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Abstract. A stabilized finite point method (FPM) for the meshless analysis of
incompressible fluid flow problems is presented. The stabilization approach is based
in the finite calculus (FIC) procedure. An enhanced fractional step procedure allowing
the semi-implicit numerical solution of incompressible fluids using the FPM is described.
Examples of application of the stabilized FPM to the solution of incompressible flow
problems are presented.

1 INTRODUCTION

Mesh free techniques have become quite popular in computational mechanics. A
family of mesh free methods is based on smooth particle hydrodynamic procedures
[1,2]. These techniques, also called free lagrangian methods, are typically used for
problems involving large motions of solids and moving free surfaces in fluids. A second
class of mesh free methods derive from generalized finite difference (GFD) techniques
[3,4]. Here the approximation around each point is typically defined in terms of Taylor
series expansions and the discrete equations are found by using point collocation.
Among a third class of mesh free techniques we find the so called diffuse element (DE)
method [5], the element free Galerking (EFG) method [6,7] and the reproducing kernel
particle (RKP) method [8,9]. These three methods use local interpolations for defining
the approximate field around a point in terms of values in adjacent points, whereas
the discretized system of equations is typically obtained by integrating the Galerkin
variational form over a suitable background grid.
The finite point method (FPM) proposed in [10–15] is a truly meshless procedure. The

approximation around each point is obtained by using standard moving least square
techniques similarly as in DE and EFG methods. The discrete system of equations
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is obtained by sampling the governing differential equations at each point as in GFD
methods.
The basis of the success of the FPM for solid and fluid mechanics applications is

the stabilization of the discrete differential equations. The stable form found by the
finite calculus procedure presented in [16–21] corrects the errors introduced by the point
collocation procedure, mainly next to the boundary segments. In addition, it introduces
the necessary stabilization for treating high convection effects and it also allows equal
order velocity-pressure interpolations in fluid flow problems [19,21].
The content of the chapter is structured as follows. In the next section the basis of the

FPM approximation is described. The stabilized governing equations for incompressible
flows derived using the finite calculus (FIC) approach are then presented. Next a three
step semi-implicit fractional solution scheme using the FPM approximation is described
in some detail. Finally, examples of the efficiency and accuracy of the stabilized FPM for
numerical solution of incompressible flow problems are presented, namely the analysis of
a driven cavity flow, the solution of a backwards facing step, the analysis of a submerged
cylinder and the aerodynamic study of a NACA airfoil.

2 INTERPOLATION IN THE FPM

Let Ωi be the interpolation domain (cloud) of a function u(x) and let sj with
j = 1, 2, · · · , n be a collection of n points with coordinates xj ∈ Ωi. The unknown
function u may be approximated within Ωi by

u(x) ∼= û(x) =
m∑
l=1

pl(x)αl = p(x)Tαααααααααααααα (1)

where αααααααααααααα = [α1, α2, · · ·αm]T and vector p(x) contains typically monomials, hereafter
termed “base interpolating functions”, in the space coordinates ensuring that the basis
is complete. For a 2D problem we can specify

p = [1, x, y]T for m = 3 (2)

and

p = [1, x, y, x2, xy, y2]T for m = 6 etc. (3)

Function u(x) can now be sampled at the n points belonging to Ωi giving

uh =




uh
1

uh
2
...
uh
n




∼=




û1
û2
...
ûn



=




pT
1

pT
2
...

pT
n



αααααααααααααα = Cαααααααααααααα (4)
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where uh
j = u(xj) are the unknown but sought for values of function u at point j,

ûj = û(xj) are the approximate values, and pj = p(xj).
In the FE approximation the number of points is chosen so that m = n. In this case

C is a square matrix. The procedure leads to the standard shape functions in the FEM
[22].
If n > m, C is no longer a square matrix and the approximation can not fit all

the uh
j values. This problem can be simply overcome by determining the û values by

minimizing the sum of the square distances of the error at each point weighted with a
function ϕ(x) as

