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Abstract. This work aims to validate a new anisotropic four-parameter turbulence model for
low-Prandtl number fluids in forced and mixed convection. Traditional models based on the
gradient-diffusion hypothesis and Reynolds analogy are inadequate to simulate the turbulent heat
transfer in low-Prandtl number fluids. Additional transport equations for thermal variables are
required to predict the characteristic thermal time scale. In a four-parameter turbulence model,
two additional transport equations are solved for the temperature variance and its dissipation rate.
Thus, it is possible to formulate appropriate characteristic time scales to predict the near-wall
and bulk behaviour of mean and turbulent variables. The isotropic version of the four-parameter
model has been widely studied and validated in forced and mixed convection. We aim to extend
the model validity by proposing explicit algebraic models for the closure of Reynolds stress tensor
and turbulent heat flux. For the validation of the anisotropic four-parameter turbulence model,
low-Prandtl number fluids are simulated in several flow configurations considering buoyancy
effects and numerical results are compared with DNS data.
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1 INTRODUCTION

Among the most promising technological innovations in the energy field, the usage of liquid
metals as heat transport fluids is central. In this respect, the large temperature ranges over
which they remain liquid, and their high thermal conductivity, make them attractive as a vi-
able alternative to conventional heat transport fluids [1]. Due to their thermal properties, these
materials are particularly suitable for applications involving high thermal loads, such as concen-
trated solar power plants [2, 3] and Generation IV nuclear reactors [4, 5]. The design of complex
systems can not be separated from a numerical and computational approach, and Computa-
tional Fluid Dynamics tools are required for an accurate prediction of the thermal-hydraulics
behavior. Nevertheless, the modelling of turbulent heat flux in liquid metals, as low-Prandtl
number fluids, can not be easily achieved using the commercial CFD codes. Therefore, in the
framework of the Reynolds-Averaged Navier-Stokes (RANS) approach, the study of accurate
and robust computational techniques to deal with this problem is currently in the development
phase, and the closure of the RANS system is still challenging.

Over the years, different models have been proposed to achieve the closure of the momentum
equation. First-order models are based on the Boussinesq assumption that involves a linear
dependence between the Reynolds stress tensor and the mean rate of deformation tensor Sij

through an isotropic eddy viscosity νt. On the other hand, the second-order models define the
transport equation for each component of the Reynolds stress tensor. The former show some
deficiencies when anisotropic behavior occurs, while the latter, despite being more accurate,
require a higher numerical effort. In this work, for the closure of the momentum equation, we
propose an Explicit Algebraic Stress Model (EASM) which belongs to a class of models between
first and second-order. As concerns the turbulent heat flux modelling, only a few models have
been developed and validated. The almost universally employed models are based on the Simple
Gradient Diffusion Hypothesis (SGDH) and rely on the similarity between the turbulent heat
flux and the molecular heat conduction. Furthermore, the Reynolds Analogy is often invoked to
evaluate the unknown turbulent thermal diffusivity αt, which is considered to be proportional to
the eddy viscosity, with the inverse of a constant turbulent Prandtl number as a proportionality
factor. This approach delivers reasonable results in the forced convection regime and for fluids
with Pr ≃ 1, however, it does not hold for applications involving non-unity Prandtl number
fluids especially in mixed convection regimes when buoyancy effects have to be accounted for
[6]. In order to overcome these limits, we have adopted an Explicit Algebraic Heat Flux Model
(EAHFM) for the closure of the energy equation, which is derived starting from the class of
implicit Algebraic Heat Flux Models [7, 8]. In this work, the above-mentioned anisotropic models
are coupled with the logarithmic four-parameter turbulence model proposed in [9, 10, 11, 12],
which solves the transport equation for each of the turbulent variables K-Ω-Kθ-Ωθ.

In order to validate the proposed anisotropic four-equation turbulence model, we have con-
sidered the turbulent flow of liquid sodium over a vertical backward-facing step. This flow is
extensively used in many devices, such as the in-and-outflow of thermal storage containers in
power conversion systems. Because of its importance, it has been widely investigated in the
literature and several DNS simulations for different flow regimes are available for the compar-
ison and validation of turbulence models [13, 14, 15, 16]. The anisotropic four-equation model
is presented in Section 2, while in Section 3 the solution of the above-mentioned anisotropic

2



G. Barbi, A. Chierici, V. Giovacchini, S. Manservisi and L. Sirotti

turbulent model is compared with the results obtained for the isotropic four-equation model.
These results are discussed in comparison with literature data.

