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Abstract. Numerical simulations with a monotonicity pre- 
serving flow solver have been performed to study shock 
diffraction phenomena and shock wave generated vorticity. 
The computations were performed using the conservative Fi- 
nite Element Method-Flux Corrected Transport (FEM-FCT) 
scheme, which has been shown to have an excellent pre- 
dictive capability for various compressible flows with both 
strong and weak shocks. An adaptive unstructured methodol- 
ogy based on adapting to high density and entropy gradients 
was used in conjunction with a conservative shock-capturing 
scheme to adequately resolve strong and weak flowfield gra- 
dients. The chief interest was the formation of vorticity aris- 
ing from shock wave propagation over a sharp corner and 
the high accuracy and resolution of the interacting compress- 
ible wave features. Numerical simulations were compared 
with previous experimental results and exhibited remarkably 
good agreement in terms of compressible wave propagation, 
as well as vorticity development and transport. The com- 
putations also allowed insight into the fundamental fluid 
dynamics, specifically shock diffraction, vortex convection 
and shock-vortex interactions. 
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1. Introduction 

The propagation and diffraction of shocks past solid bodies 
has received considerable attention in the past, both exper- 
imentally and computationally. While much emphasis has 
been placed on the various types of reflections resulting from 
two- and three-dimensional inclined planes and cylinders, 
direct investigation of  the vorticity produced from shocks 
passing sharp comers has not been fully addressed. Despite 
the short time evolution of the shock diffraction phase, it 
is expected that such production may play a significant role 
on the resulting surface pressure distribution. For reviews 
related to this subject, see Glaz et al. (1985), Glass et al. 
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(1990) and Sivier (1991). Some recent studies are discussed 
in the following. 

1.1. Previous experimental studies 

Mandella et al. (1985) conducted a number of experiments 
to examine shock generated vortices around sharp corners. 
In the study, vortices are formed by shock waves passing 
over obstacles such as wedges or around corners. Much of 
the study concentrated on investigation symmetrical Wailing 
edge vortices formed off backward facing steps as a nar- 
row channel suddenly expands into a large two-dimensional 
section. Results for a shock Mach number of 1.36 were 
presented. The pressure in the vortex was found to be less 
than 30% of the pressure at the outer edge. The experiments 
showed that the flow may be supersonic (with a Mach num- 
ber near 1.7) near the center of the vortex while being 
subsonic (with a Mach number near 0.6) in the external 
flow. The study was unable to resolve any of the viscous 
flow effects near the centers of the vortices. In addition, it 
was noted that inviscid effects govern vorticity generation 
behind curved shocks due to the baroclinic effect. 

Howard and Mathews (1956) presented interferogram 
studies of shocks passing over a 5 o vertical wedge and the 
subsequent vortices produced. The photographs showed the 
well developed spiral slip layer which subsequently devel- 
oped secondary eddies whose strength and frequency were 
found to be approximately independent of shock strength or 
static pressure. 

Studies by Ben-Dor and Glass (1980) and by Heilig 
and Reichenbach (1983) examined a number of shocks with 
various strengths impinging on wedges of various angles. 
The studies examined the effect of shock Mach number 
and wedge angle on the type of reflection that occurred as 
the shock hit the wedge. There were four types of reflection 
found to occur: regular reflection and three types of irregular 
reflection: single Mach reflection, complex Mach reflection 
and double Mach reflection 

Studies by Schardin (1957, 1966) included high speed 
cinematography in order to examine a shock wave impinging 
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on a wedge. The result was a series of shadowgraphs which 
clearly showed the diffraction of a Mach 1.3 shock as it 
passed the wedge, and the resulting vortex on the back face 
of the wedge as well as shock/vortex interactions. This study 
provided a high quality experimental basis for the present 
computational work, and its results will be discussed along 
the those of the current study. 

