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As vehicle rollovers annually cause a great deal of traffic-related deaths, an increasing number of vehicles are being equipped with
rollover prevention systems with the aim of avoiding such accidents. To improve the functionality of active rollover prevention
systems, this study provided a potential enhanced method with the intention to predict the tendency of the lateral load transfer
ratio (LTR), which is the most common rollover index. This will help provide a certain amount of lead time for the control system
to respond more effectively. Before the prediction process, an estimation equation was proposed to better estimate the LTR; the
equation was validated using Simulink and TruckSim. Further, to eliminate the influence of drawbacks and make this method
practical, a buffer operator was added. Simulation results showed that grey LTR (GLTR) was able to roundly predict the future trend
of the LTR based on current and previous data. Under the tests of “Sine with Dwell” (Sindwell) and double lane change (DLC), the
GLTR could provide the control system with sufficient time beforehand. Additionally, to further examine the performance of the
GLTR, a differential systemmodel was adopted to verify its effectiveness.Through the Sindwell maneuver, it was demonstrated that
the GLTR index could improve the performance of the rollover prevention systems by achieving the expected response.

1. Introduction

Among traffic issues, bus rollover is a huge problem for
bus manufacturing enterprises and traffic administration. To
solve this problem, researchers and engineers have developed
many kinds of rollover prevention systems [1]. However, once
the phase of the impending rollover begins, there is not
enough time left for the actuators to act accurately, espe-
cially during extremely dangerous situations [2]. Therefore,
being able to predict the rollover tendency beforehand and
to produce a suitable compensation time are essential for
preventing bus rollover situations.

Currently, the load transfer ratio (LTR) is a widely used
reference parameter for rollover detection [3], having been
used as the rollover index for antirollover bars [4] and differ-
ential braking systems [5]. Commonly, a rollover prevention
system initiates the actuators once the LTR exceeds a certain

threshold. If an algorithm could predict the LTR, then the
lead time could increase the gap between the predicted LTR
and the actual LTR. As a result, there would be enough
time for the actuator to initiate an effective countermeasure,
therefore increasing its effectiveness.

There are many kinds of prediction methods used for
different purposes [6, 7]. Deep learning methods are com-
monly used prediction tools, which have been used among
many fields including car risk prediction [8]. However, LTR
prediction is a real-time process; only the newly transitory
acquired data can be used.Therefore, since LTR prediction is
a real-time process, a potential prediction algorithm should
have the following characteristics: a small sample size, fast
computation, and small internal storage requirements. One
suitable method is the grey model, coined by Deng in the
1980s [9].This model is good at solving uncertainty problems
with small samples and poor information. Vehicle motion is
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a rapid course; therefore, old data is not useful for the real
prediction and has a side effect on the results because the
data is not new enough. Hence, we developed a grey-model-
based prediction method to conduct LTR prediction to form
an early rollover index. The grey model has achieved great
success inmany fields and has been used in offline prediction.
Using fatal crash data from the United Kingdom, Mao et al.
[10] applied the grey model to future risk estimation and
found that the predicted value approached the actual value.
The grey model was applied to predict the vehicle’s wheel slip,
and then the predicted slip was transferred to a sliding mode
controller, which strengthened the controller’s robustness
[11]. The grey model has also been used to predict the lateral
distance between approaching vehicles to provide drivers
with extra time to react to an impending collision [12]. In
terms of real-time LTR simulation, Chou et al. [13] combined
a grey model and a rollover index to detect the rollover of a
14-degree-of-freedom tractor-trailer. The results showed that
the grey rollover index achieved an earlier detection of the
rollover threat than the rollover index alone; furthermore,
the lead time was sufficient for the actuator to be involved.
However, the vehicle model they used was an ideal Simulink
model, which is largely different from a real bus, and its
LTR estimation did not match well with the TruckSim LTR.
In this study, a more accurate estimation model was used,
and the outputs from TruckSim were directly adopted. In
addition, to mitigate the LTR’s shock data, a buffer operator
was employed to ensure the effectiveness of the grey LTR
(GLTR) throughout a wider speed range. Furthermore, a
rollover prevention system model was built to examine the
function of the GLTR.