2 MATHEMATICAL MODEL

The governing equations to be solved for an incompressible Newtonian fluid in a turbulent
flow regime are the Reynolds-averaged conservation equations of mass, momentum, and energy.
In order to simulate the mixed convection regime, the Navier Stokes equations are coupled
together with the energy equation through the Oberbeck-Boussinesq approximation. This set
of equations is known as RANS system, namely

∂ui
∂xi

= 0 , (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
− ⟨u′iu′j⟩

]
− giβ(T − T0) , (2)

∂T

∂t
+ uj

∂T

∂xj
=

∂

∂xj

(
α
∂T

∂xj
− ⟨u′jT ′⟩

)
, (3)

where ui, p and T are the mean quantities, while u′i and T ′ are the fluctuating fields. The constant
ν is the kinematic viscosity, α is the thermal diffusivity, ρ is the fluid density, and β is the thermal
expansion coefficient. Compared to the instantaneous fields equations, the averaging operation
introduces additional unknowns, meaning the six components of the symmetric Reynolds stress
tensor ⟨u′iu′j⟩ and the three components of the turbulent heat flux ⟨u′iT ′⟩. The resulting system is
no longer a closed problem, and models must be introduced in order to determine these unknown
quantities.

Since the first-order models are inadequate to capture the anisotropy of the flows and the
second-order models increase the numerical effort, the Reynolds stress tensor is modelled using
an Explicit Algebraic Stress Model (EASM). This nonlinear eddy viscosity model is obtained
by applying the local equilibrium hypothesis between production and dissipation to the full
transport equation for ⟨u′iu′j⟩. Defined the strain-rate tensor as Sij = 1

2(
∂ui
∂xj

+
∂uj

∂xi
) and the

vorticity tensor as Ωij = 1
2(

∂ui
∂xj

− ∂uj

∂xi
), the Reynolds stress tensor can be computed as follows

[17]

⟨u′iu′j⟩ =
2

3
kδij −

2νt
fR

Sij −
4CDkfτ

fR

(
SikΩkj − ΩikSkj − SikSkj +

1

3
S2δij

)
. (4)

The eddy viscosity νt can be expressed as a function of the turbulent kinetic energy k and a
characteristic dynamical time scale τlu. Hence, the eddy viscosity is defined as νt = Cµfµkτlu.
The model constant Cµ takes the standard value 0.09 and the damping function fµ is modelled
using the formulation given by [17] as fµ = 1− exp[−(Rd/26)

2], where Rd = υyd/ν is the non-

dimensional wall-distance, with υ = (νε)
1
4 that represents the Kolmogorov velocity scale and yd

the wall distance at a point, namely, the distance between that point and nearest point on the
wall surfaces. The dynamical time scale is usually defined using the scale of energy-containing
eddies τu = k/ε, where ε is the dissipation rate. However, to consider the dissipation eddies
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effect near the wall the time scale is corrected as follows

τlu = τu

{
1 +

35

R
3
4
t

exp

[
−
(
Rt

30

) 3
4
]}

, (5)

where Rt = k2/(νε) is the turbulent Reynolds number. The constant CD is set to 0.8 and
the function fR is expressed as fR = 1 + 22/3(CDτR0)

2Ω2 + 2/3(CDτR0)
2(Ω2 − S2)fB, where

S2 = SmnSmn, Ω
2 = ΩmnΩmn and fB = 1+Cη(CDτR0)

2(Ω2−S2). The function fτ is introduced
to take into account the wall-limiting behavior and anisotropy of the Reynolds normal stress
components near the wall, and it is given by fτ = τ2R0

+ τ2RW
. The above-mentioned function

depends on the characteristic time scale τR0 = νt/k and the wall reflection time scale τRW
,

defined by the expression [18]

τRW
=

√
fR

6CDfSΩ

(
1− 3Cv1fv2

8

)
f2
v1 , (6)

where
fv1 = exp(−R2

tm/2025), (7)

fv2 = 1− exp(−
√
Rt/Cv2), (8)

fSΩ =
Ω2

2
+

S2

3
−
∣∣∣√S2

2
−
√

Ω2

2

∣∣∣ exp(−R2
tm), (9)

and the modified Reynolds number Rtm = CtmRdR
0.25
t /(CtmR0.25

t + Rd). The other model
constants are Cη = 5, Cv1 = 0.4, Cv2 = 2000 and Ctm = 130.