J =
n∑

j=1
ϕ(xj)(uh

j − û(xj))
2 =

n∑
j=1

ϕ(xj)(uh
j − pT

j αααααααααααααα)
2 (5)

with respect to the αααααααααααααα parameters. Note that for ϕ(x) = 1 the standard least square
(LSQ) method is reproduced.
Function ϕ(x) is usually built in such a way that it takes a unit value in the vecinity

of the point i typically called “star node” where the function (or its derivatives) are to
be computed and vanishes outside a region Ωi surrounding the point. The region Ωi
can be used to define the number of sampling points n in the interpolation region. A
typical choice for ϕ(x) is the normalized Gaussian function and this has been chosen in
the examples shown in the paper. Of course n ≥ m is always required in the sampling
region and if equality occurs no effect of weighting is present and the interpolation is
the same as in the LSQ scheme.
Standard minimization of eq.(5) with respect to αααααααααααααα gives

αααααααααααααα = C̄−1uh , C̄−1 = A−1B (6)

A =
n∑

j=1
ϕ(xj)p(xj)pT (xj)

B = [ϕ(x1)p(x1), ϕ(x2)p(x2), ·ϕ(xn)p(xn)]

(7)

The final approximation is obtained by substituting αααααααααααααα from eq.(6) into (1) giving

û(x) = pT C̄−1uh = NTuh =
n∑

j=1
Ni

ju
h
j (8)

where the “shape functions” for the i-th star node are

Ni
j(x) =

m∑
l=1

pl(x)C̄
−1
lj = pT (x)C̄−1 (9)
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Figure 1. Fixed weighting least square procedure

It must be noted that accordingly to the least square character of the approximation

u(xj) � û(xj) �= uh
j (10)

i.e. the local values of the approximating function do not fit the nodal unknown
values. Indeed û is the true approximation for which we shall seek the satisfaction of
the differential equation and the boundary conditions and uh

j are simply the unknown
parameters sought.
The weighted least square approximation described above depends on a great extend

on the shape and the way to apply the weighting function. The simplest way is to define
a fixed function ϕ(x) for each of the Ωi interpolation domains [11,12].
Let ϕi(x) be a weighting functions satisfying (Figure 1)

ϕi(xi) = 1
ϕi(x) �= 0 x ∈ Ωi

ϕi(x) = 0 x �∈ Ωi

(11)

Then the minimization square distance becomes

Ji =
n∑

j=1
ϕi(xj)(uh

j − û(xj))2 minimum (12)

The expression of matrices A and B coincide with eq.(7) with ϕ(xj) = ϕi(xj).
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Note that according to (1), the approximate function û(x) is defined in each
interpolation domain Ωi. In fact, different interpolation domains can yield different
shape functions Ni

j . As a consequence a point belonging to two or more overlapping
interpolation domains has different values of the shape functions which means that
Ni

j �= Nk
j . The interpolation is now multivalued within Ωi and, therefore for any

useful approximation a decision must be taken limiting the choice to a single value.
Indeed, the approximate function û(x) will be typically used to provide the value of
the unknown function u(x) and its derivatives in only specific regions within each
interpolation domain. For instance by using point collocation we may limit the validity
of the interpolation to a single point xi. It is precisely in this context where we have
found this meshless method to be more useful for practical purposes [10–15].

3 STABILIZED FPM USING A FINITE CALCULUS APPROACH

Finite element solution of the incompressible Navier-Stokes equations with the
classical Galerkin method may suffer from numerical instabilities from two main sources.
The first is due to the advective-diffusive character of the equations which induces
oscillations for high values of the velocity. The second source has to do with the mixed
character of the equations which limits the choice of finite element interpolations for
the velocity and pressure fields.
Solutions of these two problems have been extensively sought in the last years.

