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Abstract. We discuss the various applications of the surface elasticity to determination of 

effective properties of materials and some related phenomena as surface wave propagation. In 

the frame of surface elasticity in addition to the constitutive relations in the bulk we 

independently introduce constitutive relations at the surface. Nowadays the most popular 

models of surface elasticity relates to the models by Gurtin and Murdoch and by Steigmann 

and Ogden. First we discuss some useful surface elasticity models. The corresponding 

boundary dynamic boundary conditions are derived at the smooth parts of the boundary as 

well as at edges and corner points. Let us underline that these conditions include also dynamic 

terms. As a result, we have here a dynamic generalization of the Laplace-Young equation 

known from the theory of capillarity. Second, we discuss the influence of the surface stresses 
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at the effective stiffness parameters of layered plates and shallow shells. For small 

deformations we derived the exact formulae for modified tangent and bending stiffness 

parameters of the plates and shells. The influence of residual surface stresses is also 

discussed. Unlike to previous case where surface stresses are slightly changing the material 

properties, there is another example of essential influence of surface properties. This example 

relates to the propagation of anti-plane surface waves. We discuss some peculiarities of the 

wave propagation.  
 

 

1 INTRODUCTION 

Nowadays grows the interest to modeling of material behavior at small scales based on 

advances in nanotechnologies. It is well-established that the material behavior at small scales 

is different from one observed at the macro-scale. In particular, various size-effects can be 

observed at the nanoscale, which relate to high surface-to-volume ration in comparison with a 

characteristic size [1]. In order to capture these phenomena various enhancements of 

continuum models were proposed including the surface elasticity. The model of surface 

elasticity is based on introduction of surface energy and surface stresses independently on the 

constitutive equations in the bulk. Nowadays the most popular models of surface elasticity 

were proposed by Gurtin and Murdoch [2, 3] and by Steigmann and Ogden [4, 5]. Some other 

models are also known in the literature, which can describe surface/interface related 

phenomena, see, e.g., [1, 6-8] and the reference therein. From the physical point of view the 

surface elasticity describes coupled deformations of an elastic solid with perfectly attached to 

its surface or its part an elastic membrane or shells. So the resultant stresses action in this 

surface structures can be treated as surface stresses.  

 

2 SURFACE ELASTICITY 

As we have mentioned in Introduction within the surface elasticity we introduce both strain 

energy W in the bulk and the surface strain energy U. In the case of infinitesimal deformations 

of isotropic solids the simplest model of the surface elasticity is the linear Gurtin-Murdoch 

model based on the constitutive equation [8] 

U=μse:e +½λstr2 e, (1) 

where e is the surface strain tensor and μs and λs are surface Lamé moduli. Eq. (1) is a surface 

analogue of the Hooke’s law in the bulk. 

2.1 Effective properties 

A typical dependence of a material property P at the nanoscale can be presented as in Fig. 1. 

Here s stands for a characteristic specimen size and Po denotes the value of P at the macro 

scale. In Fig. 1 one can see the so-called positive size-effect, i.e. the increase of P at s tends to 

0. In order to describe this size-effect the scaling law was proposed, see [5], where it was 

illustrated in more details. The provided analysis of effective properties of plates and shells 

considering surface stresses shown that stiffness parameters follow exactly to this scaling law, 
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see [9, 10]. For example, the ratio of an effective bending stiffness to its classic counterpart 

coincides with the graph given in Fig. 1.  

 

 
 

Figure 1: Positive size-effect: dependence of a material property P on the length parameter s. 

The provided analysis of behavior of thin-walled structures within the Gurtin-Murdoch 

surface elasticity was generalized for surface viscoelasticity [11] as well as for the Steigmann-

Ogden model [12]. In the last case the influence of surface elastic properties on the effective 

bending stiffness is more pronounced.  

2.2 Smoothness of solutions and stress singularities 

The presence of surface energy and surface stresses may significantly change the 

behaviour of solutions of relative boundary-value problems. The analysis of weak solutions 

within the linear Gurtin-Murdoch model was provided in [13, 14], whereas the similar 

analysis for the Steigmann-Ogden surface elasticity was given in [15]. Let us recall that by 

weak solution we mean a displacement field u which satisfy the virtual work principle for 

all admissible functions  

𝛿𝐸 ≡ 𝐵(𝑢, 𝑣) = 𝐹(𝑣), (2) 

where E=∭ 𝑊𝑑𝑉
𝑉

 is an energy functional, 𝛿𝐸 is its first variation, which can be 

represented as a bilinear form  B(u,v), v=δu, and F(v) is a linear functional describing a 

work of external loads.  

