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Abstract. High-order (HO) methods are of concerted academic and industrial interest in recent years
due to their improved accuracy and their capability to deal with complex geometries [1]. Of particular
note is the flux reconstruction method [2], which unifies several existing HO schemes into a simpler
and computationally efficient approach that has been shown to work on all element types (including
simplices) in two and three dimensions. There is considerable interest to apply HO methods to indus-
trially relevant problems. At the same time, accurate and robust turbulence modeling techniques are
essential for reliable results. As outlined in the National Aeronautics and Space Administration’s CFD
vision 2030 study, Large Eddy Simulation (LES) still remains impractical for industrial cases - therefore,
Reynolds-Averaged Navier Stokes (RANS) and hybrid RANS-LES methods hold high significance in
the near future [4].

Achieving fastest convergence to steady-state is important in the context of RANS simulations, for which
several convergence acceleration techniques are being investigated. Multigrid methods are an industry
standard in Finite Volume (FV) type schemes and are increasingly being applied to HO methods in the
form of p-multigrid [22]. They exploit the polynomial hierarchy of the solution space to represent errors
on a coarser resolution. A natural extension of this idea is hp-multigrid, where we can augument the
classical h-multigrid to the polynomial hierarchy [23].

In this paper we illustrate the application of high-order flux reconstruction methods to simulate com-
pressible, turbulent flows on body-fitted meshes. The case in point is the turbulent flow over a flat
plate [24]. Turbulence is modeled through the RANS approach using the one-equation Spalart-Allmaras
model. Grid-coarsening for the h-levels is performed by removing every other line in each direction
from the original mesh. The system is driven to a steady-state solution using hp-multigrid convergence
acceleration with local time-stepping using an explicit Runge-Kutta time-marcher. We show that the
augumented h-multigrid is highly effective with a 10X to 24X drop in convergence time.
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1 INTRODUCTION

Computational fluid dynamics (CFD) has come to be recognized as an indispensable tool in almost all
branches of industrial design. Most industrially relevant flows are in the turbulent regime [3]. The scaling
of computational cost at high Reynolds numbers makes (Direct Numerical Simulation) DNS infeasible
for the foreseeable future. Consequently, focusing on the time-averaged behavior leads to the Reynolds-
averaged Navier-Stokes (RANS) approach which is the industry-norm for turbulence modeling today [3].
RANS inherently smears out details in flow that would have been described by fluctuations at various
length-scales and even results in inaccurate flow-behavior, e.g. for massively separated flows [6]. Large-
eddy Simulation (LES) offers a compromise between DNS and RANS by resolving eddies greater than
a cut-off width, while those with lesser size are modeled. Although grid requirements are significantly
reduced compared to DNS, correct prediction of near-wall behavior using LES is still computationally
intensive (Nc ∝ Re

13
7 ). Hybrid RANS-LES methods look to further reduce computational cost through

coarser grids and increased modeling in near-wall regions. Nevertheless, there are several challenges
that need to be overcome before LES and hybrid RANS-LES methods achieve industrial robustness,
particularly their sensitivity to mesh distribution and parameter settings [5, 6, 7].

An orthogonal and complementary approach to reducing computational costs is to increase the accuracy
delivered per degree-of-freedom. The current industrial workhorses are based on second-order accurate
finite volume (FV) methods [3]. In comparison, “high-order” (HO) methods offer much higher accuracy
per degree-of-freedom. Among the family of HO methods the discontinuous Galerkin (DG) method is by
far the most dominant. More recently, Huynh [2] proposed the flux reconstruction (FR) method. A com-
bination of these HO-methods with RANS and eventually hybrid RANS-LES techniques for turbulence
modeling shows promise of making flows of higher Reynolds numbers viable.