Compatible velocity-pressure interpolations satisfying the inf-sup condition emanating
from the second problem above mentioned have been used. In addition, the advective
operator has been modified to include some “upwinding” effects [22–30]. Recent
procedures based on Galerkin Least Square [31,32], Characteristic Galerkin [33,34],
Variational Multiscale [35–37] and Residual Free Bubbles [38–40] techniques allow equal
order interpolation for velocity and pressure by introducing a Laplacian of pressure
term in the mass balance equation, while preserving the upwinding stabilization of the
momentum equations. Most of these methods lack enough stability in the presence of
sharp layers transversal to the velocity. This defficiency is usually corrected by adding
new “shock capturing” stabilization terms to the already stabilized equations [41–43].
The computation of the stabilization parameters in all these methods is based in “ad
hoc” generalizations of the parameters for the 1D linear advective-diffusive-reactive
problem [44,45].
This paper presents a different point view for deriving stabilized a finite point method

for incompressible flow problems. The starting point are the stabilized form of the
governing differential equations derived via a finite calculus (FIC) procedure. This
technique first presented in [16,17] is based on writting the different balance equations
over a domain of finite size and retaining higher order terms. These terms incorporate
the ingredients for the necessary stabilization of any transient and steady state numerical
solution already at the differential equations level. Application of the MLS interpolation
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and point collocation to the consistently modified differential equations for the fluid
flow problem leads to a stabilized system of discretized equations which overcomes the
two problems above mentioned, i.e. the advective type instability and that due to lack
of compatibility between the velocity and pressure fields.
For the sake of preciseness the basic ideas of the FIC method are given next.

3.1 Basic concept of the finite increment calculus (FIC) method

Let us consider a sourceless transient problem over a one dimensional domain AB of
length L (Figure 2). The balance of flux q over a domain of finite size belonging to L
can be written as

qA − qB = 0 (13)

where A and B are the end points of the finite size domain of length h. As usual qA
and qB represent the values of the flux q at points A and B, respectively.
For instance, in an 1D advective-diffusive problem the flux q = −cuφ+kdφ

dx , where φ is
the transported variable (i.e. the temperature in a thermal problem), u is the advective
velocity and c and k are the advective and diffusive material parameters, respectively.

33333333333
33333333333

q
A

q
B

A B

h
x

Figure 2. Equilibrium of fluxes in a finite balance domain

The flux qA can be expressed in terms of the values at point B by the following
Taylor series expansion

qA = qB − h
∂q

∂x
|B +

h2

2
d2q

dx2
|B +Oh3 (14)

Substituting (14) into (13) gives after simplification and neglecting cubic terms in h

dq

dx
− h

2
dq

dx
= 0 (15)

where all terms are evaluated at the arbitrary point B.
Eq. (15) is the finite form of the balance equation over the domain AB. The

underlined term in eq.(15) introduces the necessary stabilization for the discrete solution
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of eq.(15) using any numerical technique. Distance h is the characteristic length of the
discrete problem and its value depends on the parameters of discretization method
chosen (such as the grid size). Note that for h → 0 the standard infinitesimal form of
the balance equation

(
dq
dx = 0

)
is recovered.

Above process can be extended to derive the stabilized balance differencial equations
for any problem in mechanics as

rd −
hj

2
∂ri
∂xj

= 0 (16)

where ri is the standard form of the ith differential equation for the infinitesimal
problem, hj are the dimensions of the domain where balance of fluxes, forces, etc.
is enforced, and j = 1, 2, 3 for 3D problems. Details of the derivation of eq.(16) for
steady-state and transient advective-diffusive and fluid flow problems can be found in
[16]. Applications of the FIC approach to the Galerkin finite element solution of these
problems are reported in [16–21].
The underlined stabilization terms in eqs.(15) and (16) are a consequence of accepting

