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Abstract. When modelling slender bodies made of composite materials as beams, homogenized
stiffness coefficients must be obtained. In [2, 3], analytic expressions for these are obtained by
comparing the solutions of some Saint-Venant extension, bending and torsion 3D linear elasticity
problems with their corresponding beam theory counterparts. In [2], the authors provide general
expressions for the determination of these coefficients for multilayered beams.

The present work consists in the study of a homogenization procedure of the stiffness coefficients
for circular cross-sections with two layers. This will help in the study of the constitutive behavior
of unloaded shafts of endoscopes since their cross-section could be studied as a simplified model
of a three-layers hollow circular cross-section. In preparation of this geometry, results of an
experimental campaign carried out at KARL STORZ GmbH & Co. KG (Tallinn, Estonia) are
presented in a second part of this paper. The purpose of the testing was the experimental
characterization of the torsional stiffness of such devices.
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1 INTRODUCTION

Flexible endoscopes are medical devices with a slender cylindrical geometry. These can be
modelled using complex finite-element models and nonlinear 3D elasticity equations, but the
computational cost of such an approach can be quite high. This is particularly true when
considering their dynamics in confined environments, which is of great interest for practical
application cases. Thus, we aim to develop a simplified mathematical formulation in terms of
1D beam-like objects. This can be a more efficient and effective approach to understanding
their mechanical behaviour during operation. One of the critical points for the success of this
simplification process is the characterization of their constitutive properties.

In general, the structure of an endoscope can be separated into an external part and an
internal cavity where the instruments are housed. Our focus is on the outer part, denominated
unloaded shaft, that is the most relevant in regards to its mechanical properties. It can be seen
as a multi-layered hollow beam, namely as a composite structure composed of numerous layers
of different materials. Fig. 1 shows the longitudinal and transversal sections of a shaft composed
of four layers. Starting from the innermost one, in the composite cross-section there are a steel
coil, a steel braided mesh, a plastic cover partially embedded in the mesh, and an outermost
layer of plastic. It is important to remark that the coil is only attached to the overall structure
at the ends of the shaft, and this means that it can move relative to the other layers. The latter
are firmly connected to each other, such that no relative motion can take place.

plastic covers
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Figure 1: Longitudinal (left) and transversal (right) sections of an endoscope. In the picture,
the overlap between the inner plastic cover (blue) and the steel mesh (grey with white crosses)
is meant to convey the thermal embedding of the latter in the former.

Despite the idealized model, the mechanical behaviour is still hard to catch due to the nonlin-
earities involved in the problem. Moreover, when working with composite structures, there is one
more difficulty: the homogenization of the different materials composing the cross-section, i.e.
how to properly model multi-material structures from micro-scale to macro-scale. In this paper,
an analytical determination of effective stiffness parameters presented in literature [1, 2] is taken
into account, referring especially to the study case of a two-layers circular cross-section. This in-
vestigation represents the first step in the homogenization process of the constitutive properties
of unloaded shafts. The theory can be indeed expanded to a three-layers cross-section, which is
close to the shafts’ geometry, as it will be later explained in Section 3. With necessary consid-
erations, the expanded formulation will be correlated to an experimental campaign performed
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on unloaded shafts for torsional stiffness characterization. For this purpose, the test results are
shown in the second part of this work.

2 MATERIALLY COUPLED AND UNCOUPLED APPROACHES
2.1 Theoretical background

We want to obtain homogenized stiffness coefficients to characterize the mechanical behaviour
of the beam. We consider two approaches to do so. One is a simple materially uncoupled ap-
proach, where each material is assumed to behave independently from the others. This leads to
additive contributions to the stiffnesses. The other is a materially coupled approach, where the
deformation of each material must be compatible with that of the rest, leading to a continuous
deformation field across all cross-sections in the equivalent 3D elasticity problem.

This coupled approach is described in [1, 2], where the authors investigate the mechanical
behaviour of composite elastic beams modelling them as 1D Cosserat continua (see [4, 3, 5] for
details). The beams are modeled by deformable curves, characterized by a position vector, and
a triad of directors attached to every point along the curve. The triad describes the orientation
of the cross-sections, which are assumed to remain planar, during deformation.