Both steady-state and transient simulations are of importance in CFD. Transient flows can be treated as
a sequence of steady-state simulations with timesteps comparable to the timescales of interest. Thus,
developing efficient steady-state solvers is a widely researched topic. The defining characteristic of
a good steady-state solver is a small time-to-convergence, and multigrid methods are widely used to
minimize it [8, 9]. Since time-accuracy is irrelevant for steady-state simulations, cell-local time-stepping
ensures the maximum possible timestep in each cell respecting local stability limits. Traditional multigrid
methods are based on successively coarser meshes formed by agglomerating cells from finer meshes.
We henceforth refer to them as h-multigrid. In HO-methods, alternatively to mesh-coarsening, we can
represent the high-order errors on lower orders, effectively coarsening the polynomial-order p. The
resulting p-multigrid has been extensively used for the last decade for elliptic, Euler and compressible
Navier-Stokes equations [10, 11, 12, 13], including RANS. Pure h-multigrid has also been used in HO-
methods for Navier-Stokes equations [15, 16, 14]. For turbulent flows, there are several studies that
use h-multigrid and p-multigrid separately [18, 19]. To extract the most benefit out of multigrid in the
context of HO-methods, a combination of h- and p-multigrid is a lucrative option. Indeed, several studies
have explored the so-called hp-multigrid for compressible laminar flows [20, 21] and have successfully
demonstrated h- and p-independence of convergence. Recent work by Fehn et al [23] conducted a
detailed analysis of using hp-multigrid for the Poisson equation in the context of pressure-based Navier-
Stokes equations. However, to the best of the authors’ knowledge there exists no published study of
the behavior of combined hp-multigrid with RANS-modeled density-based turbulent flows, which is the
focus of this study.
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2 GOVERNING EQUATIONS

We solve the compressible unsteady Navier-Stokes equations in conservative form with a Newtonian
working fluid. The fluid viscosity is a function of temperature, and is modeled using Sutherland’s law
[25]. The modified Spalart-Allmaras (SA) turbulence model [26] is used to compute the eddy viscosity
to ensure numerical stability in the presence of negative values of the turbulence variable ϑ, especially
with coarse spatial discretization of the boundary layer edge. The governing equations are cast into the
following compact form:

∂tUUU +∂ j(FFF ivc +FFFvsc) = SSS (1)

where UUU ∈R1×N is the solution-vector, FFF ivc ∈RD×N and FFFvsc ∈RD×N are the inviscid- and viscous-
flux-vectors respectively, and SSS ∈R1×N is the source-term-vector. N is the number of solution-variables
and D is the spatial dimension. These are defined as:

UUU =


ρ

ρv1
ρv2
ρv3
ρE

 , FFF ivc =


ρv1 ρv2 ρv3

p+ρv1v1 ρv1v2 ρv1v3
ρv2v1 p+ρv2v2 ρv2v3
ρv3v1 ρv3v2 p+ρv3v3
ρv1H ρv2H ρv3H

 , (2)

FFFvsc =


0 0 0

τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

viτi1 +ω1 viτi2 +ω2 viτi3 +ω3

 , SSS =


0
0
0
0
0

 .

Einstein summation convention is used for repeated indices i. The symbols used in the equations above
are: ρ is the density, vvv = eeeivi is the velocity vector with eeei being the i-th orthonormal basis vector of
Euclidean space, E is the total energy per unit mass, i.e. E = e+ 1

2 vivi where e is the internal energy.
For a calorically perfect gas, e = RT

γ−1 where R is the gas constant and T is the temperature determined as
T = γM2 p/ρ. The total enthalpy H is defined as H = E + p

ρ
where p is the pressure, related to energy

through the ideal gas law:

p = ρ(γ−1)
(

E− 1
2

vivi

)
where γ is the specific heat ratio. τi j are the components of the viscous stress tensor τ. For compressible
Newtonian fluids:

τi j = 2µSi j , Si j =
1
2
(∂iv j +∂ jvi)−

1
3

∂kvkδi j

3



Saumitra Joshi et. al.

where µ is the dynamic viscosity which is assumed to be constant. ω j = λ∂ jT is the j-th component
of the heat flux vector where λ = γR

γ−1
µ
Pr is the molecular conductivity. Unless specified otherwise, the

laminar Prandtl number Pr = 0.72.

For the SA model, the eddy viscosity µt is calculated from the turbulence variable ϑ and the kinematic
viscosity ν as

µt =

ρϑ fv1 if ϑ > 0

0 otherwise
, fv1 =

χ3

χ3 + c3
v1

, χ = ϑ/ν , cv1 = 7.1. (3)

To ensure positivity and C1-continuity of the diffusion coefficient it is defined as

η =

µ(1+χ) if ϑ > 0

µ
(
1+χ+ 1

2 χ2
)

otherwise.
(4)

