. 9
shows the velocity evolution of the solid after the impact against the fluid. For
the same time interval, Fig. 10 also shows depict the time evolution of pressure
measured at point A of the wedge.

Figs. 9-10 shows a very good agreement between the results of the proposed
PFEM-FEM-DEM method and the numerical and experimental results of the
literature proving the accuracy of the method in the simulation of inertially
driven FSI problems.



18 Alejandro Cornejo et al.

Fig. 6: Initial setup of the wedge water entry problem. Units in m.

(a) t = 0.307s (b) t = 0.525s

(c) t = 0.590s (d) t = 0.698s

Fig. 7: Wedge water entry. Numerical results at four time instants.

5.2 Dam break against a flexible wall

The collapse of a water column against an elastic membrane is a well-known
benchmark for FSI problems with free-surface fluids. The test was initially
proposed by Walhorn et al. [36] and later reproduced in several other works,
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Fig. 8: Time evolution of the vertical velocity of the wedge. Comparison be-
tween the results obtained in this work and the experimental one [39].

Fig. 9: Time evolution of the vertical velocity of the wedge. Comparison be-
tween the results obtained in this work and those of Sun et al. [40], Franci et
al. [41] and Yettou et al. [39].
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Fig. 10: Time evolution of the fluid pressure at point A of the wedge. Com-
parison between the results obtained in this work and those of Sun et al. [40],
Franci et al. [41] and Yettou et al. [39].

some others using the PFEM [34,32,5], which are here taken as reference. The
initial setup of the example is shown in Fig. 11. The material properties and
the geometry data are given in Table 2. For the solid, a Neo-Hookean large
strain constitutive law has been used. The initial meshes used for the solid and
the fluid solutions are composed by 2,437 and 3,766 linear triangular elements,
respectively.

Regarding the problem data, the time step used is ∆t = 1e-3s, the re-
laxation procedure used is the Aitken methodology with a tolerance of 1e-5
m/(s ·DoF ) and a maximum relaxation of ωmax of 0.9.

The horizontal displacement of the elastic obstacle is tracked along time
meanwhile is being hit by the fluid column.

Fig. 13 shows some representative snapshots of the numerical simulation.

Fig. 12 plots the time evolution of the horizontal displacement of the left
top corner of the solid membrane. The graph shows an overall good agreement
with the results of the literature [34,32,5].

We note that all the numerical results are almost coincident in the first 0.5s
of simulation. After this time period, some discrepancy appears. Nevertheless,
this can be considered as unavoidable due to the high unsteadiness exhibited
by the fluid flow in this test.

Globally, the good results of this validation test confirm the suitability of
the proposed method for FSI problems in presence of large displacements and
deformation of both the fluid and the solid domains.
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Fig. 11: Initial setup of the dam break against a flexible wall.

Parameter Value
Solid Young’s modulus (E) 1.0 MPa

Solid Poisson’s ratio (ν) 0.0
Solid Density (ρs) 2500 kg/m3

Solid Tensile strength (ft) 8.0 kPa
Solid Fracture energy (Gf ) 0.001 J/m2

Fluid Viscosity (µ) 0.001 Pa · s
Fluid Density (ρf ) 1000 kg/m3

L 0.146 m
H 0.080 m
W 0.012 m

Gravity 9.81 m/s2

Table 2: Problem data for the dam break against a flexible wall.

Fig. 12: Evolution of the horizontal displacement of the tip of the wall along
time.
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(a) t = 0.1s (b) t = 0.2s

(c) t = 0.3s (d) t = 0.4s

(e) t = 0.5s (f) t = 1.0s

Fig. 13: Time lapse of the water impacting over a flexible wall.

5.3 Dam break against a fracturing wall

Here, the same test studied in Section 5.2 is analyzed changing the material
properties of the solid in order to allow the breakage of the solid wall. The
material properties are provided in Table 3. The solid membrane is much stiffer
than the previous one and more similar to a concrete structure. An initial
layer of discrete elements has been placed at the contour of the solid body to
prevent the indentation between the detached wall and the ground/walls of
the geometry. In this case, a lower time step was used (∆t = 1e-4s) to describe
properly the violent fluid-solid and solid-solid interactions.

