Domain Theory: Practice and Theories*
A Discussion of Possible Research Topics

Dines Bjgrner!

Department of Computer Science and Engineering
Institute of Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark?

Abstract. By a domain we mean a universe of discourse.

Typical examples are (partially) man-made universes of discourse -
such as Air Traffic, Airports, Financial Services (banks, insurance compa-
nies, securities trading [brokers, traders, stock exchanges]), Health Care
(hospitals etc.), Secure IT Systems (according to Intl. ISO/IEC Standard
17799), The Market (consumers, retailers, wholesalers, producers, “the
supply chain”), Transportation (road, air, sea and/or rail transport), etc.

We shall outline how one might describe such (infrastructure compo-
nent) domains, informally and formally - what the current descriptional
limitations appear to be, and, hence, the prospects for future research as
well as practice.

The current paper is based on Part IV, Chaps. 8-16 of [3]. The
volume is one of [1-3].

The aim of this paper is to suggest a number of areas of domain
theory and methodology research.

Maybe the title of the paper need be explained: The second part of the title: ‘Practice
and Theories’ shall indicate that there is an engineering practice (i.e., methodology) of
developing domain descriptions and that any such domain description forms the basis
for a specific domain theory. The first part of the title: ‘Theories’ shall indicate that we
need support the practice, i.e., the methodology, by theoretical insight, and that there
probably are some theoretical insight that applies across some or all domain theories.

1 Introduction

1.1 A Preamble

This paper is mostly a computing science paper. This paper is less of a computer
science paper. Computer science is the study and knowledge about the “things”

“Invited paper for ICTAC 2007, The 4th International Colloquium on The-
oretical Aspects of Computing, 26-28 September 2007, Macau SAR, China:
http://www.iist.unu.edu/ictac07/.

TProf. Emeritus

fHome address: Fredsvej 11, DK-2840 Holte, Denmark

that can exist “inside” computers, and of what computing is. Computing science
is the study and knowledge about how to construct computers and the “things”
that can exist “inside” computers. Although the main emphasis of ‘Domain
Theory and Practice’ is computing science, some of the research topics identified
in this paper have a computer science nature.

1.2 On Originality

Since this paper is an invited paper and since it basically builds on and extends a
certain part (Part IV Domain Engineering) of Vol. 3, [3], of my book [1-3], I shall
not bring a lot of motivation nor putting my possible contributions in a broader
context other that saying this: as far as I can see from the literature my concept
of domain engineering is new. It may have appeared in rudimentary forms here
and there in the literature, but in the nine chapters (Chaps. 8-16) of Part IV,
[3], it receives a rather definitive and fully comprehensive treatment. But even
that treatment can be improved. The present paper is one such attempt.

1.3 Structure of Paper

In a first semi-technical section we briefly express the triptych software engineer-
ing dogma, its consequences and its possibilities. We relate software verification
to the triptych and present a first research topic. Then we list some briefly
explained domains, and we present three more research topics. In the main tech-
nical section of this paper we present five sets of what we shall call domain
facets (intrinsics, support technology, management and organisation, rules and
regulations, and human behaviour). Each of these will be characterised but not
really exemplified. We refer to [3] for details. But we will again list corresponding
research topics. The paper ends first with some thoughts about what a ‘domain
theory’ is, then on relations to requirements, and finally on two rather distinct
benefits from domain engineering. In that final part of the paper we discuss a
programming methodology notion of ‘requirements specific development models’
and its research topics.

2 Domain Engineering: A Dogma and its Consequences

2.1 The Dogma

First the dogma: Before software can be designed its requirements must be un-
derstood. Before requirements can be prescribed the application domain must
be understood.

2.2 The Consequences

Then the “idealised” consequences: In software development we first describe the
domain, then we prescribe the requirements, and finally we design the software.

As we shall see: major parts of requirements can be systematically “derived”!
from domain descriptions. In engineering we can accommodate for less idealised
consequences, but in science we need investigate the “ideals”.

2.3 The Triptych Verification

A further consequence of this triptych development is that
D,SER,

which we read as: in order to prove that Software implements the Requirements
the proof often has to make assumptions about the Domain.

2.4 Full Scale Development: A First Suggested Research Topic

Again, presupposing much to come we can formulate a first research topic.