Let us recall that a weak solution in the classic elasticity has the following properties [16] 

𝑢 ∈ 𝑊1,2
(𝑉)  , (3) 

where 𝑊𝑚,2(𝑉)  and 𝐿𝑝(𝑉) are Sobolev’s and Lebesgue functional spaces, Here we assumed 

that the body forces and surface traction have the following properties 𝐟 ∈ 𝑳6/5(V), 𝐭 ∈
𝑳4/3(S), respectively. Within the Gurtin-Murdoch surface elasticity we get that  
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𝑢 ∈ 𝑊1,2
(𝑉) ∩ 𝑊1,2

(𝑆)     S=𝜕𝑉. (3) 

Considering eigen-oscillations of solids with surface stresses one can conclude that if the 

surface energy is positive we have always positive size-effect, i.e. stiffening [14]. 

For the Steigmann-Ogden model the weak solutions are even more smooth on the surface 

[15]. In particular, the normal component of displacements belongs to 𝑊1,2(𝑉) ∩  𝑊2,2(𝑆). 

Moreover, for n-th-order surface elasticity a weak solution belongs to 𝑊1,2(𝑉) ∩  𝑊𝑛,2(𝑆), 

see [17]. So for a smooth surface we have an essential improvement of the smoothness 

properties.   

Another interesting discussion of the influence of surface stresses on a stress singularity 

near geometrical singularities such as a crack tip. In the literature various singularities (square 

root, logarithmic) or even an absence of any singularity were stated, see e.g. [18]. In [8] this 

problem was discussed in more details, where it was shown that the singularity level depend 

also on type of loads, i.e. depends on some symmetry properties.  

3 ANTI-PLANE SURFACE WAVES 

In Section 2 we briefly recall some modifications of properties of solutions as an effective 

properties and behavior of solutions of corresponding boundary-value problems. In addition 

to these phenomena we underline that the presence of surface energy and surfaces stresses 

may also result in new phenomena which are absent in the case of media without surface 

stresses. Among these phenomena let us mention here anti-plane surface waves. Surface 

waves are widely used in engineering, for example, for nondestructive evaluation of surface 

defects.  

3.1 Waves within the linear Gurtin-Murdoch surface elasticity 

The detailed analysis of the anti-plane propagation in media with surface stresses and in 

the case of perfect and imperfect interfaces was provided in [19].  It was underline the 

similarity of these waves with classic Love waves. Here a crucial point is the introduction in 

addition to (1) a surface kinetic energy given by 

K= ½m �̇�, (4) 

where m is a surface mass density and the overdot stands for the derivative with respect to 

time. The similarity with Love waves can be also confirmed by discussion of transition 

conditions for so-called stiff interfaces, see [8, 20]. The analysis of anti-plane waves was 

extended to the transverse waves on a cylindrical surface [20]. For a cylindrical surface this 

type of waves exists even without surface stresses, nevertheless their presence significantly 

changes a picture of wave propagation especially for short-length waves. More complex 

problem was considered in [21], where a roughness was taken into account. Let us note that in 

this case we have different characteristic length-scale parameters which essentially influence 

wave packet propagation along the surface.  

3.2 Comparison with the Toupin-Mindlin strain gradient elasticity 

Let us note that in the literature there is another model called strain gradient elasticity 

which can also address surface energy phenomena. The comparison of the Toupin-Mindlin 
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strain gradient elasticity model with the Gurtin-Murdoch surface elasticity was provided in 

[22]. It was shown that the both models can capture the same phenomena of anti-plane surface 

waves. Nevertheless the difference in decay rate in depth direction is observed.  

3.3 Comparison with lattice dynamics 

Considering anti-plane surface waves at the nanoscale it seems quite natural to compare 

this behavior with lattice dynamics and find the continuum limit which can describe the 

surface elasticity. Such analysis was performed in [23] where for a square lattice an exact 

solution was obtained. In [23] we proposed also a scaling law similar to [5] which results in 

transition from lattice dynamics into the Gurtin-Murdoch surface elasticity. Using this 

discrete-continuum correspondence in [24] the analysis of wave refraction, transmission and 

leakage for a surface with linear defect was given.  

 

The analysis of anti-plane surface waves was also performed for some generalizations of 

surface elasticity as n-th-order surface elasticity [17, 25] or strongly anisotropic surface 

elasticity [26].  

4 CONCLUSIONS 

We have discussed of surface elasticity phenomena and their influence on the material 

behavior. The presence of surface energy and surface stresses is at least two-fold. First, 

surface elasticity change the effective (apparent) material properties as stiffness parameters. 

In particular, within the surface elasticity one can capture size-effects observed at the small 

scales. Considering the related boundary-value problems one can also see the changes of 

properties of their solutions. For example, the stress singularity may depend on the presence 

of the surface stresses or the smoothness of solutions in the vicinity of the surface where the 

surface stresses acts. Moreover, surface energy may also result in new phenomena such as 

anti-plane surface waves.  

The work was carried out with the financial support of the Ministry of Science and Higher 

Education of the Russian Federation (task 0729-2020-0054). 
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