The main contributions of this paper are the following:

(1) A predictive LTR, which can be regarded as an earlier
rollover detection index, was introduced to achieve
rollover prediction.

(2) The GLTR was effective at making predictions dur-
ing two standard handling tests, “Sine with Dwell”
(Sindwell) and double lane change (DLC), proving
that GLTR can cope with different kinds of lateral
motions.

(3) A considerable lead time was generated to increase
the working time available for initiating a rollover
prevention action.

(4) GLTR index was brought into rollover prevention.
The effectiveness in reducing the rollover risks was
further verified via TruckSim–Simulink cosimulation
by building a differential braking system.

The rest of the paper is organized as follows: Section 2
presents the bus rollover model, tier model, and its LTR
estimation. Section 3 introduces the LTR prediction method-
ology, including the grey model (first-order one variable)
known as GM(1, 1), as well as the buffer operator. Section 4
presents the simulation results of the LTR prediction.
Section 5 offers a further simulation study, which fused
the GLTR with a differential-based braking system. Finally,
Section 6 offers our conclusions.
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Figure 1: Bus rollover dynamic model.
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Figure 2: Bus roll dynamics.

2. Bus Dynamic Model

2.1. LTR Estimation. It is not easy to detect the real force
acting on tires since the necessary sensors are extremely
expensive. Therefore, a bus rollover dynamic model was
constructed to establish a suitable LTR estimation equation.

Figure 1 illustrates the lateral dynamics of a bus. The
diagram includes the bus yaw angle direction and yaw rate,
velocity, and slip angle. Figure 2 shows the roll dynamics of
the bus. The effect of the bus’s unsprung mass on the roll
dynamics was neglected. The road bank angle and the bus
roll angle and distance associated with the roll center are also
indicated in this diagram.

In Figures 1 and 2, d is the bus width; h is the vertical
distance from the sprungmass CG to the assumed roll axis; 𝛾
is the yaw rate; ß is the bus’s slip angle; 𝛿 is the steering wheel
angle; Fxfl, xfr are the front left and the front right longitudinal
forces; Fyfl, yfr are the front left and the front right lateral
forces; af and ar are the front tire’s slip angle and rear tire’s
angle; and finally, 𝜙𝑏 and 𝜙V are the road bank angle and the
vehicle roll angle, respectively.
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The bus lateral dynamics can be written as

∑ 𝐹𝑦 = 𝑚𝐴𝑦
= 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + (𝐹yfl + 𝐹yfr) . cos 𝛿

+ (𝐹xfl + 𝐹xfr) . sin 𝛿
(1)

and

(𝐼𝑥𝑥 + 𝑚ℎ2) . ( ̈𝜙𝑟 − ̈𝜙𝑏) = (𝐹𝑧𝐿 − 𝐹𝑧𝑅) . 𝑑
2

+ ∑ 𝐹𝑦.ℎ. cos 𝜙𝑟 + 𝑚𝑔ℎ. sin 𝜙𝑟. cos 𝜙𝑏
− 𝑚𝑔ℎ. cos 𝜙𝑟. sin 𝜙𝑏
+ [(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝑚ℎ2] .𝛾2. sin (𝜙𝑟 − 𝜙𝑏) . cos (𝜙𝑟 − 𝜙𝑏)

(2)

where 𝐴𝑦 = V̇ + 𝑟𝑢 − 𝑔. sin 𝜙𝑏 + ℎ𝜙𝑟2. sin 𝜙𝑟 + ℎ𝛾2. sin 𝜙𝑟 −
ℎ. ̈𝜙𝑟. cos 𝜙𝑟; Ay is the lateral acceleration; Ixx,yy,zz are the
moments of inertia about the respective axes; u is the bus’s
longitudinal velocity; v is bus’s lateral velocity.