In [2], circular two-layer piecewise homogeneous beams made of isotropic materials, as shown
in Fig. 2, are studied. The cross-section is divided into a core and a face, characterized by
different material and geometric parameters (namely, their respective density p, Young’s modulus
E, Poisson’s ratio v, radius of the inner circle Ry and of the outer circle Ry) and welded together
in such a way that no separation can occur during deformation.
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Figure 2: Mock-up of circular two-layer piecewise homogeneous sandwich cross-section with
inner core (in grey) and outer face (in light blue)

They derive the constitutive equations for elastic composite rods in the infinitesimal deforma-
tion regime, with a linear elastic constitutive model and obtain the effective extensional, bending
and torsion stiffness properties of thin rods. They do so by comparing the solutions of extension,
bending and torsion problems of a beam with those obtained from the three-dimensional linear
Saint-Venant problem. Similarly, they compare frequency analysis results for the 1D and 3D
elasticity problems to estimate the shear stiffness.

This is a materially coupled approach to homogenization because in the solution of the Saint-
Venant problem, compatibility conditions are imposed to the deformation of each material of the
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section, which couples their behaviour. In the particular case described in Fig. 2, the effective
homogenized stiffness properties are expressed as follows (see [2]):

7 (ve —vy)* (R} — R}) RY
2 [acR} + B.R} + ay (RS — RY)]
dm (ve —vp)* (B3 — R}) R}

(ae — Be) B3 + 2B.R3 + (o — By) (R3 — R})
Cy = g [G.R} + Gy (RS — RY)] (3)
peRi+ py (Ry — RY)
R [peRY + py (R3 — R})]

Cr=Cy =7 [EeR| + By (RS - RY)] -

Ay =7 [E.R} + Ef (R5 — RY)] —

Ay = Ay = i [GR2 + Gy (R2 — RY)]

with a; = (3—414)8;, fi = 1/(2G;) and G; = E;/(2(v;) + 1) (shear modulus) for the correspond-
ing layers.

One can recognize two contributions to these parameters. On the one hand, we have the
uncoupled contribution to the stiffness. On the other hand, we find an additional term stem-
ming from the coupled formulation proposed by [1, 2]. For the bending stiffnesses C1,Cs and
the axial stiffness As, the coupling terms are additive, while the coupling term is multiplicative
for the shear stiffnesses A1, As. No additional term is present in the torsional stiffness C5. It
should be noted that most of these coupling contributions vanish whenever the Poisson’s ratios
of contiguous components coincide.

The comparison between the two theories is useful to investigate the influence of coupling
between layers. It will serve to inform us about the order of the corrections we should expect in
the many-layer case found in unloaded shafts.
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Figure 3: Materially coupled stiffnesses: properties of a cross-section made of steel face and
polypropylene core
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2.2 Numerical comparison

In this section, a cross-section composed by a steel face and a polypropylene core is taken
into account for analyzing a comparison between additive and coupled theories. The mechanical
parameters characteristic of each material are shown in Table 1. In Fig. 3, the homogenized
coupled bending, axial and shear stiffness parameters are plotted versus the ratio between the
inner and outer radii. It is clear that for a ratio close to one, the polypropylene area increases
compared to the steel one, and consequently the stiffness properties decrease.

The comparison between the materially uncoupled and coupled approaches is expressed in
terms of absolute and relative discrepancies. In (5) and (6), K is either a bending stiffness
parameter C7,Cy from (1) or the axial stiffness A3 from (2), for which the coupling terms are
added. For the shear stiffnesses Ay, Az in (4) containing a multiplicative coupling contribution,
a relative discrepancy (7) is computed, while no discrepancy can be computed for the torsional
stiffness (as C3 contains no coupling contribution, see (3)).

AabsK = Kcoupled - Kuncoupled (5)
ArelK _ <Kcoupled - Kuncoupled> 100 (6)
Kuncoupled
A
Aridrz = (A ROt 1) 100 (7)
1,2uncoupled

Those contributions are shown in Fig. 4, Fig. 5 and Fig. 6 respectively for bending, axial and
shear stiffness where for the latter only the relative difference was computed.