that the infinitesimal form of the balance equations is an unreachable limit within
the framework of a discrete numerical solution. Indeed eqs.(3) or (4) are not longer
valid for obtaining an analytical solution following traditional integration methods from
infinitesimal calculus theory. The meaning of the new stabilized equations makes only
sense in the context of a discrete numerical method yielding approximate values of the
solution at a finite set of points within the analysis domain. Convergence to the exact
analytical value at the points will occur only for the limit case of zero grid size (except
for some simple 1D problems [16]) which also implies naturally a zero value of the
characteristic length parameters.
The FIC formulation presented below for incompressible flows can be considered an

extension of that recently developed in [21] for finite element analysis of incompressible
Navier-Stokes flows. The set of stabilized governing equations is first discretized in
time using a semi-implicit fractional step procedure and then solved in space using the
FPM. The stabilized formulation allows the use of an equal order interpolation for the
velocities and pressure variables.

3.2 FIC formulation of viscous flow equations

We consider the motion around a body of a viscous incompressible fluid.
The stabilized FIC form of the governing differential equations for the three

dimensional (3D) problem can be written as

Momentum

rmi −
1
2
hmj

∂rmi

∂xj
− 1
2
δ
∂rmi

∂t
= 0 on Ω i, j = 1, 2, 3 (17)
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Mass balance

rd +
1
2
hdj

∂rd
∂xj

= 0 on Ω j = 1, 2, 3 (18)

where

rmi =ρ

[
∂ui

∂t
+

∂

∂xj
(uiuj)

]
+

∂p

∂xi
− ∂τij

∂xj
− bi (19)

rd =
∂ui

∂xi
i = 1, 2, 3 (20)

In above ui is the velocity along the i-th global reference axis, ρ is the (constant)
density of the fluid, p is the pressure, bi are the body forces acting in the fluid and τij
are the viscous stresses related to the viscosity µ by the standard expression

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− δij

2
3
∂uk

∂xk

)
(21)

The boundary conditions for the stabilized problem are written as

njτij + ti +
1
2
hmjnjrmi = 0 on Γt (22)

uj − u
p
j = 0 on Γu (23)

where nj are the components of the unit normal vector to the boundary and ti and u
p
j

are prescribed tractions and displacements on the boundaries Γt and Γu, respectively.
The underlined terms in eqs.(17)–(22) introduce the necessary stabilization for the

approximated numerical solution.
The characteristic length distances hmj and hdj represent the dimensions of the finite

domain where balance of momentum and mass. The signs before the stabilization terms
in eqs.(17), (19) and (22) ensure a positive value of the characteristic length distances.
The parameter δ in eq.(17) has dimensions of time. Details of the derivation of eqs.
(17)–(23) can be found in [16,19,21].
Eqs.(17–23) are the starting point for deriving a variety of stabilized numerical

methods for solving the incompressible Navier-Stokes equations. It can be shown that a
number of standard stabilized finite element methods allowing equal order interpolations
for the velocity and pressure fields can be recovered from the modified form of the
momentum and mass balance equations given above [16,19].
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Alternative form of the mass balance equation

Taking the first derivative of eq.(21) gives (assuming the viscosity µ to be constant)

∂τij
∂xj

= µ∆ui +
µ

3
∂rd
∂xi

(24)

where ∆ = ∂2

∂xi∂xi
is the Laplacian operator. Substituting eq.(24) into (17) gives after

small algebra

∂rd
∂xi

=
(
µ

3
+

ρuihmi

2

)−1 [
r̄mi −

hmk

2
∂rmi

∂xk
+

ρuihmi

2
∂rd
∂xi

− δ

2
∂rmi

∂t

]
no sum in i (25)

where
r̄mi = rmi +

µ

3
∂rd
∂xi

(26)

and rmi is given by eq.(19).
Inserting eq.(25) into eq.(18) gives

rd + ci

(
r̄mi −

hmk

2
∂rmi

∂xk
+

ρuihmi

2
∂rd
∂xi

− δ

2
∂rmi

∂t

)
= 0 no sum in i (27)

with

ci =
(
2µ
3hdi

+
ρuihmi

hdi

)−1
no sum in i (28)