The vertical dynamics of the sprung mass can be shown
as

𝑚𝑧̈ = 𝑚. ( ̇𝜙2𝑟ℎ. cos𝜙𝑟 + ̈𝜙𝑟ℎ sin 𝜙𝑟)
= (𝐹𝑧𝐿 + 𝐹𝑧𝑅) − 𝑚𝑔. cos 𝜙𝑟

(3)

where m is the sprung mass; Ay is the lateral acceleration.
If the road bank angle is zero, (1)–(3) can be expressed as

follows:

∑ 𝐹𝑦 = 𝑚. (V̇ + 𝑟𝑢 + ℎ𝛾2. sin 𝜙𝑟 + ℎ ̇𝜙𝑟2. sin 𝜙𝑟 − ℎ ̈𝜙𝑟. cos 𝜙𝑟) (4)

(𝐼𝑥𝑥 + 𝑚ℎ2) . ̈𝜙𝑟 = (𝐹𝑧𝐿 − 𝐹𝑧𝑅) . 𝑑
2 + . . . ∑ 𝐹𝑦.ℎ. cos 𝜙𝑟

+ 𝑚𝑔ℎ . sin 𝜙𝑟 + [(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝑚ℎ2] .𝛾2. sin 𝜙𝑟. cos 𝜙𝑟
(5)

𝑚𝑧̈ = 𝑚. ( ̇𝜙2𝑟ℎ. cos 𝜙𝑟 + ̈𝜙𝑟ℎ sin 𝜙𝑟) = (𝐹𝑧𝐿 + 𝐹𝑧𝑅) − 𝑚𝑔 (6)

The LTR, which estimates the difference in the tire’s nor-
mal forces acting on each side of the bus, is a commonly used
load transfer metric [14]. Equation (7) gives the expression of
the LTR:

LTR = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹𝑧𝑅 − 𝐹𝑧𝐿𝐹𝑧𝑅 + 𝐹𝑧𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (7)

where FzR and FzL represent the vertical force of the right tire
and the left tire, respectively, and 𝐹𝑧𝑅 + 𝐹𝑧𝐿 = 𝑚𝑔. The LTR
varies from 0 to 1, where 1 represents one side of bus tires
losing contact with the ground.

Solving the simultaneous equations, assuming that ̈𝜙𝑟 anḋ𝜙𝑟 are zero and substituting them into (7), the following LTR
expression is obtained, as shown below:

𝐿𝑇𝑅
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2
𝑑 . ℎ. (cos 𝜙𝑟. (V̇ + 𝛾𝑢) + ℎ𝛾2. sin 𝜙𝑟 + 𝑔. sin 𝜙𝑟)

𝑔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(8)

(1)Ramp entering

(2)Obstacle avoidance

Figure 3: Bus rollover conditions.
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Figure 4: Steering wheel angle with 89 km/h Sindwell at 90∘ steering
amplitude.

Further assumptions were adopted as follows: cos2𝜙𝑟 ≈1, ℎ𝛾2 ≈ 0, and V̇ + 𝛾𝑢 = 𝐴𝑦 ⋅ cos 𝜙𝑟 Therefore, the final
expression of the estimated LTR is

𝐿𝑇𝑅𝑒 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2ℎ
𝑑𝑔 [𝐴𝑦 + 𝑔. sin 𝜙𝑟]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (9)

The results using (9) were abbreviated as Est-LTR.Abuilt-
in bus model provided by TruckSim can output each tire’s
vertical force; thus, the real LTR value can be calculated by (7)
with these tire forces.The calculated result of (7) was referred
to as the actual LTR, abbreviated as Act-LTR.

Some parameters of the bus are listed in Table 1.
To verify the effectiveness of (9), simulation works were

carried out by comparing the estimated LTR (Est-LTR)
and the actual LTR (Act-LTR) models. The road adhesion
coefficient was set as 0.85, ensuring the lateral risk of rollover,
but not of lateral slip. Figure 3 shows the common situations
in which the rollover happens easily. In order to simulate
these two conditions, we used the more complex maneuvers
of Sindwell and DLC, which are often utilized for vehicles’
lateral performance tests, to reproduce the rollover situations.

Figure 4 shows the steering angle of the 89-km/h Sindwell
test where the steering amplitude was 90∘. Results of the
comparison under this test are demonstrated in Figure 5,
which indicate that the trends of the two curves matched
well. Figure 6 illustrates the steering wheel angle of the DLC
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Table 1: Some parameters of the bus in TruckSim.