1.2. Previous numerical and analytical studies 

Howard and Mathews (1956) developed an inviscid theoret- 
ical description of the vortex development for weak shocks 
in polar coordinates. The flow was assumed to be isen- 
tropic (and thus free of discontinuities such as shocks or 
slip layers), pseudo-stationary, and symmetrical about the 
origin. Based on these assumptions, the authors showed 
that the vortex development was conical in nature, i.e. the 
normalized radial distribution of density was shown to be 
time invariant for a given Mach number downstream of 
the shock. This was validated by experimental work in the 
same study. A second semi-empirical theory was also used 
to predict the rate of growth of the vortex and yielded rates 
roughly 10% below that of the experiment. Limitations of 
the work were pointed out to be the neglection of slip layers 
and the neglection of viscous effects, which were probably 
responsible for the poor agreement for the density very near 
the center of the vortex. Merzkirch (1964) extended this the- 
oretical work to include a viscous vortex core which yielded 
improved agreement with experiment near the vortex center. 

Numerical methods have increasingly been used to per- 
form studies similar to the above experimental studies. 
Aso et al. (1990) used a total variation diminishing (TVD) 
scheme to investigate the various types of reflections noted 
above that occur when a shock impinges on a wedge in two- 
dimensional Euler flow similar to the experimental studies 
presented by Ben-Dor and Glass (1980) and by Heilig and 
Reichenbach (1983). In the second part of the study, vis- 
cous effects were added by using the thin-layer approximated 
Navier-Stokes equations for direct comparison with the Eu- 
ler solutions. The convection terms were implemented with 
the TVD scheme while the viscous terms used a conven- 
tional central difference scheme. It was found that for weak 
shocks, results were very similar, although the height of the 
Mach stem was found to decrease as a boundary layer flow 
was added and as the Reynolds number decreased. 

A study by Meadows et al. (1991) used a second order 
upwind finite volume scheme to solve the two-dimensional 
Euler equations. This method was used in order to capture 
shocks without any accompanying numerical oscillations. 
The scheme was applied to the flow of a clockwise rotating 
vortex as it convected from the left, upstream side of the 
numerical domain into a stationary shock. The computation 
used a hybrid vortex model where the vortex core rotates 
with constant velocity and the velocity decays exponentially 
outside the core. As the vortex impinges on the shock, two 
pressure regions form; a higher pressure region above the 
vortex center, and a lower pressure region below the vortex 
center. The region of high pressure occurs where the ve- 
locity induced on the shock by the vortex causes the shock 

to shift downstream, resulting in a compressed flow down- 
stream. Similarly, the region of low pressure occurs where 
the velocity induced on the shock by the vortex causes the 
shock to move upstream, expanding the flow. While the 
computed flowfield and its associated acoustic field agreed 
qualitatively with experiments, the authors felt that improve- 
ments, including higher order methods and grid adaptation, 
would be required for accurate quantitative results. 

The flux corrected transport scheme has been shown to 
be highly robust and accurate for several fluid dynamics 
problems in the context of finite-element schemes (Ltihner 
et al. 1987, 1989; Baum et al. 1990; Loth et al. 1990a, 
1990b). Studies by Baum et al. (1990) used the FEM-FCT 
scheme combined with an adaptive refinement method to 
examine a shock wave impinging on canisters elevated over 
two support beams. These studies demonslrated the advan- 
tages of using an adaptive grid: mesh refinement occurred 
upstream of all shocks and along contact discontinuities, and 
subsequently coarsened as these features passed through the 
grid - thus providing high resolution only in areas of signif- 
icant flow gradients. The results also showed that FEM-FCT 
was capable of capturing shocks without generating numer- 
ical oscillations. Some of the more interesting flow features 
found in the computation were shock reflection and the 
formation of vortices at the sharp cornered support beams. 
In addition, an axisymmetric version of FEM-FCT with an 
additive grid scheme was used by Loth et al. (1990b) to ex- 
amine a compressible unsteady separated flow: supersonic 
flow over an axisymmetric backward facing step. Good 
agreement of time averaged surface pressure distributions 
with experiment was noted on the base wall and along the 
reattachment wall for several configurations and upstream 
Mach numbers, indicating the primary flow physics were 
successfully modeled. 

