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Abstract. The development of a new Reynolds stress model suitable for computations of 

separated flows is described. It is based on the recently published version of SSG/LRR-ω 

model, which includes a correction eliminating streamline back-bending near the reattachment 

point. Modifications are proposed which reduce the turbulence kinetic energy dissipation rate 

and pressure-strain term near the separation point. The validation results using the Diverging 

channel flow test case are presented. The quality of the obtained results is assessed. 
 

 

1 INTRODUCTION 

The problem of unreliable prediction of separation zones in the framework of the Reynolds 

approach is widely known. Both linear eddy viscosity models [1] and differential Reynolds 

stress models [2] can significantly impair the characteristics of separation zones. An analysis 

of the flow fields shows that the main feature that turbulence models do not describe is high 

level of velocity fluctuations in the vicinity of the separation point in the mixing layer [3].  

The mixing layer which bounds the separation zone undergoes “secondary turbulization” 

and passes through the period of existence of ordered quasi-two-dimensional large eddies [4]. 

These vortices exist for some time, after which they collapse, turning into a set of smaller 

randomly oriented vortex structures, and generate quasi-equilibrium turbulence. Throughout 

this process, the production of kinetic energy of turbulence 
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has the same order of magnitude since it is associated with the interaction of large-scale 

structures with mean velocity field. In contrast, the turbulence kinetic energy dissipation rate 
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is small at the beginning of the process. While small-scale turbulence has not yet formed, the 

flow state with ε P  is observed which generates high levels of fluctuations in the vicinity 

of the separation point.  Only later, after the destruction of ordered vortices, the turbulent 

energy cascade reaches a quasi-equilibrium state with ~ εP .  Similar reasoning allows us to 

expect the action of the pressure-strain term to be also suppressed in the nonequilibrium 

turbulence region of such type. 

Present-day turbulence models are focused on quasi-equilibrium flows with ~ εP  

(boundary layers, mixing layers, jets, wakes), and do not correctly predict the first stage of the 

mixing layer development at the separation zone boundary, where ε P . There are known 

attempts to eliminate this defect within the framework of the stationary RANS approach [3].  

In this paper, we propose another way to solve this problem which does not involve the 

second derivatives of the velocity field. 

2 STARTING POINT FOR BUILDING A NEW MODEL 

The base turbulence model in this research is the 2020 version of SSG/LRR-ω DRSM [5]: 
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Pressure-strain term model is given by the formula 
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The following notation is introduced: 
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Additional term (LSC)F  (LSC stands for “length-scale correction”) depends in the nearest 

wall distance walld . It is responsible for correct shape of streamlines in the vicinity of 

reattachment point: 
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The SSG/LRR-ω model contains two sets of coefficients: near-wall (first) and free-

turbulent (second), with blending function 
1F  to switch between them using the formula 

1 1 2 1(1 )C C F C F= + − . 

This blending function is taken from SST model [6]: 
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Coefficient values of SSG/LRR-ω model are collected in Table 1. 
 

Table 1: Coefficient values of SSG/LRR-ω model 

Coefficient 

set 
1C  

1C  2C  3C  
3C  4C  5C  ωα  ωβ  D  

ωσ  σd  

Near-wall 1.8 0 0 0.8 0 
267

275
 

159

275
 0.5556 0.075 0.0675 0.5 0 

Free-

turbulent 

1.7 0.9 1.05 0.8 0.65 0.625 0.2 0.44 0.0828 0.22 0.856 1.712 

 

Let us consider the Periodic hill flow at Reynolds number Re 37000=  [7]. The 

computations of this test case were carried out on a mesh consisting of 512 600 307 200 =  

cells selected on a basis of mesh convergence analysis. TsAGI in-house code zFlare was used 

with 2nd order TVD scheme. The solution obtained with base model is shown in Fig. 1. 

Reattachment point coordinate was found to be / 5.58rx h = , which is 48% farther from the 

hill crest than experimental value / 3.76rx h = . 

 

Figure 1: Mean velocity field and streamlines in the computation using base SSG/LRR-ω model 
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3 DEVELOPMENT OF SEPARATION INDICATOR FUNCTION 

We propose to start from a geometric view of the separation region. We will identify it by 

the angle between the streamlines and the wall plane. If there is no separation, the flow is 

almost parallel to the wall, so the angle is small. At the separation origin, the flow moves 

away from the wall, and the angle becomes significant. 