Sprung mass (m/kg) 7690
Bus width (d/m) 1.93
Distance from the sprung mass CG to the assumed roll axis (h/Vertical/m) 0.563
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Figure 5: Estimated versus TruckSim load transfer ratio (LTR) with
89 km/h Sindwell at 90∘ steering amplitude.
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Figure 6: Steering wheel angle with 105 km/h double lane change
(DLC).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Time (s)

LT
R

Est-LTR
Act-LTR

Figure 7: Estimated versus TruckSim LTR with 105 km/h DLC.

test, which was conducted according to ISO 3888-2:2002 [15].
Figure 7 demonstrates the comparison of the Est-LTR and
Act-LTR under a test of a 105-km/h DLC; the figure indicates
a slight lead time, with the Est-LTR reaching 0.7 at 3.841
s and Act-LTR reaching at 3.852 s. Hence, the estimation
equation was valid as the reference formulation for a rollover

prevention system. As a result, in the following sections, we
considered the Est-LTR as the actual LTR.

2.2. TireModel. To calculate the tire forces, this study utilized
the Dugoff tire model, which is a nonlinear tire model. Com-
pared with some empirical tire models, such as the “magic
formula” (MF) model, which require a large number of tire-
specific parameters that are probably unknown, the Dugoff
model, by simple equations, can acquire the longitudinal and
lateral tire-road forces under different wheel slip conditions
[16].

Lateral and longitudinal tire-road forces can be defined as

𝐹𝑦𝑖 = 𝐶𝑦𝑖 tan 𝛼𝑖
1 − 𝜆𝑖 𝑓 (𝑆)

𝐹𝑥𝑖 = 𝐶𝑥𝑖𝜆𝑖1 − 𝜆𝑖𝑓 (𝑆)
𝑆 = 𝜇𝐹𝑧𝑖

2√𝐶2𝑥𝑖𝜆2𝑖 + 𝐶2𝑦𝑖tan2𝛼𝑖
(1 − 𝜆2𝑖 )

𝑓 (𝑆) = {{{
1 S > 1
𝑆 (2 − 𝑆) S < 1.

(10)

Cxi and Cyi are the longitudinal and lateral corner stiffness of
the tire, 𝜇 is the road adhesion coefficient maximum friction
coefficient, 𝜆i is the slip ratio, and ai is the slip angle of the
wheels. In this study, the value of 𝜇 is 0.85; therefore, the
bus lateral motion risk is the rollover rather than sideslip.
The longitudinal wheel slip ratio 𝜆i can be obtained from
TruckSim.

3. LTR Prediction Methodology

3.1. Grey Model. Among the grey model types, the one suit-
able for LTR prediction is the GM(1, 1) type, meaning “first-
order one variable” [9].This model is a time series forecasting
model. The differential equations of the GM(1, 1) model are
renewed as data becomes available to the prediction.

The grey prediction model’s advantage is that just a
few discrete data are necessary to characterize an unknown
system. The GM(1, 1) steps are as follows [17]:

(1) Sort the initial series of 𝑋(0) as 𝑋(0) = (𝑋(0)(1),𝑋(0)(2), 𝑋(0)(3), . . . , 𝑋(0)(𝑛)). 𝑋(0) is the series of LTR values
that can be obtained by the tapped delay block in Simulink.
In this study, we set n as equal to 10.(2) Generate the first-order accumulated generating an
operation (1-AGO) sequence. The general form of 𝑋(1) is
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𝑋(1)(1), 𝑋(1)(2), 𝑋(1)(3), . . . , 𝑋(1)(𝑛) and the definition of 1-
AGO of 𝑋(0) is

𝑋(1) (𝑘) = 𝑘∑
𝑖=1

𝑋(0) (𝑖) = 𝑋(1) (𝑘 − 1) + 𝑋(0) (𝑘) . (11)

(3) Set the first-order original differential equation of𝑋(1). Suppose 𝑋(1) meets the equation below:

𝑑𝑋(1)
𝑑𝑡 + 𝑎𝑋(1) = 𝑏 (12)

This is the basic form of GM(1, 1), where variable a and
variable b are coefficients. Define variable 𝑎 = [𝑎, 𝑏]𝑇.