R 1. The D,S E R Relation: Assume that there is a formal description of the
Domain, a formal prescription of the Requirements and a formal specification
of the Software design. Assume, possibly, that there is expressed and verified
a number of relations between the Domain description and the Requirements
prescription. Now how do we express the assertion: D, S = R — namely that
the software is correct? We may assume, without loss of generality, that this
assertion is in some form of a pre/post condition of & — and that this
pre/post condition is supported by a number of assertions “nicely spread”
across the Software design (i.e., the code). The research topic is now that
of studying how, in the pre/post condition of S (the full code) and in the
(likewise pre/post condition) assertions “within” S, the various components
of R and D “appear”, and of how they relate to the full formal pre- and
descriptions, respectively.

2.5 Examples of Domains

The Examples. Lest we loose contact with reality it is appropriate here, how-
ever briefly, to give some examples of (application) domains.

Air Traffic: A domain description includes descriptions of the entities, func-
tions, events and behaviours of aircraft, airports (runways, taxi-ways, apron,
etc.), air lanes, ground, terminal, regional, and continental control towers, of
(national [CAA, CAAC, FAA, SLV, etc.] and international [JAA, CAO]) avia-
tion authorities, etc.

Airports: A domain description includes descriptions of the flow of peo-
ple (passengers, staff), material (catering, fuel, baggage), aircraft, information
(boarding cards, baggage tags) and control; of these entities, of the operations

!By “derivation” we here mean one which is guided by humans (i.e., the domain
and requirements engineers in collaboration with the stakeholders).

performed by or on them, the events that may occur (cancellation or delay of
flights, lost luggage, missing passenger), and, hence, of the many concurrent and
intertwined (mutually “synchronising”) behaviours that entities undergo.

Container Shipping: A domain description includes descriptions of contain-
ers, container ships, the stowage of containers on ships and in container yards,
container terminal (ports), the loading and unloading of containers between ships
and ports and between ports and the “hinterland” (including crances, port truck-
ing and feeder trucks, trains and barges), the container bills of lading (or way
bills), the container transport logistics, the (planning and execution, schedul-
ing and allocation) of voyages, the berthing (arrival and departure) of container
ships, customer relations, etc.

Financial Service Industry: A domain description includes descriptions of
banks (and banking: [demand/deposit, savings, mortgage| accounts, [opening,
closing, deposit, withdrawal, transfer, statements] operations on accounts), in-
surance companies (claims processing, etc.), securities trading (stocks, bonds,
brokers, traders, exchanges, etc.), portfolio management, IPOs, etc.

Health care: A domain description includes descriptions of the entities, op-
erations, events and behaviours of healthy people, patients and medical staff,
of private physicians, medical clinics, hospitals, pharmacies, health insurance,
national boards of health, etc.

The Internet: The reader is encouraged to fill in some details here!

Manufacturing: Machining & Assembly: The reader is encouraged to also fill
in some details here!

“The” Market: A domain description includes descriptions of the entities,
operations, events and behaviours of consumers, retailers, wholesalers, producers,
the delivery chain and the payment of (or for) merchandise and services.

Transportation: A domain description includes descriptions of the entities,
functions, events and behaviours of transport vehicles (cars/trucks/busses, trains,
aircraft, ships), [multimodal] transport nets (roads, rail lines, air lanes, shipping
lanes) and hubs (road intersections [junctions], stations, airports, harbours),
transported items (people and freight), and of logistics (scheduling and allo-
cation of transport items to transport vehicles, and of transport vehicles to
transport nets and hubs). Monomodal descriptions can focus on just air traffic
or on container shipping, or on railways.

The Web: The reader is encouraged to “likewise” fill in some details here!

There are many “less grand” domains: railway level crossings, the intercon-
nect cabling between the oftentimes dozens of “boxes” of some electronic/me-
chanical/acoustical measuring set-up, a gas burner, etc. These are all, rather
one-sidedly, examples of what might be called embedded, or real-time, or safety
critical systems.