In this work, the turbulent heat flux is modelled using the Explicit Algebraic Heat Flux
Model (EAHFM), which allows overcoming the limits of the first-order models and the Reynolds
analogy. Indeed, in the proposed model, the turbulent heat flux ⟨u′iT ′⟩ is not necessarily parallel
to the mean temperature gradient, which is, by contrast, peculiar to the SDGH model. Starting
from the transport equation for the turbulent heat flux and imposing the hypothesis of the local
equilibrium state between the production and the dissipation contributions [19] the following
explicit algebraic expression can be derived [18]

⟨u′iT ′⟩ = − Ct1

fRT
τm

[
⟨u′iu′j⟩

∂T

∂xj
−τm[(Ct2−Ct3)Sij+(Ct2−Ct3)Ωij ]⟨u′ju′k⟩

∂T

∂xk

]
− 2Ct4τm

fRT
δikgkβkθ .

(10)
Since the above-mentioned local equilibrium hypothesis does not work in the near-wall region,
the characteristic thermal time scale τm modelling becomes relevant for correctly predicting the
heat transfer in wall flows. Therefore, the thermal time scale τm is modelled using the expression
introduced by [9, 10]

τm = τuf1t

(
1

Prt
+

2R

R+ Cγ
f2t + 1.3

√
2R

PrR
3
4
t

f3t

)
, (11)

where R = (ε/k)/(εθ/kθ) is the thermal to mechanical turbulent time scale ratio. The model
constants and the model functions are reported in Table 1.
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Cγ Ct1 Ct2 Ct3 Prt

0.25/Pr
1
4 0.18 0.18 0.02 1.3

f1t f2t f3t

[1− exp(−Rd
14 )][1− exp(−

√
PrRd
14 )] exp[−( Rt

500)
2] exp[−( Rt

200)
2]

fRT

1 + 0.5τ2m[(Ct2 + Ct3)
2Ω2 − (Ct2 − Ct3)

2S2]

Table 1: Model constants and functions for Explicit Algebraic Heat Flux Model (10)-(11).

For the closure of the EASM model, the turbulent kinetic energy k and its specific dissipation
rate ω, where ω = ε/(Cµk), are evaluated using the logarithmic turbulence model K-Ω [10, 12].
This logarithmic model helps to enhance the numerical stability if compared to the standard k-ω
model because the state variables are always maintained positive during the solution process.
The transport equations for the logarithmic variables K = ln(k) and Ω = ln(ω), used for the
closure of the dynamical fields, are reported below
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Pb
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(13)

where Pk = −⟨u′iu′j⟩∂ui/∂xj is the production rate of turbulent kinetic energy and Pb =
−βgi⟨u′iT ′⟩ is the source term for buoyant flows.

On the other hand, we have handled the closure of the turbulent heat flux, adding to the sys-
tem of equations two additional transport equations for the evaluation of the mean temperature
fluctuations kθ and the specific dissipation rate ωθ, where ωθ = εθ/(Cµkθ) [10, 12]. As before,
we propose a logarithmic turbulence model given by

DKθ
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=

∂

∂xi

[(
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)
∂Kθ

∂xi

]
+
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)
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+ 2

(
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+
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eKθ
(Cp1 − 1) + Cp2
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eK
− (Cd1 − 1)Cµe

Ωθ − Cd2Cµe
Ω ,

(15)

where Pkθ = −⟨u′jT ′⟩∂T/∂xj and αt = Cθkτm is the eddy thermal diffusivity, with Cθ = 0.1.
The other model constants and model functions are reported in Table 2.
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Cε1 Cε2 Cb σk = σω fε

1.9 1.5 1.44 1.4
{
1− 0.3 exp

[
−
(
Rt/6.5

)2]}{
1− exp

[
−
(
Rd/3.7

)2]}
Cp1 Cp2 Cd1 σkθ = σωθ Cd2

1.025 0.9 1.1 1.4
{
1.9
[
1− 0.3 exp

[
−
(
Rt/6.5

)2]]− 1
}{

1− exp
[
−
(
Rd/5

)2]}
Table 2: Constants and functions for the logarithmic four-parameter model (12)-(13)-(14)-(15).

