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Abstract: The data-based discovery of effective, coarse-grained (CG) models of high-dimen-
sional dynamical systems presents a unique challenge in computational physics and particu-
larly in the context of multiscale problems. The present paper offers a probabilistic perspective
that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as
well as their dynamics. We make use of the expressive ability of deep neural networks in or-
der to represent the right-hand side of the CG evolution law. Furthermore, we demonstrate
how domain knowledge that is very often available in the form of physical constraints (e.g.
conservation laws) can be incorporated with the novel concept of virtual observables. Such
constraints, apart from leading to physically realistic predictions, can significantly reduce the
requisite amount of training data which enables reducing the amount of required, computation-
ally expensive multiscale simulations (Small Data regime). The proposed state-space model is
trained using probabilistic inference tools and, in contrast to several other techniques, does not
require the prescription of a fine-to-coarse (restriction) projection nor time-derivatives of the
state variables. The formulation adopted is capable of quantifying the predictive uncertainty as
well as of reconstructing the evolution of the full, fine-scale system which allows to select the
quantities of interest a posteriori. We demonstrate the efficacy of the proposed framework in a
high-dimensional system of moving particles.

1 INTRODUCTION

The solution of high-dimensional, multiscale system is challenging as the required compu-
tational resources usually grow exponentially with the dimension of the state-space as well as
with the smallest time-scale that needs to be resolved. As such systems are ubigitious in ap-
plied physics and engineering, reduced/coarse-grained descriptions and models are necessary
that are predictive of various observables or the high-dimensional system, but whose discretiza-
tion time-scales can be much larger than the inherent ones [1].

We adopt a data-based perspective [2, 3] that relies on data generated by simulations of a
fine-grained (FG) system in order to learn a coarse-grained (CG) model. We nevertheless note
that such coarse-graining tasks exhibit fundamental differences from large-scale machine learn-
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ing tasks [4, 5] as the data involved is usually small due to the expensive data acquisition and
as information about the underlying physical structure of the problem is available. When this
domain knowledge is incorporated into the CG model it can improve its predictive ability [6} 7]].

In contrast to other frameworks for reduced-order modeling (e.g. SINDy [8]) where the dy-
namics of the CG model is learned based on a large vocabulary of feature functions, we employ
a deep neural network for the CG dynamics in order to gain great flexibility and be able to not
restrict ourselves to an a priori chosen set of feature functions. This approach is similar to the
ideas of Neural ODEs [9] and Neural SDEs [[10] which also use neural networks to represent
the dynamics. Another possibility would be the use of Gaussian Processes [[11] which would
allow non-parametric, probabilistic modeling.

In this paper, we combine a generative, probabilistic machine learning framework [12] with
virtual observables [6] and deep neural networks for the CG dynamics as well as the mapping
from the CG states to the FG states. In doing so, we propose a framework that can make use of
the flexibility of neural nets, while still obeying physical laws. We carry out the tasks of model
estimation and dimensionality reduction simultaneously and identify the CG states variables,
their dynamics as well as a probabilistic coarse-to-fine map based only on small amounts of FG
simulation data.

2 METHODOLOGY

In general, the subscript f or lower-case letters are used to denote variables associated with
the (high-dimensional) fine-grained(FG) model and the subscript ¢ or upper-case letters are
used for quantities of the (lower-dimensional) coarse-grained(CG) description. We also use a
circumflex ” to denote observed/known variables.

2.1 The FG and CG model

The fine-grained system considered is a high-dimensional system with state variables x (x €
2y C RYr), whose dimension dy is very large (dy >> 1). We describe the dynamics of such a
FG system by a system of deterministic or stochastic ODEs i.e.,

X = f(x,t), t>0 (1)

The FG system is moreover considered to have the initial condition x( that might be determin-
istic or drawn from a specified distribution. In this work, we want to coarse-grain such a system
only based on simulated data, i.e. time sequences simulated from Equation (1)) with a time-step
ot.

Our goal is to simultaneously identify (unknown) CG state variables X with X € 2, C R%
as well as the dynamics of those CG variables. The dimension d,. of these CG state variables is
intended to be much smaller than d;. For the CG dynamics a Markovian dynamic is assumed
in the form:

X, =F(X,,t), t>0 (2)
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2.2 Emission law

In contrast to approaches based on the Mori-Zwanzig formalism [13, [14], which include a
mapping from the FG system to the quantities of interest, we employ a probabilistic, generative
coarse-to-fine map [15] from the CG state-variables to the FG description. We indicate the
associated (conditional) density by:

Pef(xi| Xi5 6cr) 3)

where 07 denote the (unknown) parameters that we will try to learn from the data. This condi-
tional density p.r can be endowed a priori with domain knowledge by adapting its form to the
particulars of the problem or it can parametrized by deep neural networks to allow for maximum
flexibility.