We can refer to several projects at UNU-IIST which have produced domain
specifications for railway systems (China), ministry of finance (Vietnam), tele-
phone systems (The Philippines), harbours (India), etc.; and to dozens of MSc
projects which have likewise produced domain specifications for airports, air traf-
fic, container shipping, health care, the market, manufacturing, etc. I give many,

many references in [3]. I also refer the reader to http://www.railwaydomain.org/
for documents, specifically http://www.railwaydomain.org/book.pdf for domain
models of railway systems.

Some Remarks. A point made by listing and explaining the above domains
is the following: They all display a seeming complexity in terms of multitude of
entities, functions, events and interrelated behaviours; and they all focus on the
reality of “what is out there”: no mention is (to be) made of requirements to
supporting computing systems let alone of these (incl. software).

2.6 Domains: Suggested Research Topics

From the above list we observe that the ‘transportation item’ “lifts” those of ‘air
traffic’ and ‘container shipping’. Other examples could be shown. This brings us,
at this early stage where we have yet to really outline what domain engineering
is, to suggest the following research topics:

R 2. Lifted Domains and Projections: We observe, above, that the ‘trans-
portation” domain seems to be an abstraction of at least four more concrete
domains: road, rail, sea and air transportation. We could say that ‘trans-
portation’ is a commensurate “lifting” of each of the others, or that these
more concrete could arise as a result of a “projection” from the ‘transporta-
tion” domain. The research topic is now to investigate two aspects: a comput-
ing science cum software engineering aspect and a computer science aspect.
The former should preferably result in principles, techniques and tools for
choosing levels of “lifted” abstraction and “projected” concretisation. The
latter should study the implied “lifting” and “projection” operators.

R 3. What Do We Mean by an Infrastructure ? We observe, above, that
some of the domains exemplify what is normally called infrastructure? com-
ponents. According to the World Bank: ‘Infrastructure’ is an umbrella term
for many activities referred to as ‘social overhead capital’ by some devel-
opment economists, and encompasses activities that share technical and
economic features (such as economies of scale and spillovers from users to
nonusers). The research is now to study whether we can reformulate the
sociologically vague World Bank definition in precise mathematical terms.

R 4. What Is an Infrastructure Component 7 We observe, above, that not
all of the domains exemplified are what is normally called infrastructure

2Winston Churchill is quoted to have said, during a debate in the House of Com-
mons, in 1946: ... The young Labourite speaker that we have just listened to, clearly
wishes to impress upon his constituency the fact that he has gone to Eton and Oxford
since he now uses such fashionable terms as ‘infra-structures’. [I have recently been in
communication with the British House of Commons information office enquiries man-
ager, Mr. Martin Davies in order to verify and, possibly pinpoint, this statement. I am
told that “as the Hansard debates in question are not available electronically, it could
only be found via a manual search of hard copy Hansard”. So there it stands.]

components.? The research is now to study whether we can formulate and
formalise some “tests” which help us determine whether some domain that
we are about to model qualifies as part of one or more infrastructure com-
ponents.

We bring these early research topic suggestions so that the reader can better
judge whether domain engineering principles and techniques might help in es-
tablishing a base for such research. Throughout the paper we shall “spice it”
with further suggestions of research topics.

We do not cover the important methodological aspects of stakeholder identifi-
cation and liaison, domain acquisition and analysis, domain model verification
and validation. For that we refer to Vol. 3 Chaps. 9-10 and 12-14 [3].

3 Domain Facets

The role, the purpose, of domain engineering is to construct, to develop, and
research domain descriptions. It is both an engineering and a scientific task.
It is engineering because we do know, today, a necessary number of principles,
techniques and tools with which to create domain models. It is scientific, i.e.,
of research nature, because, it appears, that we do not necessarily know, today,
whether what we know is sufficient.

3.1 Stages of Domain Development

By domain development we mean a process, consisting of a number of reason-
ably clearly separable stages which when properly conducted leads to a domain
description, i.e., a domain model. We claim that the following are meaning-
ful and necessary domain development stages of development, each with their
attendant principles, techniques and tools: (i) identification of stakeholders,
(ii) rough domain identification, (iii) domain acquisition, (iv) analysis of rough
domain description units, (v) domain modelling, (vi) domain verification, (vii)
domain validation and (viii) domain theory formation. We shall focus on domain
modelling emphasising the modelling concept of domain facets.

3.2 The Facets

By domain modelling we mean the construction of both an informal, narrative
and a formal domain description.