Its difference equation is

𝑋(0) (𝑘) + 𝑎𝑍(1) (𝑘) = 𝑏 𝑘 = 2, 3, . . . , 𝑛. (13)

𝑍(1)(𝑘) is called the background value, and its equation
is 𝑍1(𝑘) = 𝛼𝑋1(𝑘 − 1) + (1 − 𝛼)𝑋1(𝑘).𝛼 is often set to 0.5.
Therefore, according to the roots of this differential equation,
the particular solution of (10) can be described as

𝑋(0) (𝑘) = (𝑋(0) (1) − 𝑏
𝑎 ) 𝑒−𝑎𝑘 + b

𝑎 (14)

where 𝑋(0)(𝑘) is the predictive value of the series.(4) Use the least square to obtain parameters a and b.
Equation (15) can be written as

𝑋(0) (𝑘 + 1) = 𝑎 [− 1
2 (𝑋 (1) (𝑘 + 1) + 𝑋 (1) (𝑘))] + 𝑏,

𝑘 ≥ 𝑛
[𝑎

𝑏 ] = (𝐵𝑇𝐵)−1 𝐵𝑇𝑌𝑛,
(15)

where

𝐵 =
[[[[[[
[

− (𝑋(1) (1) + 𝑋(1) (2))
− (𝑋(1) (2) + 𝑋(1) (3))

. . .
− (𝑋(1) (𝑛 − 1) + 𝑋(1) (𝑛))

]]]]]]
]

(16)

and

Yn = (𝑋(0) (2) , 𝑋(0) (3) , . . . , 𝑋(0) (𝑛)) (17)

(5) Estimate the AGO value X1(1) and insert a and b into
(8) in order to obtain the particular solution of the differential
equation.

As a result, the recovery of the predictive value can be
acquired by the following equation:

𝑋(0) (𝑘) = 𝑋(1) (𝑘) − 𝑘−1∑
𝑖=1

𝑋(0) (𝑖) (18)

3.2. Buffer Operator. During some severe handling tests, the
LTR value changes rapidly. This results in the predictive
values growing fast and causing unintended local peaks in the
prediction curve. For this reason, it is necessary to mitigate
the growth trend among the time sequence to obtain smooth
predictive curves.

X(0) is the delayed LTR data series, D is the grey
buffer operator applied to X(0), and XD = (X(1)d1,X(2)d2,. . . ,X(n)dn) is the sequence after the function of the operator
D on X. D is called the sequence operator and XD is the first-
order operator acting sequences 𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑛).

Basic knowledge about the weakening buffer operator:
when D meets the three conditions below, D can be called
a weakening buffer operator [18]; otherwise, it cannot be:

(a) If X is a monotonic increasing series:

B is a weakening buffer operator ⇐⇒ X(k)≤
X(k)dk

(b) If X is a monotonic decreasing series:

D is a weakening buffer operator ⇐⇒ X(k)≥
X(k)dk

(c) If X is a vibrational series:

min
1≤𝑘≤𝑛

{𝑥 (𝑘)} ≤ min
1≤𝑘≤𝑛

{𝑥 (𝑘) 𝑑𝑘}
and max
1≤𝑘≤𝑛

{𝑥 (𝑘)} ≥ max
1≤𝑘≤𝑛

{𝑥 (𝑘) 𝑑𝑘} (19)

D is a weakening buffer operator.
In this study, a buffer operator was utilized as below:𝑋(𝑘)𝐷 = (𝑋(𝑛))𝜌(𝑋(𝑘))(1 − 𝜌), 𝑘 = 1, 2, 3, . . . , 𝑛; D is

a buffer operator and 𝜌 is the weight of X(n). In this paper,
the prediction results could reach a balance between the ideal
lead time and the smoothness of the prediction curve when
the value of the weight variable 𝜌 was 0.8.