Employing a probabilistic coarse-to-fine map instead of a deterministic, restriction operator
has many advantages as e.g. the full FG system’s reconstruction and probabilistic predictive
estimates.

2.3 Transition law

In the following, we consider discretized time with a fixed time-step Ar and time-related
subscripts refer to the number of time-steps.

We model the CG dynamics with the help of a deep neural network in order to gain a great
flexibility and be able to express nonlinear functions. Therefore, we assume an explicit dis-
cretization of Equation and model the right-hand-side by the deep neural network NN(.)
parametrized by 0 yy:

X1 =X1+NN(Xt7eNN>—|—Gr£, SNJ/(O,I) 4)

where the parameter 6, > 0 is responsible for the stochastic part of the CG dynamics. This
leads to the following conditional density:

p(Xit1 X1, 05y, 0:) = A (Xis1 | X+ NN(X;, Oyy), 671) (5)

which effectively represents a discretized version of the neural stochastic ODEs of [10] and is
more flexible as compared to approaches in which the right-hand side consists of a restricted
amount of first- and second-order interactions of X; [6].

2.4 Virtual observables

As the CG state-variables X employed in multiscale modeling are usually given physical
meaning, we employ the concept of virtual observables [6] in order to incorporate general
physical principles such as conservation of mass, momentum or energy. Let these be expressed
as equalities of the form at each time-step [:

CZ(XI)ZO, 120,1,... (6)
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where ¢; : 2. C R% — RMc_ The only requirement we will impose is that of differentiability of
c; [6]. We define a new variable ¢; which relates to ¢; as follows:

¢ :C[(Xl)+6c£c, E. N,/V(O,I) (7)

Now, it is assumed that the ¢; have been virtually observed and this set of virtual observations
¢; = 0 leads to to an augmented version of the FG data and therefore virtual likelihoods of the

type:
p(er=0|X;,08) =4 (0] (X)), 071) (®)

The “noise” parameter o, can be used to account for the intensity of the enforcement of the
virtual observations and represents the tolerance parameter with which the constraints would be
enforced in a deterministic setting.

We note that the concept of virtual observables is not restricted to physical constraints but
could also be applied to residuals of temporal discretization schemes [6] or of PDEs [16]]. In
both of this cases, it is shown that the incorporation of virtual observables can reduce the amount
of training data required and enable training in the Small Data regime.

2.5 Inference and learning

Due to the introduction of virtual observables, we can adopt an enlarged definition of data

which we cumulatively denote by ¥ = {J?(()lTn ) , é(()lTn )} and which encompasses:

* FG simulation data consisting of n sequences of the FG state-variables. These are denoted
by x(()ljfl ) as the likelihood model implied by the p.s in Equation || involves only the

observables at each coarse time-step.

A(ln)

e Virtual observables ¢, " relating to the CG states X at each time-step / and which relate
to the physical constraints as in Equation (7). In the example they pertain to all time-steps
from O to T and are denoted by é(()lTn ),

We represent the latent (unobserved) variables of the model by the CG state-variables X (1: )
and relate them to the FG data through the p.r (in Equation (3| .) and to the virtual observables
through Equation (8). The parameters of the model are denoted cumulatively by 8 and consist
0

* Oyn which parametrize the neural network for the right-hand-side of the CG evolution
law (see section [2.3),

* 0.; which parametrize the probabilistic coarse-to-fine map (Equation ),
* 0, involved in the stochasticity of the transition law Equation (4) and

* o, involved in the enforcement of virtual observables in Equation (/)

'If any of these parameters are prescribed, then they are omitted from 6.
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We follow a fully-Bayesian formulation and express the posterior of the unknowns (i.e. latent
variables and parameters) as follows:

p(2 x50 0) pxiln )