As shown in Fig. 14, the impact of the water on the wall induces a crack at
its base. Once fully detached, the solid structure is dragged by the fluid flow
and impacts against the containment walls.

Although only qualitatively, this example shows the potential of the pro-
posed method to reproduce fracturing and breaking solids in the framework
of FSI problems.
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Parameter Value
Solid Young’s modulus (E) 30 GPa

Solid Poisson’s ratio (ν) 0.0
Solid Density (ρs) 2400 kg/m3

Yield stress (ft) 0.5e5 Pa
Fracture energy (Gf ) 10 J/m2

Fluid Viscosity (µ) 0.001 Pa · s
Fluid Density (ρf ) 1000 kg/m3

L 0.079 m
H 0.14 m
A 0.1 m
s 0.005 m

Table 3: Problem data for the dam break against a fracturing wall.

(a) t = 0.1s (b) t = 0.2s

(c) t = 0.3s (d) t = 0.4s

(e) t = 0.5s (f) t = 0.85s

Fig. 14: Time evolution of the water impacting over a fracturing wall.
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Parameter Value
Solid Young’s modulus (E) 35 GPa

Solid Poisson’s ratio (ν) 0.2
Solid Density (ρs) 2400 kg/m3

Yield stress (ft) 0.5e6 Pa
Fracture energy (Gf ) 100 J/m2

Fluid Viscosity (µ) 100 Pa · s
Fluid Density (ρf ) 2400 kg/m3

Table 4: Problem data for the 3D slab collapse example.

5.4 3D slab collapse due to fluid weight

The present example consists of simulating the failure of a slab with a central
notch due to the weight of a fluid flow that accumulates on top of it. The inlet
used for the fluid is inclined 45 degrees and has been positioned in the middle
of the slab section (in z−y plane) in order to recreate a full three-dimensional
problem. The inlet lower edge is located at 0.86 m above the slab upper level.
The solid slab has an initial imperfection -an artificial notch with 0.1 m height-
that will propitiate the onset of the crack at the central part of the structure.
The slab is fixed in the upper axis that are aligned with the initial notch.

The geometry of the problem is depicted in Fig. 15. The material properties
used for the solid and the fluid domains are given in Table. 4. The yield surface
used in the solid part is Rankine. The fluid is assumed to be Newtonian but
very viscous and dense. The time step used ranges between ∆t = 10−3-10−4s
depending on the stage of the calculation. The Aitken velocity tolerance is
10−5 m/(s ·DoF ).

Fig. 16 shows the time evolution of the collapse of the concrete slab. As can
be seen, the fluid initially fills the containment of the top of the concrete slab
until the maximum strength capacity of the solid is reached (around t ≈ 1.9 s).
Then, the crack is generated at the central notch (t ≈ 2 s). Once the fracture
has propagated upwards the thickness of the solid slab, the two kinematically
independent bodies can rotate around its z axis aligned edges allowing the
fluid to flow downwards due to gravity. The final number of finite elements
used for the fluid part is 52,738 linear tetrahedra.

5.5 Failure of a concrete wall due to a tsunami force

The following numerical example attempts to reproduce the failure of a con-
crete structure subjected to a tsunami impulse loading. This problem was
inspired by the experimental approach conducted by Arikawa et al. [66]. The
geometry of the wall and its material parameters (Table 5) have been obtained
from [66].

Since the length and complexity of the physical model is unfeasible in terms
of computational cost, a reduced model has been studied. The generated model
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(a) Dimensions [m]

(b) FE mesh. Solid: 35,690 FE, Fluid: 153 FE.

Fig. 15: Initial geometry of the problem.

and the initial fe mesh can be seen in Fig. 17. In this figure one can perceive
an initial volume of fluid on the right side of the picture. This volume has
an initial velocity of 2 m/s towards the wall. Hereinafter, a constant volume
of water is added to the model by an inlet, which adds fluid with an initial
velocity of 2 m/s.