Eq.(27) can be rewritten as

rd − gii
∂2p

∂xi∂xi
+ rp = 0 (29)

where

rp = cir̄mi − gij
∂

∂xj

(
rmi − δij

∂p

∂xi

)
+

ρuihmi

2
∂rd
∂xi

− δ

2
∂rmi

∂t
no sum in i (30)

and

gij =
(

4µ
3hdi

hmj

+
2ρuihmi

hdi
hmj

)−1
no sum in i (31)

Note that for hmi = hmj = h where h is a typical grid dimension (i.e. the average
size of a cloud of points), the value of gii is simply

gii =
( 4µ
3h2

+
2ρui

h

)−1
(32)
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The stabilization parameter gii has now the form traditionally used in the Galerkin
Least Square formulation for the viscous (Stokes) limit (ui = 0) and the inviscid (Euler)
limit (µ = 0) and deduced from ad-hoc extensions of the 1D advective-diffusive problem
[25–46]. Note, however, that the general form of the stabilization parameter gii is
deduced here from the general FIC formulation without further extrinsic assumptions.
Indeed, the precise computation of the characteristic length values is crucial for

the practical applications of above stabilized expressions. This topic is dealt with on
Section 7.

4 FRACTIONAL STEP APPROACH

The momentum equations (17) are first discretized in time using the following scheme

un+1
i = un

i − ∆t

ρ

[
ρ
∂(uiuj)n

∂xj
+

∂pn+1

∂xi
− ∂τnij

∂xj
− bni − hn

mk

2
∂rnmi

∂xk
− δn

2
∂rnmi

∂t

]
(33)

Eq.(33) is now split into the two following equations

u∗i =un
i − ∆t

ρ

[
ρ
∂(uiuj)
∂xj

− ∂τij
∂xj

− bi −
hmk

2
∂rmi

∂xk
− δ

2
∂rmi

∂t

]n
(34)

un+1
i =u∗i −

∆t

ρ

∂pn+1

∂xi
(35)

Note that the sum of eqs.(34) and (35) gives the original form of eq.(33).
Substituting eq.(35) into the stabilized mass balance equation (29) gives the standard

Laplacian of pressure form
(
∆t

ρ
+ gnii

)
∂2pn+1

∂xi∂xi
= r∗d + rnp (36a)

where

r∗d =
∂u∗i
∂xi

(36b)

Standard fractional step procedures neglect the contribution from the terms involving
gii in eq. (36a). These terms have an additional stabilization effect which improves the
numerical solution when the values of ∆t are small. Note that for ∆t → 0 the term
gii introduces the necessary stability in the laplacian equation, thereby overcoming the
Babuska-Brezzi conditions and allowing for equal order interpolation of the velocities
and pressure variables [22].
A typical solution in time includes the following steps.
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Step 1. Solve explicitely for the so called fractional velocities u∗i using eq. (33).

Step 2. Solve for the pressure field pn+1 solving the laplacian equation (36a).

Step 3. Compute the velocity field un+1
i for each mesh node using eq.(35)

5 NUMERICAL SOLUTION USING THE FPM

The implementation of the three step scheme described in previous section in the
context of the FPM is straight forward. Eq. (8) is used to define the approximation of
velocities and pressures within each cloud of point Ωi as

ûm =
n∑

j=1
Ni

ju
h
mj
; m = 1, 2, 3 for 3D (39)

p̂ =
n∑

j=1
Ni

jp
h
j (40)

where (̂·) denotes approximate values and the shape functions Ni
j were defined in eq.(9).

Direct substitution of eqs.(39) and (40) into the stabilized governing equations
described in previous section gives the following numerical scheme for computation
of the point parameters uh

mj
and phj .