We claim that the following identified facets (i.e., “steps”) (later to be briefly
explained) are necessary parts of the domain modelling process: (i) intrinsics,

3‘Manufacturing’ and ‘The Market’ appear, in the above list to not be infrastructure
components, but, of course, they rely on the others, the infrastructure components.

(ii) support technologies, (iii) management and organisation, (iv) rules and regu-
lations, (v) and human behaviour. Ideally speaking one may proceed with these
“steps” in the order listed. Engineering accommodates for less ideal progressions.
Each “step” produces a partial domain description. Subsequent “steps” ‘extend’
partial descriptions into partial or even (relative) complete descriptions.

In this section, Sect. 3, we will not give concrete examples but will rely on
such already given in Chap. 11 of [3].

3.3 Intrinsics

By the intrinsics of a domain we shall understand those phenomena and concepts,
that is, those entities, functions, events and behaviours in terms of which all other
facets are described.

The choice as to what constitutes the intrinsics of a domain is often deter-
mined by the views of the stakeholders. Thus it is a pragmatic choice, and the
choice cannot be formalised in the form of an is_intrinsics predicate that one
applies to phenomena and concepts of the domain.

Intrinsics: Suggested Research Topic.

R 5. Intrinsics: We refer to Sect. 11.3 in [3]. What is, perhaps, needed, is a
theoretically founded characterisation of “being intrinsic”.

3.4 Support Technology

By a support technology of a domain we shall understand either of a set of (one
or more) alternative entities, functions, events and behaviours which “imple-
ment” an intrinsic phenomenon or concept. Thus for some one or more intrinsic
phenomena or concepts there might be a technology which supports those phe-
nomena or concepts.

Sampling Behaviour of Support Technologies. Let us consider intrinsic
Air Traffic as a continuous function (—) from Time to Flight Locations:

type
T, F, L
IAT=T— (F » L)

But what is observed, by some support technology, is not a continuous function,
but a discrete sampling (a map 7z):

SAT =T = (F = L)

There is a support technology, say in the form of radar which “observes” the
intrinsic traffic and delivers the sampled traffic:

value
radar: iAT — sAT

Probabilistic cum Statistical Behaviour of Support Technologies. But
even the radar technology is not perfect. Its positioning of flights follows some
probabilistic or statistical pattern:

type
P = {|r:Real « 0<r<1|}
ssAT = P+ sAT-infset
value
radar’: iAT = ssAT

The radar technology will, with some probability produce either of a set of
samplings, and with some other probability some other set of samplings, etc.*

Support Technology Quality Control, a Sketch. How can we express that
a given technology delivers a reasonable support ? One approach is to postu-
late intrinsic and technology states (or observed behaviours), ©;, O, a support
technology 7 and a “closeness” predicate:

type
O, Os

value
7: @1 — P 5 O_s-infset
close: ©1 x O_s — Bool

and then require that an experiment can be performed which validates the sup-
port technology.
The experiment is expressed by the following axiom:

value
p_threshhold:P
axiom
V010
let pf_ss = 7(6.i) in
V p:P « p>p_threshhold =
0s:0 « 0_s € ph_ss(p) = close(0_i,0s) end

The p_threshhold probability has to be a-priori determined as one above which
the support technology renditions of the intrinsic states (or behaviours) are
acceptable.

Support Technologies: Suggested Research Topics.

4Throughout this paper we omit formulation of type well-formedness predicates.

R 6. Probabilistic and/or Statistical Support Technologies: Some cases
should be studied to illuminate the issue of probability versus statistics.
More generally we need more studies of how support technologies “enter the
picture”, i.e., how “they take over” from other facet. And we need to come up
with precise modelling concepts for probabilistic and statistical phenomena
and their integration into the formal specification approaches at hand.

R 7. A Support Technology Quality Control Method: The above sketched
a ‘support technology quality control’ procedure. It left out the equally im-
portant ‘monitoring’ aspects. Develop experimentally two or three distinct
models of domains involving distinct sets of support technologies. Then pro-
pose and study concrete implementations of ‘support technology quality
monitoring and control’ procedures.