(1:n)
p X T 0|9 =

9

where p(X (()1T" ), 0) denotes the prior on the latent variables and parameters. The likelihood term

p(2|X (()lT" ), 0) involved can be decomposed into the product of two (conditionally) independent
terms, one for the FG data and one for the virtual observables, i.e.:

p(7 | X", 0) = p(ao | XGi,0) p(eny” | XGi”, 6) (10)
We further note that (from Equation (3)):

p@i x( g) HHpcf 11 x7.6.) (11)

i=1t=

and (from Equation (8)):

p(els) x5 ) =TT, T M<0|cz(x§”>,o£1>

N 12
°‘H 1H1 0 d,m y €XP cl(Xl())‘ } (12

The prior p(X é T ), 0) can be decomposed into the transition density of Equation H and a prior
for X as well as the parameters 0:

OT .0 HP HP ;+1 ’Xz ,OnN,0r) p(0) (13)

=0

We advocate the use of Stochastic Variational Inference [17] for computing an approximate

posterior. We select a parameterized family of densities, gg (X(()IT" ) , @) and attempt to find
the one that best approximates the posterior by minimizing their Kullback-Leibler divergence.
It can be shown [18], that this optimal gy maximizes the Evidence Lower Bound (ELBO)

T (a9(X47", 0)):
logp(2) =log[p(2, X\, 0)ax (" a6

(in) (i)
=log [ P Xy ’(?:r)f(XO:T ’ 6>Q¢(X8;1), 0) ng;l) do
gp(Xy7", 0) 14
p(7] X5, 0)p(X (7", 6)
a6(Xy7", 0)
= Z(qs (X517, 0))

> [log go(X\\". 0) ax|l ae
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In the following illustrations, we postulate a mean-field decomposition:

a9 (X517, 8) = qo (X51")) pe(0) = [Hq¢<Xé’;>T> 54(0) (15)
i=1

where we make use of the (conditional) independence of the time sequences in the likelihood.
We further note that we employed Dirac 0y functions for the g4 (6) and therefore obtain MAP
estimates @y4p (i.e. @ includes @y;4p) for the unknown parameters.

Gradients of the ELBO with respect to the parameters ¢ involve expectations with respect to
q¢- These were approximated with Monte Carlo estimates which employ the reparametrization
trick [[19] and stochastic optimization was carried out with the ADAM algorithm [20].

2.6 Predictions

The proposed framework can produce probabilistic predictive estimates for a sequence which
was observed up to time-step 7T i.e. ﬁ(()l)T This predictive uncertainty reflects not only the
information-loss due to the coarse-graining process but also the epistemic uncertainty arising
from finite (and small) datasets.

In particular, if g4 (X g)) is the (marginal) posterior of the last, hidden CG state and @4 p the
MAP estimate of the model parameters, then we follow the steps described in Algorithm[I] This
procedure generates samples of the full FG state evolution but does not necessarily guarantees
the enforcement of the constraints for the CG states.

We note that if we would also like to enforce the constraints ¢; for future predictions, then
these would need to be included in the posterior density defined in Equation (9). Consequently,
future (FG or CG) states would need to be inferred from this augmented posterior and an en-

larged inference process is required for predictions.

Algorithm 1: Prediction - Algorithm
(i)
(T+P)
Data: g4 (X7), Omapr
Sample from g4 (X g) );
while Time-step (T + P) not reached do
\ Sample from the CG evolution law in Equation H
end

Sample from Pcf(x(T+P) | X(14p) 014p)

Result: Sample of x

9 B N R S
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3 NUMERICAL ILLUSTRATIONS

We demonstrate the capabilities of the proposed framework by applying it to a high-dimensional
system of stochastically moving particles.

3.1 FG model

For the simulations presented in this section, we used dy = 250 x 103 particles, which, at
each microscopic time step 8¢ = 2.5 x 1073 performed random, non-interacting, jumps of size
O0s= Wlo , either to the left with probability pj.s; = 0.1875 or to the right with probability p,;gn =
0.2125. The positions were restricted to a domain of [—1, 1] with periodic boundary conditions.
It is well-known [21] that in the limit (i.e. dy — eo) the particle density p (s,¢) can be described

with an advection-diffusion PDE with diffusion constant D = (py, ft 7+ pright)g—gi and velocity
_ ) Os.
V= (przght _pleft)ﬁ'

dp  Ip _ Dazp

E‘FVﬁ W: SG(—I,I).- (16)

3.2 CG model specifications

The CG model relates to a discretization of the particle density into d. = 25 equally-sized
bins at each coarse time step . The nature of the CG variables X; gives rise to a multinomial for
the coarse-to-fine density p.r (section ie.

d,
dy! §mi®)

ml(xf)!m2(xt)!---mdc(xr)!j:1 tj

per(x:|X;) = (7)
where m(x;) is the number of particles in bin j. We assume that, given the CG state X, the
coordinates of the particles x; are conditionally independent. This does not imply that they
move independently nor that they cannot exhibit coherent behavior [22]. The consequence of
Equation is that for this example no parameters need to be learned for p..