Step 1. Computation of fractional velocities

Compute explicitely the fractional velocities at each point k in the domain as

(û∗i )k = (f̂n
i )k; k = 1, . . . , N ; i = 1, 2, 3 (41)

in which N is the total number of points in the domain and

(f̂n
i )k =

{
ûn
i − ∆t

ρ

[
ρ
∂(ûiûj)
∂xj

− ∂τ̂ij
∂xj

− bi −
hmj

2
∂r̂mi

∂xj
− δ

2
∂r̂mi

∂t

]n}
k

(42)

where (̂·) denotes approximate values.
Once the values of û∗i have been obtained, the parameters uh

mj
can be computed at

each point by solving the following system of equations

(û∗m)k =
n∑

j=1
Nk

j u
h
mj

, k = 1, . . . , N (43)

Eq.(43) is a system of N equations with N unknowns from where the parameters
uh
mj

, j = 1, . . . , N can be found. These parameters are needed to compute the
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derivatives of the velocity field in steps 2 and 3. Indeed the solution of eq.(43) must be
repeated for every component of the velocity vector (i.e. m = 1, 2, 3 for 3D problems).

Step 2. Computation of pressures at time n+ 1

Compute the pressure field at time n+ 1 by solving eq.(36a). Substituting eqs. (40)
and (43) into (36a) and sampling this equation at each point in the domain gives

Kn(ph)n+1 = r̂∗d + r̂np (44)

where (for 2D problems)

Kn
kj = (

∆t

ρ
+ ĝnii)


∂2Nk

j

∂x21
+

∂2Nk
j

∂x22


 (45)

r̂∗dk
=ĉiˆ̄rmi − ĝij

∂

∂xj

(
r̂mi − δij

∂p̂

∂xi

)
+

ρûihmi

2
∂r̂d
∂xi

− δ

2
∂r̂mi

∂t
no sum in i

r̂∗pk
=
[
∂û∗i
∂xi

] (46)

Eq.(46) provides a system of equations from which the pressure parameters (phk)
n+1

can be found at each point k.

Step 3. Computation of velocities at time n+ 1

The final step is the explicit computation of the velocities in each point at time n+ 1.
Substituting the known values of ûi and p̂n+1 at each point into eq.(35) gives

(ûn+1
i ) =

[
û∗i −

∆t

ρ

∂p̂n+1

∂xi

]
k
; k = 1, . . . , N (47)

Note that the derivatives of the approximate functions ûi and p̂ are computed by
direct differentiation of the expressions (39) and (40), i.e.

∂ûm

∂xl
=

n∑
j=1

∂Ni
j

∂xl
uh
mj

∂p̂

∂xl
=

n∑
j=1

∂Ni
j

∂xl
phj

(48)

The steps 1–3 described above are repeated for every new time increment.
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A local time step size for each point in the domain can be used to speed up the search
of the steady state solution. The local time step is defined as ∆ti =

di
2|ui| , where di is

the minimum distance from a star point to any of its neighbourghs in the cloud. Note
however that the full transient solution requires invariably the use of a global time step
∆tg equal for all nodes and defined as ∆tg = min(∆ti), i = 1, . . . , N .

6 BOUNDARY CONDITIONS

Prescribed tractions on the Neumann boundary Γt, (eq.(22)) or prescribed velocities
at the Dirichlet boundary Γu (eq.(23)) may be imposed.
During the fractional step solution, the first explicit step is solved without imposing

any boundary conditions. During the second step, two kinds of boundary conditions
may be imposed: on boundaries where the normal velocity is imposed to the value u

p
n,

eq.(23) reads using (35)

up
n = u∗i ni −

∆t

ρ

∂pn+1

∂xi
ni (49)

Eq.(49) is a Neumann boundary condition for the pressure equation (36a). This
equation is imposed in the FPM during the pressure computation (step 2) as a new
equation for all points k belonging to the part of the boundary Γu where the normal
velocity is prescribed.
On outflow boundaries with njσij = 0 the pressure is imposed to a constant value,

i.e. p = 0. In the FPM, essential boundary conditions such as p = 0 are imposed using
the definition of the function itself via eq.(40) as

p̂i =
n∑

j=1
Ni

jp
h
j = 0 (50)