3.5 Management and Organisation

By the management of an enterprise (an institution) we shall understand a (pos-
sibly stratified, see ‘organisation’ next) set of enterprise staff (behaviours, pro-
cesses) authorised to perform certain functions not allowed performed by other
enterprise staff (behaviours, processes) and where such functions involve moni-
toring and controlling other enterprise staff (behaviours, processes). By organ-
isation of an enterprise (an institution) we shall understand the stratification
(partitioning) of enterprise staff (behaviours, processes) with each partition en-
dowed with a set of authorised functions and with communication interfaces
defined between partitions, i.e., between behaviours (processes).

An Abstraction of Management Functions. Let E designate some enter-
prise state concept, and let stra_mgt, tact_mgt, oper_mgt, wrkr and merge
designate strategic management, tactical management, operational management
and worker actions on states such that these actions are “somehow aware” of
the state targets of respective management groups and or workers. Let p be a
predicate which determines whether a given target state has been reached, and
let merge harmonise different state targets into an agreeable one. Then the
following behaviour reflects some aspects of management.

type
E
value
stra_mgt, tact_mgt, oper_mgt, wrkr, merge: ExXExXExXE — E
p: E* — Bool
mgt: E — E
mgt(e) =

/ "1
let e’ = stra_mgt(e,e”,e" "),
1 11 1
e’ = tact_mgt(e,e” " "),
111 NN
e = oper_mgt(e,e” e "),
11" /BRI IANN
""" = wrkr(e,e”,e",e"") in

if p(e,ell,elll,ellll)

then skip
else mgt(merge(e,e”,e” "))
end end
3 R oo . « " .
The recursive set of e~ = fle, €, €, € equations are “solved” by itera-

tive communication between the management groups and the workers. The ar-
rangement of these equations reflect the organisation and the various functions,
stra_mgt, tact_mgt, oper_mgt and wrkr reflect the management. The fre-
quency of communication between the management groups and the workers help
determine a quality of the result.

The above is just a very crude, and only an illustrative model of management
and organisation.

We could also have given a generic model, as the above, of management and
organisation but now in terms of, say, CSP processes. Individual managers are
processes and so are workers. The enterprise state, e : F/, is maintained by one
or more processes, separate from manager and worker processes. Etcetera.

Management and Organisation: Suggested Research Topics.

R 8. Strategic, Tactical and Operation Management: We made no ex-
plicit references to such “business school of administration” “BA101” topics
as ‘strategic’ and ‘tactical’ management. Study Example 9.2 of Sect. 9.3.1
of Vol. 3 [3]. Study other sources on ‘Strategic and Tactical Management’.
Question Example 9.2’s attempt at delineating ‘strategic’ and ‘tactical’ man-
agement. Come up with better or other proposals, and/or attempt clear, but
not necessarily computable predicates which (help) determine whether an
operation (above they are alluded to as ‘stra’ and ‘tact’) is one of strategic
or of tactical concern.

R 9. Modelling Management and Organisation:
Applicatively or Concurrently: The abstraction of ‘management and
organisation’ on Page 3.5 was applicative, i.e., a recursive function — whose
auxiliary functions were hopefully all continuous. Suggest a CSP rendition
of “the same idea” ! Relate the applicative to the concurrent models.

3.6 Rules and Regulations

By a rule of an enterprise (an institution) we understand a syntactic piece of
text whose meaning apply in any pair of actual present and potential next states
of the enterprise, and then evaluates to either true or false: the rule has been
obeyed, or the rule has been (or will be, or might be) broken. By a regulation
of an enterprise (an institution) we understand a syntactic piece of text whose
meaning, for example, apply in states of the enterprise where a rule has been
broken, and when applied in such states will change the state, that is, “remedy”
the “breaking of a rule”.

Abstraction of Rules and Regulations. Stimuli are introduced in order to
capture the possibility of rule-breaking next states.

type
Sti, Rul, Reg
RulReg = Rul x Reg
]
STI=60 — 6
RUL = (6 x ©) — Bool
REG=6 — 06
value

meaning: Sti — STI, Rul — RUL, Reg — REG
valid: Sti x Rul — @ — Bool
valid(sti,rul)d = (meaning(rul))(6,meaning(sti)6)
axiom
VY sti:Sti,(rul,reg):RulReg,0:0
~valid(sti,rul)d = meaning(rul)(f,meaning(reg)d)

Quality Control of Rules and Regulations. The axiom above presents us
with a guideline for checking the suitability of (pairs of) rules and regulations in
the context of stimuli: for every proposed pair of rules and regulations and for
every conceivable stimulus check whether the stimulus might cause a breaking of
the rule and, if so, whether the regulation will restore the system to an acceptable
state.