An adaptive time step has been used, ranging from ∆t = 2 ·10−3s to ∆t =
10−4s, in order to better capture the cracking of the wall whereas reducing
the computational cost. The velocity tolerance used for the Aitken relaxation
is 10−4 m/(s ·DoF ).
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(a) Initial configuration (b) t = 1.12s

(c) t = 1.82s (d) t = 2.0s

(e) t = 2.32s (f) t = 2.48s

Fig. 16: Time evolution of the collapse of the structure.

Fig. 18 shows a time lapse of the evolution of the fluid wave -and the nodal
velocities of the fluid as vectors- advancing through the channel until it hits
the concrete wall. The impact of the fluid wave (Fig. 18.d) reaches a maximum
velocity of 13 m/s. After the impact and detachment of the lower half of the
wall, the fluid flow passes through the cavity generated. The same picture
depicts the collapse mechanism of the wall, which is a punching-shear mode.
This is in agreement with the experimental data provided by Arikawa et al.
[66]. The fractured geometry of the wall obtained in the experiment is shown
in Fig. 20.
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Parameter Value
Solid Young’s modulus (E) 21 GPa

Solid Poisson’s ratio (ν) 0.2
Solid Density (ρs) 2400 kg/m3

Yield stress (ft) 3e6 Pa
Fracture energy (Gf ) 100 J/m2

Fluid Viscosity (µ) 0.001 Pa · s
Fluid Density (ρf ) 1000 kg/m3

Table 5: Problem data for the failure of a concrete wall under tsunami force.

Fig. 17: Problem geometry and FE mesh. Solid: 37359 elements, Fluid: 17275
elements.

Fig. 19 shows a more detailed perspectives of the fractured geometry of
the concrete wall. It is important to note that only the lower half of the wall is
detached and dragged by the fluid flow, which is in agreement with the results
exposed in [66].
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(a) Initial configuration (b) t = 0.44s

(c) t = 0.585s (d) t = 0.595s

(e) t = 0.70s (f) t = 0.81s

Fig. 18: Concrete wall under tsunami force. Velocity vectorial field of the fluid
domain and cracked geometry of the structure.

6 Conclusions

We have presented a coupled Lagrangian method for the simulation of FSI
problems in presence of free-surface fluids and fracturing solids.

The formulation uses the PFEM to solve the free-surface fluid dynam-
ics problem and to detect the fluid-solid interface, and a coupled FEM-DEM
method to model crack formation and propagation in structures and the con-
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(a) Final configuration, isometric

(b) Final configuration, lateral view.

Fig. 19: Concrete wall under tsunami force. Fractured geometry of the wall.

tact interaction between different solids. An iterative staggered scheme with
Aitken relaxation is used to guarantee a strong coupling of the FSI problem
and to avoid numerical inconveniences, such as the ill-conditioning of the linear
system or added-mass effects. The numerical method presented has demon-
strated to be a useful tool to estimate damages on civil constructions due to
natural hazards like floods, tsunamis, landslides, or explosions.

Several academic examples have been presented to validate the proposed
technology in the framework of FSI problems with fracture phenomena. The
numerical tests have shown that the method is able to reproduce the dynamics
of a solid object in the water, to solve accurately FSI problems with strong
fluid impacts and large solid displacements, to model crack formation due to
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Fig. 20: Concrete wall under tsunami force. Cracked geometry of the wall after
the experiment conducted in Arikawa et al. [66].

fluid hydrodynamic forces and its propagation in the structure, and to deal
with solid fragmentation and multi-body contact interaction.

A Tensors used for the FEM solution of solid mechanics problem

In this appendix, the variables and tensors introduced in Eqs. (8)-(9) are defined.
The matrices and vectors of Eq. (8) are computed as:

MKJ =

∫
Ω0

ρ0NKINIJdV0, (43)

fext,K =

∫
∂Ω0

tINIKdS0 +

∫
Ω0

ρ0bINIKdV0 (44)

fint,K =

∫
Ω0

SIJ 5SI NJKdV0 (45)

C = αRayM + βRayK0 (46)

Where N are the linear shape functions and parameters αRay = 0.5 and βRay = 0.02
are the standard Rayleigh coefficients for obtaining the damping matrix if some damping is
considered, otherwise we set these values to zero, and K0 is the initial stiffness matrix.