3.3. Real-Time LTR Prediction. The simulation works of LTR
prediction were implemented in the TruckSim and Simulink
co-atmosphere. The TruckSim software can provide a built-
in bus model with dynamic outputs that are very close to the
filtered data acquired from a real running bus. Figure 8 shows
the LTR prediction process using the grey model, which is
an open loop. The lateral acceleration and roll angles -𝐴𝑦
and 𝜙𝑟 were exported in real time from TruckSim and then
utilized by the LTR equation to obtain an estimated LTR.
The tapped delay block was utilized to delay and save the
LTR values of a continuous time period, and the LTR series
was sent to the next process. At first, 10 continuous data
were acquired in real time. To avoid the results being infinity
or not being a number, we set the initial LTR data as 0.01.
We used a heuristic method to find that 10 was a suitable
number. If n is over 10, the series contains too much old
information which will have a side effect on the prediction
result; if n is less than 10, the number is not enough to give a
reasonable prediction result. Before the grey model process,
the buffer operator was used on (𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛))
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and the buffered sequence D∗(𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛))
was generated.On the basis of the new sequence, the five steps
of GM(1, 1) were implemented to get the predicted series
(𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛), . . . , 𝑋(0)(𝑛+𝑓)), and 𝑋(0)(𝑛+𝑓)
is the predicted LTR value. During the predicted sequence,
the preferred lead time is f∗Ts, where f and Ts represent the
forward steps and the sample interval separately. Hence, if
it is assumed that Ts is 0.02 s and f is 10, then the preferred
lead time is 0.2 s. After the grey model process, the future
LTR was obtained and stood as the reference value of earlier
rollover detection.When a processing cycle ends, the old data
are released, and a new cycle begins. The predicted LTR value
produced by the grey model is called the GLTR.

4. LTR Prediction Results

To examine how long the lead time can be generated by the
GLTR index, some comparison simulations are reported in
this section. Under the cosimulation atmosphere, high-risk
rollover maneuvers were carried out to examine the different
performances between the GLTR and LTR. The chosen
tests were the Sindwell and DLC maneuvers. Sindwell is a
typical maneuver for testing a vehicle’s lateral performance,
which was established by the National Highway Traffic
Safety Administration (NHTSA). Concurrently, the double
lane change maneuver has been adopted by many vehicle
companies as another typical lateral procedure.

In this part, the forward prediction steps were all 10, and
the interval time was 0.02 s. As a result, the corresponding
preferred lead time was 0.2 s.

4.1. Limiting Factor of GM(1,1). This part discusses the LTR
prediction results without the buffer operator process. The
prediction results for more complex handling tests such as
the DLC and Sindwell tests proved that GM(1, 1) had a
severe limitation. The drawback was that if the predicted LTR
was saturated by the physical threshold, the algorithm may
generate a wrong warning or activate the control system, even
at a safe driving speed.

To demonstrate this issue, a typical example of the
85-km/h DLC test is presented in Figure 9. During this
maneuver, the LTR threshold we set for rollover prevention
was 0.7. Nevertheless, the actual LTR was about 0.6, meaning
that there was no actual rollover risk. Under this practical
circumstance, there is no need to initiate the rollover preven-
tion systems at this relatively safe driving speed. However, the
peak points of the prediction curves were (3.82, 0.985) and
(5.86, 1.031), which were all above the threshold. Due to the
peak point being over 0.7, the prediction curve will lead to the
unnecessary initiation of the prevention system.
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Figure 9: Prediction results in 85-km/h DLC using GM(1, 1).
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Figure 10: Prediction result for 85-km/h DLC using the grey LTR
(GLTR).

As a result, particularly at a lesser high speed, the use
of basic GM(1, 1) in the LTR prediction has limiting factors
in serious rollover risk conditions where these prediction
mutations will cause the unintended initiation of the rollover
prevention system. This limiting factor prevents the grey
model from extending its application to the entire speed
range.

To overcome this issue, first, the trend development in the
old data series needed to be reduced. As shown in Figure 10,
we used a buffer to shrink the data tendency before we
applied GM(1, 1) to the real-time data series. Therefore, after
combining GM(1, 1) with the proposed buffer, the GLTR
algorithm was formed.