Rules and Regulations Suggested Research Topic:.

R 10. A Concrete Case: The above sketched a quality control procedure for
‘stimuli, rules and regulations’. It left out the equally important ‘monitoring’
aspects. Develop experimentally two or three distinct models of domains
involving distinct sets of rules and regulations. Then propose and study
concrete implementations of procedures for quality monitoring and control
of ‘stimuli, rules and regulations’.

3.7 Human Behaviour

By human behaviour we understand a “way” of representing entities, perform-
ing functions, causing or reacting to events or participating in behaviours. As
such a human behaviour may be characterisable on a per phenomenon or con-
cept basis as lying somewhere in the “continuous” spectrum from (i) diligent:
precise representations, performances, event (re)actions, and behaviour inter-
actions; via (ii) sloppy: occasionally imprecise representations, performances,
event (re)actions, and behaviour interactions; and (iii) delinquent: repeatedly
imprecise representations, performances, event (re)actions, and behaviour inter-
actions; to (iv) criminal: outright counter productive, damaging representations,
performances, event (re)actions, and behaviour interactions.

Abstraction of Human Behaviour. We extend the formalisation of rules
and regulations.

Human actions (ACT) lead from a state (@) to any one of possible succes-
sor states (©-infset) — depending on the human behaviour, whether diligent,
sloppy, delinquent or having criminal intent. The human interpretation of a rule
(Rul) usually depends on the current state (©) and can be any one of a possibly
great number of semantic rules (RUL). For a delinquent (...) user the rule must
yield truth in order to satisfy “being delinquent (...)”.

type

ACT = © — O-infset
value

hum_int: Rul — © — RUL-infset

hum_behav: Sti x Rul - ACT — © — O-infset

hum_behav(sti,rul)(«)(6) as s

post 0s = a(f) A
V.00 cbs=
3 se_rul:RUL « se_rul € hum_int(rul)(9) = se_rul(6,0")

Human behaviour is thus characterisable as follows: It occurs in a context of a
stimulus, a rule, a present state (6) and (the choice of) an action (a: ACT) which
may have either one of a number of outcomes (6s). Thus let 6s be the possible
spread of diligent, sloppy, delinquent or outright criminal successor states. For
each such successor states there must exist a rule interpretation which satisfies
the pair of present an successor states. That is, it must satisfy being either
diligent, sloppy, delinquent or having criminal intent and possibly achieving that!

Human Behaviour Suggested Research Topics:. Section 11.8 of Vol. 3 [3]
elaborates on a number of ways of describing (i.e., modelling) human behaviour.

R 11. Concrete Methodology: Based on the abstraction of human behaviour
given earlier, one is to study how one can partition the set, a(f), of out-
comes of human actions into ‘diligent’, ‘sloppy’, ‘delinquent’ and ‘criminal’
behaviours — or some such, perhaps cruder, perhaps finer partitioning —
and for concrete cases attempt to formalise these for possible interactive
“mechanisation”.

R 12. Monitoring and Control of Human Behaviour: Based on possible so-
lutions to the previous research topic one is to study general such interactive
“mechanisation” of the monitoring and control of human behaviour.

3.8 Domain Modelling: Suggested Research Topic

R 13. Sufficiency of Domain Facets: We have covered five facets: intrinsics,
support technology, management and organisation, rules and regulations and
human behaviour. The question is: are these the only facets, i.e., views on
the domain that are relevant and can be modelled? Another question is: is

there an altogether different set of facets, “cut up”, so-to-speak, “along other
lines of sights”, using which we could likewise cover our models of domains?

One might further subdivide the above five facets (intrinsics, support technology,
management and organisation, rules and regulations and human behaviour) into
“sub”-facets. A useful one seems to be to separate out from the facet of rules
and regulations the sub-facet of scripts.

We have finished our overview of domain facets.