Table 1: Material properties of the two layers

steel (face) | polypropylene (core)
E [N/m? | 1.93E+11 1.30E+09
v -] 0.265 0.43

In general, one can see that the discrepancy between the materially uncoupled and coupled
approaches increases when the inner radius R; approaches the outer radius Ro. However, from
the relative discrepancies in Fig. 4b for bending and Fig. 5b for axial stiffness, one can see that
the discrepancy in both cases is less than 0.1 % and 0.2 % respectively. However, in the case of
shear stiffness, Fig. 6 shows a discrepancy of about 50%.
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Figure 4: Comparison of bending stiffness in materially coupled and uncoupled approaches
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Figure 5: Comparison of axial stiffness in materially coupled and uncoupled approaches
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Figure 6: Comparison of shear stiffness in materially coupled and uncoupled approaches
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3 PERSPECTIVES FOR MODEL IMPROVEMENT

Coming back to the endoscope depicted in Fig. 1, one can model it as four-layered cross-
section with the hollow interior (considered as a layer), a steel mesh, and the two outermost
layers of plastic. Given the considerations made earlier, the coil will not be considered coupled
to the rest, and, assuming its contribution to shear is negligible, it can be added a posteriori.

Although possible to differentiate them, we will actually treat the two plastic layers as a
single one. The reason lies in the industrial manufacturing process. Once heated up in the
oven, the two plastic covers melt together and their material properties change both due to
thermally-induced molecular rearrangement and newly formed cross-links between materials in
a manner difficult to predict. In the future, we aim to model the unloaded shaft with three
layers as indicated in Fig. 7.

(p3, B3, 13)

(p2, E2,11)
&

2Ro

(p1, Er, 1)

Figure 7: Three-layers piecewise homogeneous cross-section

The first step will be to derive the effective stiffness properties based on the materially un-
coupled approach. The analytical expressions are a straight-forward extension of the uncoupled
parts in (1)-(4). However, the respective material parameters (particularly Young’s modulus
and Poisson’s ratio) of the outer layer are unknown. They will be fitted with the help of exper-
imental data. It will be interesting to examine, how close a three-layer model can approximate
the data and to what extent the known uncoupled data of the plastic covers applies.

The second step, which is by far more involved, will be to derive the analytical expressions of
the materially coupled approach for the three-layers case. Again, the discrepancy between the
materially uncoupled and coupled approach will be investigated, as well as the question, which
approach can reach a more accurate prediction of the experimental data.

In preparation of these more complex models and their evaluation, we start by analyzing our
first experimental results in the next section.
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4 EXPERIMENTAL TESTING OF UNLOADED ENDOSCOPE SHAFTS

An experimental campaign has been carried out at Karl Storz Video Endoscopy Estonia
(KSEE), for which they provided several samples of three different endoscope models. For each
type, four to five samples have been tested. The internal structure of all types of shafts is as
shown in Fig. 1, with small changes in the outer radius.

The torsion testing machine used for the experiments is shown in Fig. 8. The experimental
setup is relatively standard. Both ends of the sample are clamped onto the machine. One
of the clamps is mounted onto a rail that allows axial displacements of the clamp in order to
accommodate different sample lengths and to eliminate compression or bending strains. The
other clamp is equipped with an actuator (a servomotor) that applies angular displacements
and sensors measuring the axial torque exerted by the sample in response. For our testing,
the distance between the two clamping devices was set to 10 e¢m. To analyze the influence
of the internal spring under torsion, the torsion tests have been performed in clockwise and
anticlockwise directions. The sampling frequency was 16.67 Hz and the rotations took place
three times in the clockwise and anticlockwise direction between the angles # = —4 and 0 = 4
for endoscope 1 and 3 and four times between § = —5 and 6 = 5 for endoscope 2.

Figure 8: Torsion testing machine at Karl Storz Estonia

4.1 Analysis of the experimental results

The experimental data for the three endoscope types are shown in Fig. 9, 10 and Fig. 11,
respectively. For positive torsion angles 8 > 0, the shaft has been rotated clockwise, and
anticlockwise for 8 < 0. For each endoscope type, the same data is plotted in all respective
subfigures, however together with different model fits. It is quite noticeable, that the results of
the first and third type of endoscope are similarly scattered, while the data of the second type
is closely concentrated around a line. This fact also becomes obvious when looking at the very
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small confidence intervals of the fits for endoscope 2 in Tab. 2 and Tab. 3 which are described
next.