Figure 10 displays the effectiveness of the GLTR in the
85-km/h DLC test. Compared with Figure 9, the weakening
effect was obvious, causing the peak position to reduce from
(5.86, 1.031) to (6.04, 0.661), which was very close to the peak
position (6.14, 0.623) of the Est-LTR. As a result, after the
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Figure 11: Prediction results for the 105-km/h DLC test.
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Figure 12: Prediction results for the 89-km/h Sindwell test.

Table 2: Prediction of GLTR efficacy.

Tests T1 T1’ ΔT1
A. 105 km/h DLC 3.841 s 3.634 s 0.207 s
B. 89 km/h Sindwell 1.698 s 1.521 s 0.177 s

addition of a buffer operator, the GLTR can overcome the
limiting factor of GM(1, 1) by giving a reasonable prediction
performance at a secondary high speed for rollover-risk
maneuvers.

4.2. Prediction Results of the GLTR. In order to verify the
effectiveness of the GLTR for the target lead time, 105-km/h
DLC and 89-km/h Sindwell simulation tests were conducted
using the GLTR index. The prediction results of these two
maneuvers are shown in Figures 11 and 12. T1 and T1’ are
the time points at which the Est-LTR and the GLTR reach
the threshold. Table 2 provides a detailed description of the
prediction results for these two maneuvers where the lead
times were substantial. During the 105-km/h DLC, with the
rollover threshold set as 0.7, the lead time was 0.207 s.
Concurrently, during the 89-km/h Sindwell, the lead timewas
0.177 s.

Therefore, after applying the GLTR index, with the suffi-
cient lead time, the activation command could be triggered in
advance about 0.2 s. GLTR performed better thanGM(1, 1) in
LTR prediction by acquiring enough lead time and reducing
the prediction crests. Furthermore, the new threshold signal

can be useful for additional warning systems or differential-
based systems, which will highly reduce the rollover risks.

To further illustrate the efficacy of the GLTR, the results
were compared with other works. We still use a 89-km/h
Sindwell maneuver as an example. In [19], a predictive LTR
index PLTR was introduced. Equation (20) is the basic
expression for the PLTR. In the test, future time Δt is 0.2 s,
corresponding to the preferred lead time in this study.

𝑃𝐿𝑇𝑅𝑡0 (Δ𝑡) = 𝐿𝑇𝑅 (𝑡0) + 𝐿𝑇̇𝑅 (𝑡0) ⋅ Δ𝑡 (20)

The lead time of PLTRwas 0.163s, which is less than 0.177s
(using GLTR), proving GLTR’s efficacy.

5. Further Verification

In addition, to further examine the actual effectiveness of this
new rollover index, a Simulink model (an active differential
braking system) was added to function as the rollover pre-
vention system. GLTR works as the threshold of the rollover
prevention action. Figure 13 shows the control structure of
the differential braking system. Once the system detects that
the GLTR has exceeded the threshold, the actuator will begin
to provide differential braking forces as the yawing moment
intervention. Fflb , Ff rb are the front left and front right braking
forces. Frlb, Frrb are the rear left and rear right braking forces.
Once GLTR is over 0.7, the antirollover countermeasure
begins by adding an additional yawing moment.

A 2-DOF vehicle model, which is the so-called “bicycle
model”, was used as the reference model.

Based on the 2-DOF model and Formula (10), the
reference yawing moment can be calculated as below:

∑ 𝑀𝑧𝑟 = 𝑎𝐹𝑦1 − 𝑏𝐹𝑦2 = 𝑎𝐶𝑦1𝛼1 − 𝑏𝐶𝑦2𝛼2 (21)

Therefore, the additional moment can be obtained by the
equation as below:

Δ𝑀𝑧 = 𝑀𝑧 − 𝑀𝑧𝑟 (22)

The differential braking is achieved by establishing a
PID controller. Aproportional–integral–derivative controller
(PID controller) is a control loop feedbackmechanism widely
used in industrial control systems and a variety of other
applications requiring continuously modulated control [20].
The distinguishing feature of the PID controller is the ability
to use the three control terms of the proportional, integral,
and derivative influence on the controller output to apply
accurate and optimal control.