4 Domains: Miscellaneous Issues

4.1 Domain Theories

— By a domain theory we shall understand a domain description together with
lemmas, propositions and theorems that may be proved about the description
— and hence can be claimed to hold in the domain.

To create a domain theory the specification language must possess a proof sys-
tem. It appears that the essence of possible theorems of — that is, laws about —
domains can be found in laws of physics. For a delightful view of the law-based
nature of physics — and hence possibly also of man-made universes we refer to
Richard Feynman’s Lectures on Physics [4].

Example Theorem of Railway Domain Theory. Let us hint at some do-
main theory theorems: Kirchhoff’s Law for Railways: Assume regular train
traffic as per a modulo x hour time table. Then we have, observed over a &
hour period, that the number of trains arriving at a station minus the number
of trains ending their journey at that station plus the number of trains starting
their journey at that station equals the number of trains departing from that
station.

Why Domain Theories 7 Well, it ought be obvious ! We need to understand
far better the laws even of man-made systems.

Domain Theories: Suggested Research Topics:.
R 14. Domain Theories: We need to experimentally develop and analyse a num-

ber of suggested theorems for a number of representative domains in order
to possibly ‘discover’ some meta-theorems: laws about laws !

4.2 Domain Descriptions and Requirements Prescriptions

From Domains to Requirements. Requirements prescribe what “the ma-
chine”, i.e., the hardware + software is expected to deliver. We show, in Vol. 3,
Part V, Requirements Engineering, and in particular in Chap. 19, Sects. 19.4-
19.5 how to construct, from a domain description, in collaboration with the
requirements stakeholders, the domain (i.e., functional) requirements, and the
interface (i.e., user) requirements.

Domain requirements are those requirements which can be expressed only
using terms from the domain description. Interface requirements are those re-
quirements which can be expressed only using terms from both the domain
description and the machine — the latter means that terms of computers and
software are also being used.

Domain requirements are developed as follows: Every line of the domain de-
scription is inspected by both the requirements engineer and the requirements
stakeholders. For each line the first question is asked: Shall this line of descrip-
tion prescribe a property of the requirements ? If so it is “copied” over to the
requirements prescription. If not it is “projected away”. In similar rounds the fol-
lowing questions are then raised: Shall the possible generality of the description
be instantiated to something more concrete 7 Shall possible non-determinism of
the description be made less non-deterministic, more deterministic ? Shall the
domain be “extended” to allow for hitherto infeasible entities, functions, events
and behaviours 7 Shall the emerging requirements prescription be “fitted” to
elsewhere emerging requirements prescriptions ? Similar “transformation” steps
can be applied in order to arrive at (data initialisation and refreshment, GUI,
dialogue, incremental control flow, machine-to-machine communication, etc.) in-
terface requirements.

Domain and Interface Requirements: Suggested Research Topics.

R 15. Domain and Interface Requirements: Vol. 3, Part V, Sects. 19.4-19.5
give many examples of requirements “derivation” principles and techniques.
But one could wish for more research in this area: more detailed principles
and techniques, on examples across a wider spectrum of problem frames.

4.3 Requirements-Specific Domain Software Development Models

A long term, that one: ‘requirements-specific domain software development mod-
els’ ! The term is explained next.

Software “Intensities”. One can speak of ‘software intensity’. Here are some
examples. Compilers represent ‘translation’ intensity. ‘Word processors’, ‘spread
sheet systems’, etc., represent “workpiece” intensity. Databases represent ‘in-
formation’ intensity. Real-time embedded software represent ‘reactive’ intensity.
Data communication software represent connection intensity. Etcetera.

“Abstract” Developments. Let "R’ denote the “archetypal” requirements
for some specific software ‘intensity’. Many different domains {D;, D, . ..

.Di, ...

D, ..

may be subject to requirements “R"-like prescriptions. For each such a set of

possible software may result. The “pseudo-formula” below attempts, albeit in-

formally, to capture this situation:

Several different domains, to wit: road nets and railway nets, can be given the

D1 _{811,812,...,81j1,...}_
Do {811,812,...,81].2,...
D; p~ "R" — {Sil,Siz,...,Siji,...}
Ds. {8k1,8k2,...,5kjk,...}

“same kind” of (road and rail) maintenance requirements leading to information

systems. Several different domains, to wit: road nets, railway nets, shipping lanes,
or air lane nets, can be given the “same kind” of (bus, train, ship, air flight)
monitoring and control requirements (leading to real-time embedded systems).
But usually the specific requirements skills determine much of the requirements
prescription work and especially the software design work.