3 NUMERICAL RESULTS

y

z
x

~g

E

Lin

Lh

h

W

q̇

Figure 1: Representative sketch of backward-facing step geometry.

Lin/h Lh/h W Er Re Ri Pr

2 20 0 1.5 9610 0− 0.338 0.0088

Table 3: Geometrical parameters of the simulated domain.

In this section, we investigate the simulation results of a turbulent flow of liquid sodium
over a vertical backward-facing step, solved with the in-house finite element code FEMuS [20].
In particular, the obtained results are reported for two different flow configurations: first, for
forced convection regime with Richardson number Ri = gβ∆Th/U2

b equal to zero, and second,
for mixed convection regime with Ri = 0.338. In Figure 1 the reference domain [14] is reported
as a representative sketch and its geometrical parameters are reported in Table 3. Here Lin is
the inlet section length, h is the step height, W is the domain width and Er = E/(E−h) is the
expansion ratio, where E is the downstream channel height.

As regards the boundary conditions, for the velocity field a fully developed inflow condition
is imposed at the inlet section, and an outflow boundary condition is set at the outlet section.
All the other boundaries are treated as no slip walls. Concerning the temperature, a uniform
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Figure 2: Simulation results with Ri = 0. Profile of dynamical fields: a) mean streamwise velocity v+

b) mean wall-normal velocity u+ c) turbulent kinetic energy k+ d) shear stress ⟨u′v′⟩+ e) normal stress
⟨u′u′⟩+ f) normal stress ⟨v′v′⟩+. : Simulation results for anisotropic model; : Simulation results for
isotropic model; ◦ : DNS data.

value is set at the inlet, i.e. Tin = 423.15K, and homogeneous Neumann conditions are used for
the other boundaries except for the wall behind the step where a uniform heat flux q̇ is imposed.
For all the other turbulent variables, homogeneous Neumann conditions are set for both the
inlet and outlet sections and the near wall behavior has been considered for the wall boundaries
[10].
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Figure 3: Simulation results with Ri = 0.338. Profile of thermal fields: a) mean temperature T+

b) mean wall-normal turbulent heat flux ⟨u′T ′⟩+ c) mean streamwise turbulent heat flux ⟨v′T ′⟩+. :
Simulation results for anisotropic model; : Simulation results for isotropic model; ◦ : DNS data.

In this part, the results obtained with both the anisotropic (A4P) and isotropic (I4P) version
of the proposed model, are compared with DNS data [13, 14, 15, 16], marked with circles in
Figure 2, 3, 4, and 5. Here, the results for A4P model are reported using the solid line, while the
dashed line represents the solution obtained with the I4P model. The isotropic model uses the
Boussinesq Hypothesis for the evaluation of the Reynolds stress tensor, where the isotropic eddy
viscosity is defined using the characteristic dynamical time scale, modelled as the expression (5).
Moreover, in this model the evaluation of the turbulent heat flux is gained using the SDGH,
where the isotropic eddy diffusivity is defined as αt = Cθkτm with τm given by (11).