1.3. Current study 

Based on previous studies (Baum et al. 1990; Loth et al. 
1990b), the premise of this work is that the Euler FEM- 
FCT simulations for which the separation point can be 
specified (to occur at sharp rearward corners) will produce 
a reasonable representation of unsteady wall pressures for 
a shock wave diffraction process. Successful modeling of 
such transient pressures behind generic sharp corners is 
important to allow efficient and robust simulations of blast 
wave propagation past complex three-dimensional objects. 
The advantage of gas dynamic large eddy simulations is clear 
when one considers the alternative - direct simulations of 
the full three-dimensional unsteady Navier-Stokes equations 
for complex bodies, which appear impractical given current 
or near term capabilities of modern supercomputers. 

The current study examines, through FEM-FCT, the 
two-dimensional, unsteady proble m of a Mach 1.3 wave 
impinging on a 55 ~ wedge, which was the subject of a flow 
visualization experiment by Schardin (1966). This shock 
speed is just above the weak shock regime (Obermeier and 
Handke 1990). Computing such a flowfield allows direct 
comparison with experimental results, insight into the-fun- 
damental fluid physics of near weak shock wave diffraction 
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past a sharp corner, and allows evaluation of the proposed 
phenomenological approach for robustness, resolution and 
accuracy. 

2. Numerical method 

2.1. Transport equations 

The following is a brief summary of the numerical method 
and the implementation used in this study; for more detail 
see Sivier (1991). The governing equations for this flow are 
written in conservation form CLi3hner et al. 1987) as 

0U 0Fj 
0-i- + = o (1> 

where the summation convention is used and 

U = pui , Fj = {pu iu j  + P~ij (2) 
pe L uj (pe + p) 

and the state equations are 

P=  ( 7 -  1)pie - 1/2ujuj] ,  T = [e - 1 /2u ju j ]Cv  (3) 

where p, p, e, T, k, 7 and Cv are density, pressure, specific 
total energy, temperature, thermal conductivity of the fluid, 
ratio of specific heats, and specific heat at constant volume, 
respectively, and ui is the component of the fluid velocity in 
the direction zi of a Cartesian coordinate system. Thus, the 
fluid is assumed to be compressible and inviscid (although 
artificial viscosity is present in the numerical scheme). 

The higher order solution chosen for FEM-FCT is ob- 
tained via a two step form of the Taylor-Galerkin scheme 
of Donea (1984), which has been used for the computation 
of inviscid and viscous flows for the Cartesian (LOhner et 
al. 1989; Baum et al. 1990) and axisymmetric coordinate 
systems (Ldhner et al. 1989; Loth et al. 1990a, 1990b). The 
Taylor-Galerkin scheme is used to increase the order of the 
approximation of the time derivative and produce a second 
order scheme. The spatial discretization is implemented with 
the usual Galerkin weighted residual method. The scheme 
involves two steps (L0hner et al. 1985) which together 
progress the solution from time t '~ to time t '~+1 = t '~ + At. 
Quantities with integer timestep values (t ~ and t "+1) are 
located at nodes and have piecewise linear shape functions, 
denoted by Nj for a given node j .  At the half timesteps, 
(t ~+1/2) quantities are centered at the elemental centers and 
have piecewise constant shape functions for a given element, 
e. Solution with the consistent mass matrix is achieved by 
iterating with the lumped mass matrix (Ldhner et al. 1984, 
1985). For the explicit two step Taylor-Galerkin scheme, 
a Courant type stability condition (LOhner et al. 1985) is 
applied to each element to obtain a local time step, Ate; 
from this a maximum CFL number of 0.25 is used for the 
global timestep. 