The streamlines are determined by the mean velocity field ( , , )x y zV , but the direct use of 

V  in the indicator is undesirable: this leads to the Galilean non-invariance of the model. One 

should find a parameter that does not depend on the velocity field itself, but only on its 

gradients. Consider the expression 

 1
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where 
wall wall/ | |d d= n  is the wall-normal unit vector. By design, 

1N  is tensorially and 

Galilean invariant. Imagine a wall-parallel flow with normal vector (0,1, 0)=n . In this case, 
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If the flow, again directed along the x-axis, is perpendicular to the wall, as, for example, in the 

case of a mixing layer past a backward-facing step, then (1, 0, 0)=n  and 
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When a nonzero angle appears between the velocity vector and the wall which is less than 

π / 2 , 1N  value becomes different from 0. For example, if ( )1/ 2,1/ 2, 0=n , we will get 
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It is seen that 1N  is proportional to main velocity gradient /u y  . 

Consider 1N  field computed using SSG/LRR-ω solution of Periodic hill flow, see Fig. 2. 

This parameter clearly identifies the separation zone (
1 0N  ) and the region where flow 

approaches the hill crest in the right part of the computational domain (
1 0N  ). In addition, 

spurious region is identified above the separation (0 / 2x h  , 1.5 / 2y h  ). 

Note (see Fig. 3) that mixing layer region is reliably identified with the third invariant of 

the stress anisotropy tensor, 3 ij jk kiA a a a= . Using this fact, let us multiply 1N  by 
312A : 
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Figure 2: N1 parameter field 

 

Figure 3: The field of stress anisotropy tensor third invariant, A3 

The field of resulting parameter 
2N  is shown in Fig. 4. Indeed, we were able to identify 

the separation origin region virtually without spurious zones. It remains to ensure that the 

separation indicator tends to zero in the free turbulent region far from solid boundaries. 

To do this, let us introduce a multiplier containing walld  in denominator. One of the suitable 

expressions may be a formula based on (1): wall wall wallmin{ / (ω ), 1}I C k d= . Coefficient 

wallC  equal to 30 and 
wallI  limiting from above to 1 are introduced since in addition to free-

turbulent zones, wall wall/ (ω )C k d  decreases noticeably in separation mixing layer region. 

This behavior should be compensated for. As a result, the following expression for the 

indicator function is proposed: sep sep 2 wallmin{max{ , 0},1}I C N I= . The indicator is again 

limited to remain inside [0,1]  interval under any conditions. Coefficient sepC  is introduced for 

calibration. sepI  field with sep 1C =  is shown in Fig. 5. 
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Figure 4: N2 parameter field 

 

Figure 5: The field of Isep indicator with Csep = 1 

4 FORMULATION OF THE MODIFIED MODEL 

To reduce the dissipation rate at the separation zone origin, we multiply ε  in the ijR  

equation by ε

sep(1 )I− , where ε

sepI  is the proposed separation indicator with coefficient ε

sepC . To 

study the effect of ε

sepC  value, computations were carried out with ε

sep {1.0, 3.0, 5.0}C = . Fig. 6 

shows the response of the turbulence kinetic energy field to ε

sepC  variation. 

Qualitative transformation of k field is seen. Now, instead of a slow increase in energy 

along the mixing layer until reaching the equilibrium value at / 4x h = , a sharp energy peak at 

/ 1x h   is observed. This behavior is better consistent with the experimental data than the 

behavior of the original model. 

We will try to achieve further improvements by modifying the pressure-strain term model. 

Let us introduce the separation indicators to ij  as follows: 
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Figure 6: Turbulence kinetic energy fields. 

From top to bottom: SSG/LRR-ω-based model with ε

sep 1C = , ε

sep 3C = , ε

sep 5C =   

All terms in ij  which contain ε  are suppressed by means of ε

sep(1 )I−  multiplier 

introduced earlier. This leads to synchronous reduction of dissipation rate and slow exchange 

processes between stresses. In the rapid part of the pressure-strain term, suppression is 

introduced only in the term proportional to ijkS  . It has zeroth order in the anisotropy tensor 

and should give the greatest effect when modified. The sepI   term is different from ε

sepI  only in 

coefficient, which is now sepC . Thus, we have two degrees of freedom to adjust the separation 

zone length and stress level.  

The algorithm for joint calibration of coefficients ε

sepC  and sepC  is as follows: 

1. By varying ε

sepC , the value of 
/ 1

max xx
x h

R
=

 equal to 0.074 0.07  is achieved. 

2. By varying sepC , the reattachment point coordinate / 3.76 0.3rx h =   is achieved. 

3. If after step 2 the 
/ 1

max xx
x h

R
=

 has gone beyond the desired range, return to step 1. 