Forced convection. For the forced convection case, the non-dimensional dynamical fields
are reported in Figure 2 for several streamwise coordinate y/h values. The results for both the
A4P and the I4P models are compared to the DNS data, available for the same non-dimensional
coordinates [14]. The wall-normal u+ = u/Ub and the streamwise v+ = v/Ub velocity com-
ponents, reported respectively in Figure 2a) and Figure 2b), present a good agreement when
compared with the DNS results for both the anisotropic and the isotropic models. In addition,
the non-dimensional turbulent kinetic energy k+ = k/U2

b , shown in Figure 1, is well repro-
duced by both models. In Figures 2d), 2e), and 2f), the non-dimensional components of the
Reynolds stress tensor are reported in comparison with DNS data. These turbulent fields, ob-
tained with the A4P model, present an overall good agreement with DNS data and show a
slight improvement if compared to the isotropic model results, in particular regarding the diago-
nal components of the tensor. The non-dimensional thermal fields are shown in Figure 3, where
T+ = (T −Tref )/∆T is the non-dimensional temperature, ⟨u′T ′⟩+, and ⟨v′T ′⟩+ are, respectively,
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Figure 4: Simulation results with Ri = 0.338. Profile of dynamical fields: a) mean streamwise velocity
v+ b) mean wall-normal velocity u+ c) turbulent kinetic energy k+ d) shear stress ⟨u′v′⟩+ e) normal
stress ⟨u′u′⟩+ f) normal stress ⟨v′v′⟩+. : Simulation results for anisotropic model; : Simulation
results for isotropic model; ◦ : DNS data.

the non-dimensional wall-normal and the non-dimensional streamwise components of the turbu-
lent heat flux. For the temperature profile (Figure 5a)), an overall good agreement with DNS
data is obtained using both the anisotropic and isotropic models. The improvement given by
the A4P model is well remarked in Figure 5b) and 5c), where the components of the turbulent
heat flux are reported. Apart from a slight underestimation, the ⟨u′T ′⟩+ profile obtained with
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Figure 5: Simulation results with Ri = 0. Profile of thermal fields: a) mean temperature T+ b) mean
wall-normal turbulent heat flux ⟨u′T ′⟩+ c) mean streamwise turbulent heat flux ⟨v′T ′⟩+. : Simulation
results for anisotropic model; : Simulation results for isotropic model; ◦ : DNS data.

the A4P model is in good agreement with the benchmark if compared to the isotropic model
results. Moreover, the A4P model provides better results for the streamwise component, which
is, by contrast, totally underestimated by the I4P model.

Mixed convection. The same comparison, made for the forced convection case, is reported
in this subsection in order to present the numerical results obtained with Ri = 0.338. As regards
the mean velocity components u+ = u/Ub and v+ = v/Ub, reported in Figure 4a) and Figure
4b), a good agreement with the DNS data can be obtained using both models. On the other
hand, the A4P model helps to improve the prediction of all the three components of the Reynolds
stress tensor when compared with the I4P model, as can be seen in Figures 4d), 4e), and 4f).
The prediction of the temperature field, shown in Figure 5a), is in good agreement with the
DNS data for both model simulations, although turbulent heat flux profiles do not strictly fit
the benchmark results. Even if the streamwise component of the turbulent heat flux ⟨v′T ′⟩+
presents some discrepancies in correspondence of the near wall region, the anisotropic simulation
provides better results than those of the I4P model. These differences with the DNS data are
mainly due to the characteristic thermal time scale τm modelling, which should be improved in
order to better predict the near wall behavior.

4 CONCLUSION

In this work, the simulation of turbulent liquid sodium flow over a vertical backward-facing
step has been obtained using an anisotropic four-equation turbulence model. In order to evaluate
the Reynolds stress tensor and turbulent heat flux, an Explicit Algebraic Stress Model (EASM)
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and an Explicit Algebraic Heat Flux Model (EAHFM), respectively, have been adopted. In
addition, the logarithmic four-equation turbulence modelK-Ω-Kθ-Ωθ, coupled with the algebraic
models, has been used for the closure of the model. For both forced and mixed convection
regimes, the results obtained with the proposed model have been compared to the isotropic
version of the model and have been validated with literature DNS data. The prediction of the
mean velocity and temperature profiles given by the new proposed model is in good agreement
with the benchmark data. Moreover, for both the flow regimes, the anisotropic model presents
a general enhancement in the representation of the Reynolds stress tensor, when compared to
the previous isotropic model. As regards the turbulent heat flux components, the A4P model
has brought significant improvements, in particular in the forced convection case. Despite some
inaccuracies, the proposed model has provided promising results also in the mixed convection
case, where there is plenty of scope for improvement.
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