To formulate the FCT approach, the low order scheme 
must be monotonic. This has been achieved inexpensively by 
adding 'mass-diffusion' to the higher order scheme (L~Shner 
et al. 1987), by subtracting the lumped mass matrix from 

the consistent mass matrix and multiplying this term by the 
unknowns. The low order solution and the high order solu- 
tion can then be combined to yield monotonic conditions for 
the conserved quantities near discontinuities and a second 
order solution in the rest of the domain, through the FEM- 
FCT formulation. The six steps of FEM-FCT are defined as 
(L~Shner et al. 1987): 

1. Compute the low order element contribution (LEC) from 
the low order, monotonic scheme. 
2. Compute the high order element contribution (HEC) 
from the high order scheme. 
3. Define the anti-diffusive element contribution (AEC), 
where AEC = HEC - LE. 
4. Compute the updated low order solution: U~+k 
5. Limit the AEC such that U ~§ found in step 6 below is 
free of extrema not present in U s or U~+~: AEC ~ = C~t �9 
AEC, where 0 _< Cet _< 1 
6. Apply this limited AECC: or U '~+1 = U'~+ AEC ~ 

Crucial to this procedure is the limiting method used 
to calculate C~t in step 5. To maintain strict conservation, 
this limiting is carried out on the four unknowns (p, pu, pv, 
and pe) at the elemental level (Ldhner et al. 1984). Zale- 
sak (1979) showed that the original limiting method of Boris 
and Book (1976) needs to be modified for multi-dimensional 
flow problems. For a system of PDE's such as that in (1), it 
is typical for one global Cel to be chosen in some manner 
from the individual C~l's of the four unknown fluxes. Un- 
fortunately, no limiter presents itself which is optimum for 
all flow problems (Ldhner et al. 1987). The following is a 
list of the global limiters investigated in the present study: 

1. The global limiter is chosen as the minimum of the 
limiters from the four unknown fluxes (p, pu, pv, pe). 
2. There is no global limiter; each of the four limiters a~e 
kept independent of each other. 
3. The global limiter is chosen as the minimum of the 
limiters for pu and pv. 
4. Use the average of the four individual limiters for the 
global limiter. 
5. The global limiter is set to the minimum of the limiters 
for p and pe. 

While several approaches to the flux limiting are pos- 
sible, most previous work with FEM-FCT has included a 
global limiter on the conservation equations as specified by 
number 5 above, the minimum of density and energy values 
(LOhner et al. 1989, 1987; Baum et al. 1990; Loth et al. 
1990a, 1990b). However, for the current study it was found 
that this type of limiter produced non-physical numerical 
oscillations coming off the upstream surface of the wedge. 
These oscillations were attributed to a natural local minimum 
in density and energy which forms on the wedge surface for 
this low Mach number shock wave. Evidence of this nu- 
merical noise was also noted for TVD schemes for similar 
wedge calculations (Aso et al. 1990). For the above limiters, 
several boundary conditions at the wedge tip and increased 
Lapidus diffusion (described below) were employed without 
success in removing flow oscillations without diffusing the 



34 

I 23 cm 

10 cm 3 cm 

Fig. 1. Numerical  domain for the present study 

solution, with the exception of employing limiter number 4. 
It was found that these oscillations could be removed with- 
out diffusing the solution significantly by employing a global 
flux limiter based on the average of the limiters derived by 
insuring monotonicity of the four unknowns (p, pu, pv and 
pe). Notably, for stronger incident shock speeds, the induced 
flow behind the shock is supersonic and there is no evidence 
of these numerical oscillations, presumably since the local 
minima on the wedge face will no longer exist. 

A second type of artificial viscosity was added: Lapidus 
smoothing (L6hner et al. 1984). The present study employed 
a Lapidus coefficient of 3 which maintained flux conser- 
vation and resulted in shocks and contact discontinuities 
resolved over typically three and five cells, respectively. A 
parametric study indicated only a small sensitivity to the 
value of this coefficient for flowfield features investigated 
herein. 