The overall control function can be expressed mathemat-
ically as

𝑈 (𝑠) = 𝐾𝑝 (1 + 1
𝑘𝑖.𝑠 + 𝐾𝑑.𝑠) .𝐸 (𝑠) (23)

where

Kp is the proportional gain, a tuning parameter,
Ki is the integral gain, a tuning parameter,
Kd is the derivative gain, a tuning parameter.
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Figure 13: GLTR control system using PID controller.

𝐸(𝑠) = 𝛾𝑒 − 𝛾𝑟 is the error of yaw rate, where 𝛾𝑒 and 𝛾𝑟 are
the measured raw rate and reference yaw rate.

We used the yaw rate error as the control goal to calculate
the target yawing moment. In (23), Kp = 290, Ki = 120, and
Kd = 2.4.

According to steering characteristic of a bus, Table 3 is
listed for the selection of the braking wheel to achieve the
required yawing moment.

To better understand the effectiveness ofGLTR, estimated
LTR was also used as the threshold in the comparison sim-
ulation tests. This simulation tested the performances of the
prevention system after the application of the GLTR and LTR.

This part demonstrates the simulation results acquired
from the closed-loop cosimulation utilizing the GLTR index
studied in this paper. The cosimulation model included the
bus model in TruckSim, an active differential braking system
built in Simulink. The active differentials obtained opposite
moment by adding extra braking torque on a certain wheel,
so that the vehicle was able to effectively control the roll and
yaw motions.

We used LTR and GTR as the threshold in the controllers
separately. To validate theGLTR, comparison simulation tests
were carried out with TruckSim to find the impact of the
new controller. The comparison was conducted among a bus
with the control system off, a bus with the LTR active, and
a bus with the GLTR active. The simulation test was for the
100-km/h “Sindwell” maneuver with a 90∘ amplitude. First,
Figure 14 shows the LTR prediction result using LTR. The
peak points of LTR and GLTR curves are (1.608, 0.775) and
(1.802, 0.758), where there are 0.2 s between the two peak
points.

From Figure 15, the buses with the LTR and the GLTR
matched well until the midpoint of the second turn when the
GLTR systems activated prior to the LTR.The peak points of
GLTR control and LTR control were reduced to (1.639, 0.671)
and (1.727, 0.691) separately. We could see that the GLTR
control could help the bus reach a steady state prior to the
bus under LTR control. The two curves reached zero at 2.55
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Figure 14: Prediction results for the 100-km/h Sindwell test.
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Figure 15: Comparison result in the 100-km/h Sindwell test using
differential controllers.

s and 2.72 s, showing that the GLTR control could make the
bus steady 0.17 s in advance.

Figure 16 shows the comparison result of the roll angles
between the LTR control and GLTR control. The GLTR
could help the bus reduce the yawing rate about 0.035 rad/s,
remarkably reducing the possibilities of rollover.
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Table 3: Braking strategy of a bus.

Steering angle Δ𝛾 Steering property Braking wheel

> 0 > 0 oversteer Right front
< 0 understeer Left rear

< 0 > 0 understeer Right rear
< 0 oversteer Left front
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Figure 16: Comparison result of the yaw rate in the 100-km/h
Sindwell test.

6. Conclusions

This study demonstrated an LTR prediction algorithm for
bus rollover systems. Unlike existing methods that are based
on estimation algorithms, the proposed algorithm could
generate a considerable lead time for rollover prevention sys-
tems or warning systems. This rollover index was the fusion
of the grey model and a buffer operator that was introduced
for bus rollover detection. The simulation study aimed at
examining the prediction effectiveness of the GLTR and
its application possibility. Some conclusions regarding this
approach can be made as follows.

(1) An LTR estimation equation was developed and then
verified to have a rather suitable agreement with the
LTR definition formula that directly makes use of the
vertical tire forces from TruckSim.

(2) Lead times produced by the GLTR help the warning
systems activate in advance, which will reduce the
possible risks of bus rollover.

(3) Further simulation verification was carried out by
applying the GLTR in a differential-based system.
Compared with the traditional LTR index, the GLTR
could help the differential-based system have better
performance and efficacy.

(4) In the future, for further promotion, this new rollover
index should be applied to a real rollover prevention
system to conduct hardware in loop tests or road
assessments.
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