In order to fit the parameters of a material model to the data, a least-squares regression anal-
ysis has been carried out. With this method, the model parameters are identified by minimizing
the sum of squared deviations of the model-predicted torque 7'(f) from the measured torque in
the complete interval of torsion angles . Two different models have been taken into account,
an affine model characterised two parameters, the slope C'3 and the offset T,, and a linear model
based on C3 only, reading

T(0) =Cs0+ T, (affine regression model) (8)
T(6) = C30 (linear regression model)

Note that for homogeneous circular cross-sections, the torsional stiffness C3 = GJ is given in
terms of the shear modulus G = E/(2(v +1)) and the polar moment of the area J. However, for
composite material, such a split in material and geometric parameters is not necessarily possible.

For the three types of endoscopes, Fig. 9, 10 and Fig. 11 show the data together with the
affine fit in subfigure (a) and with the linear fit in subfigure (b), respectively. In the figures, ¢
is the twisting angle per unit length. The results are summarized in Table 2, where the mean
values are the fitted parameters to define the model and also the confidence intervals are shown.
It can be seen, that T, takes very small values for all types of endoscopes. Further, for all
endoscope types, the fitted torsional stiffness properties from the affine and the linear model
are very similar. This means that the systematic error due to initial offsets had little impact.
Moreover, the identified torsional stiffness properties do not differ much between the endoscope
types. Indeed, the shafts are pretty similar in geometry and structure, there are only small
differences in the outer diameters.

Table 2: Least-squares regression analysis on the three endoscope types

type number | model parameters affine linear
- - mean confidence | mean | confidence

endoscope 1 C3 [Nm”] 0.0504 | 5.11e® | 00593 | 5.19¢ °
To [Nm] -5.76 e73 | 8.76 70 - -

endoscope 2 C3 [Nm?] 0.0573 | 1.23 ¢ 2" [0.0573 | 1.23 ¢
T, [Nm] 7.06 712 | 2,37 72 - _

endoscope 3 Cs3 [Nm”] 0.0500 322 e [0.0498 | 3.22¢7°
15 [Nm] 1232 | 5.69¢° - _

To investigate the influence of the internal coil on the torsional stiffness, the clockwise (wind-
ing of the coil) twists have been studied separately from the anticlockwise twists (unwinding
of the coil). The data together with the separate linear fits for § < 0 and # > 0 are shown
in subfigure (c) of Fig. 9, 10 and Fig. 11, respectively for the different endoscope types. The
resulting parameters are summarized in Table 3. It can be noticed that there is no difference
in the clockwise or anticlockwise identified torsional stiffness for endoscope 2, while there is a
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small difference for endoscope 1 and a larger one for endoscope 3. Due to many uncertainties

affecting the production process and the life-time of the shafts, it is very difficult to model their
behaviour.

Table 3: Least-squares regression analysis on the three shaft models: clockwise and anticlockwise
directions

type number | torsional stiffness clockwise anticlockwise

- - mean | confidence | mean | confidence
endoscope 1 | C3 [Nm?/rad] |0.0572 | 1.30 e=* | 0.0616 | 1.39 e~*
endoscope 2 | Cs [Nm?/rad] | 0.0573 | 3.01 e=2! [ 0.0573 | 3.19 ¢~ 2!
endoscope 3 | Cs [Nm?/rad] | 0.0439 | 6.47 > | 0.0560 | 1.20 e~*
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Figure 9: Regression analyses: first endoscope model

5 CONCLUSIONS AND FUTURE WORK

The numerical comparison between the materially coupled and uncoupled approaches to
model the effective stiffness of two-layer cylindrical beams illustrates that for the axial and
bending stiffness parameters, the difference is negligible for small ratios of inner to outer radius.
However, for the shear stiffness the discrepancy is quite high, reaching even 50 %.

The analysis of the experimental torsion test data revealed that a linear model can represent the
data quite well with very small confidence intervals (of the order of 10™4) for all experiments.
However, the scattering of data points was noticeably smaller (1072!) endoscope type 2. The
presence of the coil causes a slightly stiffer but negligible behaviour in the anticlockwise (un-
winding) case for the endoscope types 1 and 3.

As mentioned in Section 3, a three-layers model might be able to represent the behaviour of
the unloaded endoscope shafts much better and shall be investigated in the future. Effective
stiffness properties will be derived for the materially coupled and uncoupled approaches and
the material parameters will be fitted with the help of experimental data. For this purpose, a
more detailed experimental testing campaign has already been started, investigating bending

10
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Figure 10: Regression analyses: second endoscope model
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Figure 11: Regression analyses: third endoscope model

and torsional deformation as well as the influence of several and separate layers.
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