2.2. Adaptive grid methodology 

Adaptive H-refinement was employed to optimize the dis- 
tribution of grid points by refining areas with high gradients 
of density or entropy and coarsening areas of low gradients 
of density and entropy. This allows efficient use of memory 
and computation time. In general, such refinement may re- 
duce storage and CPU requirements by 10 - 100 times in 
advection dominated flows as compared to an overall fine 
grid (Loth et al. 1990a). As in previous studies, a local 
'error indicator' was used to determine if a given element 
needed to be refined, coarsened, of left alone based on the 
HE seminorm. 

A separate but similar entropy gradient indicator was 
used in conjunction with the previously employed density 
error indicator. This approach differs from many previous 
computations (L6hner et al. 1987, 1989; Baum et al. 1990; 
Loth et al. 1990a, 1990b) in that entropy gradients are also 
considered. This additional flow property was incorporated 
to enhance the schemes capability to capture slip layers and 
more importantly, vorticity layers. Results indicated almost 
a full refinement level increase as compared to density re- 
finement alone for portions of the slip layers and the rolled 
up vortex region. Such remeshing allows a balanced (and 
efficient) distribution of truncation errors by controlling the 
relative size of local computational cells. For the present 
computation, the following refinement parameters were em- 
ployed: a minimum size of 0.0028 cm, and a maximum 
of five levels of refinement, and coefficients of refinement, 

deletion, and noise of 0.07, 0.035, 0.035, respectively for 
both entropy and density. 

Boundary conditions consisted of fixed quantifies of den- 
sity, momentum and energy for the inflow conditions; tan- 
gental velocity vectors along the wedge surfaces, plane of 
symmetry, and the upper wall; and free boundary conditions 
at the top comer and at the outflow boundary. The numerical 
domain is shown in Fig. 1 to simulate the upper half of the 
symmetric flowfield of Schardin (1966). All computations 
were performed on a Cray 2 and required a total of 48 hours 
of CPU time. 

3. Results and discussion 

The present computations were completed to simulate the 
frame by frame shadowgraph measurements of Schardin 
(1966) at time intervals of 13.6 #s. Frame 2 of Schardin's 
results is shown in Fig. 2 while Fig. 9 shows the correspond- 
ing predicted density contours. The predictions contain 256 
contours varying from the minimum of deep blue to the 
maximum of dark red. The incident shock (marked A in 
Fig. 9) propagates from left to right, with the reflected 
wave off the wedge surface propagating as a cylindrical 
shock (B) centered at the wedge tip. A constant pressure 
slip layer (C) occurs near the wedge surface, which can 
also be seen to occur in the experimental results. The triple 
point is completed by a Mach stem (D) which has begun to 
diffract around the comer, although the experimental shad- 
owgraph has difficulty picking up the Mach stem. These 
features are typical of single Mach reflection (Obermeier 
and Handke 1990) that results from the low shock Mach 
number and the ramp angle (27.5~ The induced velocity 
near the wedge tip convects the upstream end of the slip 
layer further downstream along the wedge surface. The lo- 
cal minimum in the density (which had previously given 
numerical oscillations) can be seen to occur above the up- 
stream end of the slip layer (C). The numerical mesh con- 
tains 39,357 points, including 3 to 4 refinement levels on 
the slip layer as shown in Fig. 10 (successive levels of re- 
finement are shown as green, yellow, red, white and light 
blue). This exhibits the advantage of entropy refinement - 
without the entropy error indicator, the slip layer is refined 
to typically 3 levels. 

Figure 11 represents the flow midway between frames 2 
and 3. The incident shock (A) has passed the wedge and the 
Mach stem (D) has partially diffracted around the comer. 
The diffraction causes the shock to curve, thus weakening 
the shock and causing less of an enlropy rise as it diffracts, 
resulting in the formation of an entropy fan (G) starting at 
the comer and extending downstream to the diffracted part 
of the Mach stem. A vortex layer is emanating from the 
comer of the wedge, which has engulfed the vertex of the 
entropy fan. Velocity vector plots indicate that separation is 
at the comer, as expected. 