The production term G is defined as

G =

cb1 s̃ρϑ if ϑ > 0

cb1sρϑgn otherwise
, cb1 = 0.1355 , gn = 1− 1000χ2

1+χ2 . (5)

s =
∣∣εi jk∂ jvk

∣∣ is the vorticity magnitude with εi jk being the Levi-Civita symbol for permutation. s̃ is the
modified vorticity defined as

s̃ =


s+ s̄ if s̄ >−cv2s

s+
s
(
c2

v2
s+ cv3 s̄

)
(cv3−2cv2)s− s̄

otherwise
, s̄ =

ϑ fv2

κ2d2
w

(6)

fv2 = 1− χ

1+χ fv1

, cv2 = 0.7 , cv3 = 0.9 , κ = 0.41

with dw being the distance to the nearest wall. Note the difference between s̃ and s̄. The destruction term
Y is defined as

Y =


cw1 fw

ρϑ2

d2
w

if ϑ > 0

−cw1

ρϑ2

d2
w

otherwise
(7)

4



Saumitra Joshi et. al.

with the terms having the following definition:

cw1 =
cb1

κ2 +
1+ cb2

σ
(8)

fw = g

(
1+ c6

w3

g6 + c6
w3

) 1
6

, g = r+ cw2

(
r6− r

)
, r = min

(
ϑ

s̃κ2d2
w
, rmax

)

rmax = 2 , cb2 = 0.622 , cw2 = 0.3 , cw3 = 2 , σ =
2
3
.

The trip term T is set to 0 throughout this work as we are concerned with flows in the fully turbulent
regime. The term K is defined as

K =
cb2

σ
ρ∂ jϑ∂ jϑ. (9)

3 FLUX RECONSTRUCTION METHOD

The physical space Ω ∈ RD is discretized into Nc distinct cells. In each, the solution is represented
by a Lagrange polynomial of order p at (p+1)D Gauss-solution-points. This solution is cell-wise-
discontinuous. The flux-reconstruction method [2] constructs a semi-discrete form of (1) as

∂tUUU =−∇
δ ·
(

I p+1
FFF ivc

δC + I p+1
FFFvsc

δC

)
+SSSδ (10)

where I p+1
FFF ivc

δC and I p+1
FFFvsc

δC are piecewise C0-continuous inviscid and viscous fluxes respectively. These are
constructed from the discontinuous fluxes

FFF ivc
δ = FFF ivc

(
UUU δ

)
FFFvsc

δ = FFFvsc

(
UUU δ,QQQδ

)
.

(11)

to which corrections are added to ensure that they are continuous at cell-interfaces. The interface-values
are calculated using Riemann solvers borrowed from the finite-volume world as

FFF ivc
δI = RFFF ivc

(
UUU δF
− ,UUU δF

+

)
FFFvsc

δI = RFFFvsc

(
UUU δF
− ,QQQδF

− ,UUU δF
+ ,QQQδF

+

)
.

(12)

where UUU δF
− and UUU δF

+ are the discontinuous solution-values interpolated to the interface from the left and
right respectively. Likewise, QQQδF

− and QQQδF
+ are the interpolated discontinuous corrected gradients. We use

the Roe solver for the inviscid flux and the local discontinuous-Galerkin (LDG) solver for the viscous
flux. For a detailed description, the reader is referred to [28].
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4 HP-MULTIGRID
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Figure 1: Schematic depiction of one V-cycle of the hp-multigrid algorithm. Solid lines represent smoothing,
dashed lines represent restriction and prolongation. On the right is a representation of the degrees of freedom
at every level.

The semi-discrete form of (10) is accelerated to steady state using combined h- and p-multigrid Full Ap-
proximation Scheme (FAS). Figure 1 depicts one V-cycle. A recently developed Runge-Kutta-54 scheme
with optimized coefficients [29] is used as a smoother. This scheme allows us to take larger timesteps
without affecting stability, at a cost of loss in time-accuracy which is not of concern to when seeking
steady-state solutions. Restriction on the p-levels (T 0

1 in figure) is performed using an L2 projection,

and on the h-levels (A
1
2}
} in figure) using weighted averaging of fine-grid values. Conversely, prolonga-

tion of the correction on h-levels (A}
1
2}

in figure) for every coarse unified cell simply sets its value to all

the agglomerated cells that constitute it. Prolongation on p-levels is done using an L2 projection.

Since we are interested in the steady-state solution, time-accuracy is not important. We therefore can
take as large a timestep as permissible by stability limits, which can vary from cell-to-cell. For a given
cell Ci, with ∆xi being the shortest distance between two solution-points in that cell and CFL being the
appropriately selected Courant-Friedrich-Lewy number, the local time-step is

∆ti = CFL · ∆xi(
‖vvvi‖+

γpi

ρi

)
+

νi +
µt i

ρi

∆xi


. (13)

5 VERIFICATION: MANUFACTURED SOLUTIONS

We use the method of manufactured solutions to verify the correctness of the implementation. The
manufactured solution proposed in [30] is used, which mimics a realistic near-wall turbulent flow pattern.
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Figure 2: hp-convergence for MMS for all five flow-variables compared against the expected drop in error
of hp+1. The abscissa represents increasingly finer mesh-resolution. We observe that, with sufficiently finer
meshes, all orders eventually align with the expected rate of hp+1.