Requirements-Specific Devt. Models: Suggested Research Topics.

R 16,. Requirements-Specific Development Models, RSDM ;: We see these
as grand challenges: to develop and research a number of requirements-
specific domain (software) development models RSDM;.

The “pseudo-formal” T[(>-;" D;) "R” Z” S;,; expression attempts to capture
an essence of such research: The [“operator” is intended to project (that is, look
at only) those domains, D;, for which ”R” may be relevant. The research explores
the projections [, the possible "R"s and the varieties of software " ;.

4.4 On Two Reasons for Domain Modelling

Thus there seems to be two entirely different, albeit, related reasons for domain
modelling: one justifies domain modelling on engineering grounds, the other on

scientific grounds.

An Engineering Reason for Domain Modelling. In an e-mail, in response,

undoubtedly, to my steadfast, perhaps conceived as stubborn insistence, on do-
main engineering, Sir Tony Hoare summed up his reaction, in summer of 2006,

to domain engineering as follows, and I quote®:

“There are many unique contributions that can be made by domain modelling.

SE-Mail to Dines Bjgrner, CC to Robin Milner et al., July 19, 2006

3

1. The models describe all aspects of the real world that are relevant for any good
software design in the area. They describe possible places to define the system
boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be made
in any embedded software design, especially one that is going to be formally
proved.

3. They describe® the” whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
in any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in some depth, in Vol. 3 [3] of
my three volume book.

A Science Reason for Domain Modelling. So, inasmuch as the above-
listed issues of Sect. 4.4, so aptly expressed in Tony’s mastery, also of concepts
(through his delightful mastery of words), are of course of utmost engineering
importance, it is really, in our mind, the science issues that are foremost: We
must first and foremost understand. There is no excuse for not trying to first
understand. Whether that understanding can be “translated” into engineering
tools and techniques is then another matter. But then, of course, it is nice that
clear and elegant understanding also leads to better tools and hence better en-
gineering. It usually does.

Domains Versus Requirements-Specific Development Models. Sir Tony’s
five statements are more related, it seems, to the concept of requirements-specific
domain software development models than to merely the concept of domain mod-
els. His statements help us formulate the research programme R 16 of require-
ments specific domain software development models. When, in his statements,
you replace his use of the term ‘models’ with our term ‘requirements-specific de-
velopment models based on domain models’, then “complete harmony” between
the two views exists.

5 Conclusion

5.1 What Has Been Achieved ?

I set out to focus on what I consider the crucial modelling stage of describing
domain facets and to identify a number of their research issues. I’ve done that.

Sread: imply
"read: a

Cursorily, the topic is “near-holistic”, so an overview is all that can be done.
The issue is that of that of a comprehensive methodology. Hence the “holism”
challenge.

5.2 What Needs to Be Achieved ?

Well, simply, to get on with that research. There are two sides to it: the 16
research topics mentioned above, and the ones mentioned below. The latter
serves as a carrier for the former research.

Domain Theories: Grand Challenge Research Topics. The overriding
research topic is that of:

R 17;. Domain Models: D;: We see this as a set of grand challenges: to develop
and research a family of domain models D;.

5.3 Acknowledgements

I thank the organisers for inviting me to present a (this ?) talk. I thank UNU-
IIST for inviting me and my wife back to Macau to a place where I spent great
years. I consider UNU/IIST (as we spelled it in those days) one of my main
achievements, so I also thank all those people who made it possible. They may
have suffered then. But they too can be very proud now. I thank Sir Tony for
fruitful discussions during the writing of this paper.

References

1. Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

2. Dines Bjgrner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.
Chapters 12-14 are primarily authored by Christian Krog Madsen.

3. Dines Bjgrner. Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

4. Richard Feynmann, Robert Leighton, and Matthew Sands. The Feynmann Lec-
tures on Physics, volume Volumes [-II-1I. Addison-Wesley, California Institute of
Technology, 1963.