Figure 3 shows the experimental results from frame 4 
of Schardin, and Fig. 12 examines a close-up of the density 
contours for that frame. The Mach stem (D) has diffracted 
around the comer to form a cylindrical shock sending back 
an expansion fan (E) in the opposite direction, which has 
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Fig.2. Frame 2 of Schardin's shadowgraphs 

Fig.3. Frame 4 of Schardin's shadowgraphs 

Fig. 4. Frame 6 of Schardin's shadowgraphs 

Fig. 5. Frame 7 of Schardin's shadowgraphs 

Fig. 6. Frame 8 of Schardin's shadowgraphs 

Fig. 7. Frame 9 of Schardin's shadowgraphs 

Fig.8. Frame I 1 of Schardin's shadowgraphs 
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now reached the triple point. The vortex layer has rolled up 
in a clockwise manner, effectively becoming a single vortex 
(F), and has begun to deform the slip layer (C). The entropy 
fan (G) now terminates downstream at the triple point, and 
its upstream end has curled up with the vortex and is com- 
pressed into an entropy layer nearby the vortex. For these 
frames, the numerical results show excellent agreement with 
the experimental results due to the enhanced grid adaptation 
and robust monotonic scheme. 

Figures 4 and 13 show Schardin's experimental frame 6 
and the corresponding numerical density contours. The ex- 
perimental results show that the diffracted Mach stems (D) 
from the upper and lower comers have crossed. The sym- 
metric numerical case represents this crossing as a reflection 
of the cylindrical shock off the bottom wall (H). The vortex 
(F) is convecting downward and to the right (downstream). 
The slip layer (C) continues to deform with the vortex and 
is nearing the entropy layer (G). The simulation continues to 
provide excellent agreement with the experimental results. 

Figures 5 and 14 show Schardin's experimental frame 7 
and the corresponding numerical density contours. One may 
observe in both figures the upstream movement of the ex- 
pansion fan (E) which has begun to interact with the initial 
reflection (B). At this point, the transmitted reflective shock 
(H) is now just about to interact with the vortex (F), the 
slip layer (C), and the entropy layer (G). It appears from 
the predictions that the vortex is already causing some de- 
formation to the reflected shock (H). In principle, the Mach 
stem diffracting around the comer can be thought of as 
a localized normal shock diffracting around the comer as 
was studied by Howard and Mathews (1956) and Merzkirch 
(1964). However, this analogy breaks down once the slip 
layer (C) and reflected shock (H) have begun to interact 
with the vortex flowfield as shown in Fig. 14. 

Figure 6 is frame 8 of Schardin's experimental run, while 
Fig. 15 gives the corresponding predicted density contours 
for a close-up of the wedge comer. The slip layer (C) has 
begun to roll up around the vortex and merge with the 
entropy layer (G). The reflected Mach stem (H) has con- 
tacted the vortex (F) and has essentially been split into two 
shocks. One shock (I) extends from the back face of the 
wedge to the vortex and the other shock front (H) starts at 
the vortex and continues downstream. The shock (I) was 
not picked up by the shadowgraph (as was the case of shock 
D in frame 1), but later shadowgraphs show its existence. 
Small timestep video sequencing of the simulation clearly 
shows the breakup of the reflected shock into I and H; the 
acceleration I receives owing to the vortex F; as well as the 
deceleration of H near the vortex as evidenced by its curva- 
ture. The shock (I) then passes through the vortex layer and 
emerges above the layer, and its downstream end diffracts 
around with the vortex resulting in a weak cylindrical shock 
at that point. The interaction of the shocks I and H with the 
vortex layer surrounding F, results in significant increased 
perturbation and disorganization of the established Kelvin- 
Helmholtz instabilities. Predicted pressure contours at this 
point are shown in Fig. 16, which effectively eliminates 
the slip layers and the entropy layers. The results indicate 
the robustness of the monotonic scheme in providing sharp 
discontinuities without oscillations in a complex interaction, 

while still maintaining higher order accuracy away from 
these features. 