In particular, the correctness of the implementation for the no-slip adiabatic wall boundary condition is
verified, which is essential for accurate prediction of physical quantities of interest in aerodynamic flows,
such as lift and drag. The analysis is done for p ∈ [1,3] and a hierarchy of six grids in h. All runs are
converged to an absolute L2 residual norm of 10−8.Figure 2 shows the drop in L∞-error of all flow-
variables with increasing h and p. With sufficient refinement, the error for all flow-variables attains the
expected drop rate of hp+1, verifying the correctness of the implementation.

6 RESULTS

The case under consideration is turbulent flow over a flat-plate [31] at Reof 5,000,000 and Mach 0.2.
The plate is 2 meters long and is modeled as a no-slip adiabatic wall. The left and top boundaries are
treated as non-reflective openings with flow entering from the left. The right boundary is a pressure
outlet with a fixed temperature of 300 Kelvin. A distance of 0.1 meters before the plate is left to avoid
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Table 1: Schematic diagram of the simulation domain and boundary-conditions for turbulent flow over a
flat-plate. On the right is the hierarchy of h-meshes used in hp-multigrid for the turbulent flat-plate case. The
top-most mesh in is the original mesh. Each subsequent mesh in the hierarchy is created by removing every
other mesh-line in each direction, reducing the number of cells by a factor of 4 each time. The number of
cells in the original mesh is 768. The x+2 of the first near-wall cell for the original mesh is 4.

A BE

CD

Boundary Length [m] Condition Details

AB 2 NSAW –

BC 0.5 POUT T = 300K
CD 2.1 CHAR Re = 5e6DE 0.5

EA 0.1 SYMM –

influence of the inlet and is modeled as a reflective wall. A schematic is shown in Table 1 along with the
meshes.

We run simulations from P2 to P5 using both p-multigrid and hp-multigrid for acceleration to steady-
state. The variables are initialized to constant freestream values. The CFL for all runs lies between 0.5
and 1, and a geometric sweep-pattern is used on the V-cycles. Simulations are run until a drop of 5 orders
of magnitude in residual-norm. Several physical quantities of interest are monitored for all runs. These
are:

• Skin-friction coefficient C f along the wall,

• Time-history of C f at a distance of 0.97008 m from the leading-edge (henceforth Position-X),

• Time-history of drag-coefficient Cd along the entire plate,

• Profiles of wall-normalized x-velocity v+1 in the x2 direction at Position-X and at a distance of
1.90334 m from the leading-edge (henceforth Position-Y), and

• Profiles of turbulence variable ϑ in the x2 direction at Position-X.

We observe in Figure 3 that hp-multigrid outperforms p-multigrid at the damping out of low frequency
errors, showing a significant reduction of the number of V-cycles by a factor of 10 to 24. Note that the
apparent improvement in convergence of p-multigrid from P2 to P5 is because as we increase the P5
there are a greater number of sweeps performed on the coarser grid. C f and Cd converge in less than
15000 V-cycles for all polynomial orders. For P4 and P5 the error in drag is less than 1 count, and the
error in C f is less than 1%. The spatial distribution of different quantities of interest also agrees well
with the expected values from reference data.
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Figure 3: p-multigrid versus hp-multigrid. Comparison of residual evolution (i), wall-normal variation of
ϑ at Position-X (ii), C f along plate (iii), wall-normal variation of v2 at Position-X and Position-Y (iv), with
reference data (solid lines). Comparison evolution of Cd (v) and of C f at Position-X (vi). We observe a clear
reduction in the number of V-cycles necessary for convergence in hp-multigrid as compared to p-multigrid,
in this case by a factor of 10 to 24. At the same time, the results agree well with reference data.

7 OUTLOOK

In this study we have demonstrated the superiority of hp-multigrid over p-multigrid for acceleration to
steady-state of RANS-modeled turbulent flow over a flatplate. Our future work focuses on extending hp-
multigrid to steady-state RANS flow scenarios in 2D and 3D with the overarching objective of applying
the technique to pseudo-steady-state convergence for transient flows using dual-timestepping.
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