Equation (50) is sampled at the points located at a boundary where p = 0.
During the third step the velocities are computed at all points using eq.(47) at all

points within the analysis domain. In points where a velocity is imposed as an essential
boundary condition, the imposed velocity value is asigned directly to the point. Next,
the nodal velocity parameters uh

mj
are computed by solving the same system of equations

described by eq.(43). For points over Neumann boundaries, in particular on boundaries
where the tractions are prescribed to zero, the discretized form of eq.(22), i.e.

njτ̂ij +
1
2
hmjnjr̂mi = 0 (51)

is used for computing the velocities at the boundary points.
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7 COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial issues in
stabilized methods. Most of existing methods use expressions which are direct extensions
of the values obtained for the simplest 1D case. It is also usual to accept the so called
“streamline upwind” assumption. It can be shown that this is equivalent to admit that
vector hm has the direction of the velocity field [16,19]. This unnecessary restriction
leads to instabilities when sharp layers transversal to the velocity direction are present.
This additional defficiency is usually corrected by adding a shock capturing or crosswind
stabilization term [41–43]. In the FIC approach the crosswind stabilization is naturally
introduced into the discretized equations through the general form of the characteristic
length vector.
Let us first assume for simplicity that the stabilization parameters for the mass

balance equations are the same than those for the momentum equations. This implies

hm = hd = h (52)

The problem remains now finding the value of the characteristic length vectors h.
Indeed, the components of h introduce the necessary stabilization along the streamline
and transversal directions to the flow.
Excellent results have been obtained in all examples by using the same value of the

characteristic length vector for each momentum equation defined by

h = hs
u
|u| + hc

∇∇∇∇∇∇∇∇∇∇∇∇∇∇u

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| (53)

where u = |u| and hs and hc are the “streamline” and “cross wind” length parameters
given by

hs =max(lTj u)/|u| (54)

hc =max(lTj ∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)/|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| , j = 1, 2, · · ·n (55)

where lj are the vectors linking each node in the cloud with the star node.
Note that the cross-wind terms in eq.(53) account for the effect of the gradient of the

velocity field in the stabilization parameters. This is an standard assumption in most
“shock-capturing” stabilization procedures [41–43].
Regarding the time stabilization parameter δ and in eq.(17) the value δ = ∆t has

been taken for the solution of the examples presented in the paper.
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8 NUMERICAL EXAMPLES

The following examples have been solved with the FPM presented in previous
section using a Gaussian weighting function in the WLS approximation and quadratic
interpolation (m = 6) for the both the velocities and the pressure. Typically each cloud
contains nine points (n = 9) which are chosen using a quadrant search scheme (i.e. the
star node plus the two closest points within each quadrant are selected) [11-13].

8.1 Driven cavity flow at Re = 1000

This is a classical test problem to evaluate the behaviour of any fluid dynamic
algorithm. A viscous flow is confined in a square cavity while one of its edges slides
tangentially. The boundary conditions are u = v = 0 in 3 edges and u = 1, v = 0 on the
upper edge. The problem is solved with the FPM using the distribution of 3,329 points
shown in Figure 3. Initially, except at the edge, the velocity is set to zero everywhere
including at the nodes located at the left and right top corners (ramp condition).

Figure 3. Driven cavity flow. Distribution of 3,329 points. Boundary conditions u = 0
at edges AC, CD and BD and points A and B. u = 1 and v = 0 over the
interior of line AB

Numerical results are shown in Figures 4, 5 and 6 for Re = 1000. Figures 4 and 5
show the velocity and pressure contours, respectively. The FPM results are compared
with experimental results obtained by Ghia et al. [46] showing the velocity x computed
along a vertical central cut (Figure 6). The comparison is satisfactory.
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Figure 4. Driven cavity flow. Velocity contours for Re = 1000

Figure 5. Driven cavity flow. Pressure contours for Re = 1000
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Figure 6. Driven cavity flow. Horizontal velocity distribution over the center line