Figure 7 is the experimental shadowgraph and Fig. 17 is 
the corresponding density prediction for the ninth frame. By 
this time, the shock (I) has passed through the vortex layer 
and emerged above the layer. The end of the shock (I) that 
projected into the vortex (F) has convected around with the 
vortex resulting in a cylindrical shock roughly emanating 
from the vortex center. The reflected Mach stem (H) has 
apparently formed a triple point at the vortex. Figure 18 
shows entropy contours corresponding to frame 9. This 
figure gives a clear picture of the vortex and its effects on 
the entropy and slip layers. The slip layer (C) has begun to 
roll up around the vortex and merge with the entropy layer 
(G). In addition, the vortex layer instabilities are evident in 
both the experiment and predictions, and exhibit roughly the 
same wavelength. 

Frame 11 of Schardin's experiment is shown in Fig. 8, 
with corresponding predictions of density contours in 
Fig. 19. This initial reflected shock (B) has reflected again 
off the top wall and is now propagating downward. The 
diffracted Mach stem (D) has formed a triple point with the 
reflected Mach stem (H), while above the incident shock has 
almost been eliminated. By this time, the upstream end of the 
slip layer (C) has become completely engulfed by the vor- 
tex (F), where it follows closely with the entropy layer (G). 
The Kelvin-Helmholtz instability can be seen in the vortex 
layer of both experiments and predictions (although, this is 
more easily Observed in predicted vorticity contour plots, 
Sivier 1991). Mach number predictions indicate supersonic 
flow (up to Mach 1.2) above the vortex layer terminating 
at the reflected shock H, as well as in the upper third of 
the vortex. The shock (I) continues to expand, although the 
upper portion has lost much of its strength as it expanded 
upstream. Figure 20 shows the mesh refinement levels for 
the numerical flow for frame 11 (the mesh at this point 
contains 143,261 nodes). The primary shocks generally still 
refine fully to five levels, while the slip layer has lost some 
refinement at the downstream end as it has weakened. 

The above figures have shown that the computational 
flow features have demonstrated very good agreement with 
those of the experiment. The numerical results also allow 
non-intrusive inspection of several highly resolved features 
which are not accessible or difficult to see in the experimen- 
tal flow field, such as the origin of the shock (I) and the 
formation of the entropy fan(G). In addition, quantitative 
comparison of the numerical results with the experimental 
results given by Schardin (1966) was also completed. Fig- 
ure 21 gives a schematic of the flow measurements that 
were made of both the experimental and numerical result. 
The quantitative features include: 

x - distance from back of wedge to the primary shock 
(A) 
a - horizontal distance from the nose of the wedge to the 
reflected shock (B) 
r - vertical distance from the midline of the wedge to the 
highest point of the reflected shock (B) 
b - distance from back of wedge to the triple point formed 



37 

Fig. 9. Density contours corresponding to frame 2 

Fig. 10. Mesh levels of refinement corresponding to frame 2 

Fig. 11. Entropy contours corresponding to frame 2.5 

Fig. 12. Close-up of density contours corresponding to frame 4 
Fig. 13. Density contours corresponding to frame 6 

Fig. 14. Density contours corresponding to frame 7 
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Fig. 15. Density contours corresponding to frame 8 

Fig. 16. Pressure contours corresponding to frame 8 

Fig. 17. Density contours corresponding to frame 9 

Fig. 18. Entropy contours corresponding to frame 9 

Fig. 19. Density contours corresponding to frame 11 

Fig. 20. Mesh levels of  refinement corresponding to frame 11 
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at the intersection of the diffracted Mach stem (D) and its 
reflected shock (H) 
c - distance from the back of the wedge to the intersection 
of the diffracted Mach stem's reflected shock (H) and the 
slip layer (C) 
d - distance from the midline of the wedge to the highest 
point of the shock (I) 
vex - distance from the back of the wedge to the geometric 
center of the vortex (F) 
vcy - distance from the midline of the wedge to the geo- 
metric center of the vortex (F) 

Figure 22 shows a comparison of the primary shock 
locations (measurements r, a and x above). The graph in 
Fig. 23 compares the positions of the secondary structures 
(measurements b, c and d above). The numerical results 
compared extremely well with the experimental results, al- 
though the measurement r shows some discrepancy after 
the reflected shock (B) reflected off the upper wall. This is 
likely due to a slight inaccuracy in the upper wall position 
(which had to be estimated). 