For the transition law (section [2.3)), we assume a coarse time step of Ar = 4 and employed a
two-layered fully connected neural network NN(.) with ReLU activation functions. Each layers
consisted of 25 neurons.We enforce conservation of mass, using the following constraint at each
time step /:

aX)=1-Y X,;=0, 1=0,1,... (18)
1

J

dc

These are complemented by the virtual observables presented earlier and with 6> = 10~° (Equa-
tion (7).

For the family of variational distributions g4 (X EQ:T)

multivariate lognormals with a diagonal covariance matrices i.e. we assume Xt( J) are a posteriori
. . . . . )
independent. The mean and covariance matrix of the underlying Gaussians for each sequence

) and since XZE? > 0,Vj,t, we employed
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i become part of the parameters ¢ with respect to which the ELBO is maximized (see Section
[2.3). We note that it would also be possible to use an amortized formulation and explicitly ac-
count for the dependence on the data values by employing a neural network for both mean and
covariance with the time sequence as an input.

3.3 Results

o
wu

10 15 20 25 30 35
Timesteps in At

k.

o
u

10 15 20 25 30 35
Timesteps in At

Figure 1: Particle density: Inferred and predicted posterior mean (bottom) in comparison with
the ground truth (top). The red line divides inferred quantities from predicted ones.

We employed n = 64 time sequences with 7 = 9 for training and applied our framework in
order to infer the unobserved CG states but more importantly the model parameters in right-
hand side of the CG dynamics.

In Figure 1 we compare the true particle density with the one predicted by the trained CG
model for one illustrative time sequence. We note that the latter is computed by reconstructing
the x; futures. The trained model is able to accurately track first-order statistics well into the
future for many more time steps than those contained in the training data.

A more detailed view of the predictive estimates with snapshots of the particle density at
selected time instances is presented in Figure 2 and 3 where the predictive posterior mean but
also the associated uncertainty is displayed. Inferred as well as predicted particle densities
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match accurately the ground-truth and reasonable uncertainty bounds are computed.
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Figure 2: Inferred particle density profiles at t = 0,5Az,9A¢ (from left to right).
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Figure 3: Predicted particle density profiles at t = 15A¢,20A¢,25A¢,35A¢ (from left to right and
top to bottom).

Finally, in Figure 4, the mass constraint is depicted for inferred as well as predicted particle
densities and good agreement with the target value (= 1) is observed. This result is particularly
important as it demonstrates that the virtual observables were able to find CG state variables
that agree with an a priori given physical constraint and additionally a transition law has been
learned that is able to automatically satisfy the constraint in the future.

4 CONCLUSIONS

We combined a probabilistic generative model with physical constraints and deep neural net-
works in order to obtain a framework for the automated discovery of coarse-grained variables
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Figure 4: Mass based on inferred and predicted particle densities.

and dynamics based on fine-grained simulation data. The FG simulation data are augmented in
a fully Bayesian fashion by virtual observables that enable the incorporation of physical con-
straints at the CG level. These could be for instance conservation laws that are available when
CG variables have physical meaning. Deviations from such conservation laws would invalidate
predictions. As aresult of augmenting the training data with domain knowledge, the model pro-
posed can learn from Small Data (i.e. shorter and fewer FG time-sequences) which is a crucial
advantage in multiscale settings where the simulation of the FG dynamics is computationally
very expensive.

Our approach learns simultaneously a coarse-to-fine mapping and a transition law for the
coarse-grained dynamics by employing probabilistic inference tools for the latent variables and
model parameters. Deep neural networks can be used in both of these components in order to
endow great expressiveness and flexibility.

The model proposed was successfully tested on a coarse-graining task which involved stochas-
tic particle dynamics. In the example presented, the method was able to accurately predict parti-
cle densities at time steps not contained in the training data. Moreover, as it is able to reconstruct
the entire FG state vector at any future time instant, it is capable of producing predictions of
any FG observable of interest as well as quantify the associated predictive uncertainty.

A shortcoming of presented framework is that the CG dynamics are not fully interpretable
and long-term stability is not guaranteed. These limitations have been addressed in [23] where
an additional layer of latent variables was employed that ensured the discovery of stable CG dy-
namics but also promoted the identification of slow-varying processes that are most predictive
of the system’s long-term evolution.
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