8.2 Backwards facing step at Re = 389

In this example, the flow is contrained to move in a 2D domain which presents a
backwards step. The domain dimensions are presented in Figure 7. The step is one half
the width of the inflow.
At the inflow a constant velocity profile is fixed while at the outflow the pressure is

prescribed, being the velocity free. The non-slip condition is used at the walls, except
for the two inflow points, where the constant inflow velocity is imposed. No volume
forces are present.
The distribution of 8,462 points used near the step is represented on Figure 8. In the

rest of the domain a regular distribution of points is used.
Once the stationary state is reached, the solution shows horizontal velocities

represented on Figures 9 and 10 for two planes located at x = 2.55 S and x = 6.11
S from the step. The FPM results are compared with experimental results presented
on ref.[47] showing an excellent agreement.
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Figure 7. Backwards facing step. Geometry and boundary conditions

Figure 8. Backwards facing step. Distribution of 8,462 points

8.3 2D viscous flow around a cylinder

Figure 11 shows the geometry of the analysis domain and the boundary conditions.
The problem was solved for Re = 100 assuming laminar flow conditions. An arbitrary
grid of 9418 points was chosen for the analysis (Figure 12). The transient analysis was
run for 10000 time steps. The steady state solution was found after 18000 time steps.
Note that a full period in the solution requires just 321 time steps.

Figure 13 shows the velocity contour lines at four different times. Note the oscilatory
character of the solution. The time evolution of the lift force is shown in Figure 14.
The oscillation period deduced from the computation is 6.01 sec. This value compares
well with the experimental result of 5.98 sec. (� 0.5% error) reported by Roshko [48].
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Figure 9. Backwards facing step. Horizontal velocity distribution along a vertical line
at x = 2.55 S

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

Y
 d

is
ta

nc
e

Velocity

Present work
Experiment

Figure 10. Backwards facing step. Horizontal velocity along a vertical line at
x = 6.11 S
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Figure 11. 2D flow around a cylinder. Analysis domain and boundary conditions.
Re = 100. Boundary tractions (ti) are assumed to be zero at the exit
boundary

Figure 12. Grid of 9418 points used for analysis of the 2D flow around a cylinder
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Figure 13. 2D flow around a cylinder (Re = 100). Velocity streamlines at different
times
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Figure 14. 2D flow around a cylinder. Time evolution of lift force

8.4 2D viscous flow around a Naca airfoil

The viscous flow around a NACA 0012 airfoil for an angle of attack of zero degrees
and Re = 10000 was analyzed. Laminar flow conditions were again assumed.
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Figure 15 shows the geometry of the domain and the boundary conditions. The grid
of 14249 points chosen is shown on Figure 16. A finer layer of 972 points was used
around the airfoil to capture viscous effects as shown in the figure.

u=1
v=0

u =0n

p=0
u=v=0

u =0n

Figure 15. 2D flow around a NACA airfoil. α = 0◦, Re = 10000. Analysis domain
and boundary conditions

Figure 16. Distribution of 14249 points for analysis of a NACA airfoil. Detail of
boundary layer of 972 point to capture viscous effects
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Figure 17 shows some numerical results of the velocity streamlines for the steady state
situation. Note the well developed wake at the back of the airfoil. A close up of the
streamlines next to the airfoil showing the boundary layer developed is also presented.

a)

b)

Figure 17. 2D analysis of a NACA airfoil. Velocity streamlines at steady state for
α = 0◦ and Re = 10000
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9 FINAL CONCLUSSIONS

The stabilized equations for a viscous incompressible fluid using the finite calculus
procedure are the basis for deriving a stabilized finite point method for the meshless
solution of incompressible flows. The three step semi-implicit fractional scheme provides
a simple and accurate procedure for both transient and steady state solutions using
equal order interpolation for the velocities and the pressure. The stabilized FPM is a
promising technique for the practical meshless solution of industrial flow problems.
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