In Eq. 9, KT (ūk) is the tangential stiffness matrix, whose relationship with the internal
forces fint is:

KT (ūk) =
∂fint(ūk)

∂(ūk)
. (47)

In general, the tangential stiffness matrix KT (ūk) depends on the tangent constitutive
tensor CT whose numerical derivation can be found in [3]. This numerical procedure consists
in obtaining an approximation of the tangent constitutive tensor CT by using finite differ-
ences. For the jth column of the tangent constitutive tensor (depending if one uses forward
or central differences) in small strains reads:

CT,j '
σ(ε+ δεj)− σ(ε)

δεj
or CT,j '

σ(ε+ δεj)− σ(ε− δεj)

2δεj
(48)

where δεj is a zero vector except for the jth component whose value is a strain pertur-
bation δεj , σ and ε are a measure of stresses and strains, respectively.
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B FIC stabilization terms used for the PFEM solution

Here, the FIC terms used for the fluid problem stabilization and introduced in Section 3.2
are detailed. The stabilization terms of the FIC technique [9] affect the continuity equation
(Eq.(38)) only.

In Eq.(38), the FIC stabilization terms Sτ and fτ are computed as [9]

Sτ =

(
1

∆t2
Mc + L + Mb

)
(49)

fτ =
Mc

∆t2
(
np̄ + n ˙̄p∆t

)
+ fp (50)

with

Mc
IJ =

∫
Ω
τ
ρf

κf
NINJdΩ,

LIJ =

∫
Ω
τ(∇∇∇TNI)∇∇∇NJdΩ,

Mb
IJ =

∫
Γt

2τ

hn
NINJ ,

fpI =

∫
Γt

τNI

[
ρf
Dvn

Dt
−

2

hn
(2µfdn − t̂)

]
dΓ −

∫
Ω
τ∇∇∇TNIρgdΩ

(51)

where Γt is the free-surface contour and the stabilization parameter τ is defined as

τ =

(
8µf

h2
+

2ρf

δ

)−1

(52)

where h and δ are characteristic distances in space and time. Details about the derivation
of the stabilization terms can be found in [9].
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7. Oñate E. and Idelsohn S. and Del Pin F. and Aubry R., The Particle Finite Element
Method. An overview , International Journal of Computational Methods, 1, 267-307 (2004)

8. Franci A. and Cremonesi M., On the effect of standard PFEM remeshing on volume
conservation in free-surface fluid flow problems, Computational particle mechanics, 4,
331-343 (2016)
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59. I De-Pouplana and E. Oñate, A FIC-based stabilized mixed finite element method with
equal order interpolation for solid–pore fluid interaction problems. International journal
for numerical and analytical methods in geomechanics 41, 110-134 (2017)

60. B. Irons and R.C. Tuck, A version of the Aitken accelerator for computer implementa-
tion. International Journal for Numerical Methods in Engineering 1, 275-277 (1969)

61. C. Antoci and M. Gallati and S. Sibilla , Numerical simulation of fluid–structure inter-
action by SPH. Comput Struct 85, 879-890 (2007)



Title Suppressed Due to Excessive Length 35

62. B. Ren and Z. Jin and R. Gao and Y. Wang and Z. Xu , SPH-DEM Modeling of the
Hydraulic Stability of 2D Blocks on a Slope. Journal of Waterway, Port, Coastal, and
Ocean Engineering 140(6), 04014022 (2014)

63. T. Rabczuk and R. Gracieand J. Song and T. Belytschko. Immersed particle method
for fluid-structure interaction. Int J Numer Meth Eng 22, 48 (2010)

64. T. Rabczuk and T. Belytschko, A three-dimensional large deformation meshfree method
for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196,2777–99 (2007)

65. K. Han and YT. Feng and DRJ. Owen. Numerical simulations of irregular particle
transport in turbulent flows using coupled LBM-DEM. Comp Model Eng Sci 18, 87 (2007)

66. T. Arikawa and K. Shimosako and N. Ishikawa. Structural failure by impulsive force.
5th International Conference on Protection of Structures against Hazards (2012)