Figure 24 compares experimental and numerical posi- 
tions of the vortex (given by measurements vex and vcy) as 
it is convected downstream. The comparison, while not as 
favorable as for the primary shocks and secondm7 structures, 
is, never-the-less, still quite good. The rough appearance of 
the results can be partially explained by the difficulty in 
locating the center of the vortex (this is made clear by the 
perturbations of the experimental data). However, the nu- 
merical data is fairly linear, the only exception being from 
frame 7 to frame 9 for vcy. This is precisely the point at 
which the reflected part of the Mach stem (H) impacts the 
vortex (F), thereby causing the vortex to temporarily stop 
its downward motion. By frame 9 this shock has passed the 
vortex allowing it to renew its downward trend, although 
at a slower rate. Despite the presence of significant en- 
tropy variations noted in the flowfield, the vortex growth is 
found to be approximately conical in nature as suggested by 
the theory of Howard and Mathews (1956) until the shock 
interaction occurs at frame 7. 

Other flowfield interrogations include pressure traces 
along the wedge surface which showed clearly the pressure 
spikes and decreases of the previously discussed compress- 
ible flow features (Sivier 1991). One may assert that if the 
position and speed of the shocks and vortices are correctly 
predicted over the wedge surfaces, then the resulting surface 
pressures should be reasonably modeled. 

To test grid dependence, a computation was made with 
roughly half the number of points, by increasing the al- 
lowed minimum element size to keep the number of points 
below 85,000. Figures 25 and 26 show a comparison of 
the shock positions and vortex positions for the high and 
low resolution computations. Both give remarkably similar 
results. Therefore, the present implementation of the FEM- 
FCT method and grid adaptation indicates that reasonable 
grid independence has been achieved for the present com- 
putations. 
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Fig. 26. Comparison of mesh resolution - vortex position 

4. Conclus ions  

From the above results, it has been shown that the FEM- 
FCT algorithm provides excellent predictions of a shock 
wave impinging on a ramp and diffracting past a rearward 
facing step, both in terms of compressible wave charac- 
teristics and sharp comer vorticity generation. The global 
limiter, based on the average of the limiters of the four 
unknowns, was shown to be capable of capturing shocks 
without generating numerical oscillations, including areas 
where the flow naturally generated local minima. The adap- 
tive grid generation scheme employed density and entropy 
gradients in order to ensure proper refinement for both weak 
and strong structures. 

The flow was shown to generate a single Mach re- 
flection with a corresponding triple point as the incident 
shock moved up the ramp. As the shock passed the wedge 
comer, the Mach stem diffracted, an expansion fan was 
sent back upstream, and a slip layer formed at the comer, 
which convected downstream, underwent Kelvin-Helmholtz 
instabilities and proceeded to curl up to form a vortex. 
In addition, an entropy fan was formed by the weakening 
of the Mach stem as it diffracted. As this stem continued 
down to the midline of the wedge, it reflected back up to 
interact with the vortex, causing the expulsion of a small 
cylindrical shock that convected away from the vortex in 
all directions. Very good agreement was found between the 
numerical and experimental results in terms of the above 

flow features, as well as the shock and vortex trajectories, 
indicating a reasonable representation of the separated gas 
dynamics and resulting surface pressures. Thus, the present 
methodology has provided a high resolution description of 
the fluid physics associated with shock diffraction, sharp 
corner vortex production and transport, and shock vortex 
interaction. Future work will include direct Navier-Stokes 
simulations to determine the significance of boundary layer 
effects in this flowfield. 
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