The calibration process converged to the values 
ε

sep 0.85C = , sep 1.32C =  in 3 iterations. The 

solution obtained with these coefficients is compared with the basic SSG/LRR-ω model and 

experimental data in Fig. 7. The separation zone size was obtained which differs from the 

experiment by no more than 2%, while basic model overestimated it by 48%. 
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Figure 7: Streamwise velocity (left column), transverse velocity (middle column) 

and streamwise Reynolds stresses (right column) profiles in control sections. 

Base SSG/LRR-ω model (blue), modified model (red), experiment (dots) 
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5 MODEL VALIDATION IN DIVERGING CHANNEL FLOW TEST CASE 

One of the basic tests for the modified turbulence model is subsonic separation from a 

smooth surface. The test case published in [8] is chosen. Present RANS computations are 

compared with LES data [9] and experimental data [10]. 

A subsonic flow past a smooth backward-facing step in a channel is studied at the 

Reynolds number 
in inRe ρ / μ 13600U H= = , where H is step height. In the present paper, 

quasi-incompressible flow was considered with Mach number 
inM / 0.2U c=  . Molecular 

viscosity coefficient μ  was taken to be constant. 

The computational mesh is based on the mesh from [9]. The distribution of nodes in the 

longitudinal direction was left unchanged, as well as in the transverse direction in the lower 

half of the channel. In the upper half of the channel, the grid nodes were obtained by 

reflection of the nodes from the lower half to avoid the use of wall functions. The mesh 

dimension is 768 252 193 536 =  cells. Mesh overview is shown in Fig. 8. Mesh convergence 

study indicated that the numerical error in velocity fields lies within 1%. 

 

Figure 8: Mesh overview for the Diverging channel flow test case. Each fourth node in each direction is shown 

The adiabatic no-slip boundary condition was specified at the channel walls. At the outlet, 

constant static pressure was prescribed. At the inlet, LES profiles for velocity, pressure and 

temperature fields were taken. Turbulence values were obtained in preliminary plane channel 

flow computation with fixed velocity field from LES. 

The computation using to the base model gave an overestimated length of the separation 

zone, the coordinate of the attachment point being / 4.90rx H =  while reference value is 

/ 4.28 0.07rx H =  . The overestimation is thus 15%. In fig. 9 (top and middle), mean 

velocity fields and streamlines are compared obtained in LES and with the base turbulence 

model. The oversized separation zone is evident. In Fig. 10 (top and middle), a similar 

comparison of the streamwise Reynolds stress fields is given. As in the Periodic hill flow, the 

base model does not capture a sharp stress peak in the vicinity of separation, which leads to a 

slower development of the mixing layer and a larger separation compared to LES. 

The transition to a modified turbulence model significantly changed the velocity and stress 

fields (Fig. 9 and 10, bottom). The peak value of Reynolds stress increased by 20% and 
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shifted upstream from / 4.92x H =  to / 2.96.x H =  This brought the result closer to the LES 

data, in which the maximum stresses were observed near / 1.36x H = . Note that the solution 

could be even closer to the reference data if the separation indicator triggered earlier 

upstream. The change in the stress field led to the acceleration of mixing layer development 

and significant reduction in the separation zone length. With the new model, the reattachment 

point coordinate was found to be / 3.80rx H = , which is 11% lower than the reference value. 

An underestimation of the separation length is not typical for modern turbulence models, and 

this behavior opens opportunities for better adjustment of the proposed model in the future. 

Finally, in Fig. 11 and 12 transverse profiles of two velocity components and streamwise 

Reynolds stress are plotted. As can be seen, the predictions are improved with the modified 

model. Only near / 3x H = , streamwise stresses have an overshoot due to suboptimal 

performance of the separation indicator. 

6 CONCLUSIONS 

It is shown that within steady RANS approach, it is possible to significantly improve the 

subsonic separation prediction. The proposed modification of SSG/LRR-ω model does not 

use second velocity derivatives. Two test cases involving subsonic separation from smooth 

surface demonstrated that the modified model captures the kinetic energy peak near the 

separation zone origin missed by the original version of SSG/LRR-ω. This leads to the 

reduction of separation length prediction errors down to 11%. 

 

 

 

 

Figure 9: Mean streamwise velocity fields. LES data (top), base SSG/LRR-ω model (middle), 

modified model (bottom) 
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Figure 10: Streamwise Reynolds stress fields. LES data (top), base SSG/LRR-ω model (middle), 

modified model (bottom) 

 

 
Figure 11: Streamwise (top) and transverse (bottom) velocity profiles. 

Base SSG/LRR-ω model (blue), modified model (red), LES data (dashed line) 
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Figure 12: Streamwise Reynolds stress profiles. 

SSG/LRR-ω model (blue), modified model (red), LES data (dashed line) 
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