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Abstract. We consider the linear elasticity problems and compare the approximations obtained by
the Least-Squares finite element method with the approximations obtained by the standard conforming
finite element method and the mixed finite element method. The main result is that the H1-conforming
displacement approximations (least-squares finite element and standard finite element) as well as the
H(div)-conforming stress approximations are higher-order pertubations of each other. This leads to
refined a priori bounds and superconvergence results. Numerical experiments illustrate the theory.

1 Introduction

Let Ω ∈ Rd (d = 2,3) be a polytopal convex domain with boundary ∂Ω divided into two parts ΓD and
ΓN , i.e. ∂Ω = ΓD∪ΓN ,ΓD∩ΓN = /0,ΓD 6= /0. For given data f ∈

(
L2(Ω)

)2, the linear elasticity problem
is modeled as

Aσσσ−εεε(u) = 0 in Ω

divσσσ =−f in Ω

u = 0 on ΓD

σσσ ·n = 0 on ΓN ,

(1)

where σσσ is a symmetric d-by-d stress tensor, u the displacement vector field, A is the inverse of the
elastic material law, defined in terms of the Lamé constants µ and λ by

Aτττ =
1

2µ

(
τττ− λ

2µ+dλ
tr(τττ)I

)
,

the symmetric gradient is defined as

εεε(v) =
1
2

(
∇∇∇v+(∇∇∇v)>

)
,
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tr(τττ) = ∑
2
i=1 τii denotes the trace of a vector and n the outward unit normal vector to ΓN . The presence

of A instead of the usual stress-strain relation C = 2µεεεu+λ(divu)I allows the formulations to be robust
in the incompressible limit (as λ goes to infinity).

Finite element methods are the most widely used tools for computing the deformations of an elastic
body subject to forces. In the framework of the (non-robust) standard conforming theory, the variational
problem (see e.g. [10, Chapter 11.]) is to minimize the energy (A−1v,v) under all v ∈ V = H1

D(Ω).
An accurate approximation of the stress tensor, which is often of crucial interest, can be obtained with
stress-based variational formulations where the stress is directly seek in

ΣΣΣN =

{{
τττ ∈ H(div;Ω)2 : τττ ·n = 0 on ΓN

}
if ΓN 6= /0{

τττ ∈ H(div;Ω)2 :
∫

Ω
tr(τττ)dx = 0

}
if ΓN = /0

,

where each component of the (column) vector divergence operator div is acting on the corresponding row
of H(div,Ω) = H(div;Ω)2. Those methods can either lead to a saddle-point formulation (see e.g. [8]) or
of Least-Squares type (see e.g. [7]). A comparison of the H1-conforming approximations (least-squares
finite element and standard finite element) as well as the H(div)-conforming approximations are was
performed in [9] for the Poisson equation, proving that they are higher-order perturbations of each other.
This leads to refined a priori bounds and superconvergence results. The purpose of this paper is to extend
these results to the linear elasticity problem. The next section will recall the formulations while section
3 presents the discretisations. The direct comparison will be performed in section 4 while section 5 is
dedicated to the numerical experiment.

2 Variational formulations

The standard non-robust displacement formulation according tho the energy principle introduced in the
introduction reads: find u ∈ V such that

aS(u,v) = 2µ(ε(u),ε(v))L2(Ω)+λ(divu,divv)L2(Ω) = (f,v)L2(Ω) ∀v ∈ V. (S)

The stress-based mixed method maximizes the energy (Aτττ,τττ) under all τττ satisfying the divergence con-
straint

(div(σσσ),w) = (f,v) ∀w ∈ L2(Ω)2 (2)

as well as the symmetry condition

(skewσσσ,γχχχ) = 0 ∀γγγ ∈ L2(Ω) (3)

where the skew-symmetric part is defined as

skew(τττ) =
1
2

{
τττ−τττ

>
}

and χχχ =

(
0 −1
1 0

)
.

This gives rises to the following stress-based mixed method: find (σσσ,u,ω) such that

(Aσσσ,τττ)+(div(τττ),u)+(skewτττ,ωωω) = 0 ∀τττ ∈ΣΣΣ (4a)

(div(σσσ),w) = (f,w) ∀w ∈ L2(Ω)2 (4b)

(skewσσσ,γχχχ) = 0 ∀γ ∈ L2(Ω). (4c)
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Note that this system can be rewritten as

(Aσσσ,τττ)−bm(τττ,(u,ω)) = 0 ∀τττ ∈ΣΣΣ (5a)

bm(σσσ,(w,γγγ)) = (f,v) ∀(w,γ) ∈ L2(Ω)3. (5b)

with the bilinearform bm(τττ,(w,γγγ)) = −(div(τττ),w)− (skewτττ,γχχχ) and that the first term (Aσσσ,τττ) corre-
spond to a symmetric bilinear form, i.e.

(Aσσσ,τττ) = (Aτττ,σσσ). (6)

A third approach, the two-field least-squares formulation of (1) considered in [11] consists in minimizing
the functional

F (τττ,v; f) = ‖Aτττ−εεε(v)‖2
0 +‖divτττ+ f‖2

0

in ΣΣΣN ×V. Other two least-squares formulations have been introduced in [3] which make use of three
and four fields, respectively, by the introduction of the vorticity and the pressure as new unknowns. The
three-field formulation seeks a minimizer of the functional

G(τττ,v,q; f) = ‖Aτττ−∇∇∇v+χχχq‖2
0 +‖divτττ+ f‖2

0 +‖skewτττ‖2
0

in ΣΣΣN×V× L̄2(Ω) with

L̄2(Ω) =

{
L2(Ω) if ΓN 6= /0{

q ∈ L2(Ω) :
∫

Ω
qdx = 0

}
if ΓN = /0.

The minimization of the functional F (τττ,v; f) gives rise to the following variational formulation: find
σσσ ∈ΣΣΣN and u ∈ V such that

(Aσσσ,Aτττ)+(divσσσ,divτττ)− (Aτττ,εεε(u)) =−(f,divτττ) ∀τττ ∈ΣΣΣN (7a)

− (Aσσσ,εεε(v))+(εεε(u),εεε(v)) = 0 ∀v ∈ V. (7b)

The variational formulation associated with the minimization of the functional G is obtained by seeking
σσσ ∈ΣΣΣN , u ∈ V, and p ∈ L̄2(Ω) such that

(Aσσσ,Aτττ)+(divσσσ,divτττ)+(skew(σσσ),τττ)− (Aτττ,εεε(u))+(skew(Aτττ), p) =−(f,divτττ) ∀τττ ∈ΣΣΣN (8a)

−(Aσσσ,εεε(v))+(εεε(u),εεε(v))− (p,skew(∇∇∇v)) = 0 ∀v ∈ V (8b)

(skew(Aσσσ),q)− (q,skew(∇∇∇u))+2(p,q) = 0 ∀q ∈ L̄2(Ω). (8c)

In order to consider these Least-Squares formulations in a unified setting, we introduce the space ΦΦΦ =
V× L̄2(Ω) and reformulate (7) and (8) as follows

Bk((τττ,φφφ)|(τττ,ψψψ)) =−(f,divτττ) k = 1,2 (9)

with

B1((σσσ,(u, p))|(τττ,(v,q))) = (Aσσσ−εεε(u),Aτττ−εεε(v))+(divσσσ,divτττ) (10)
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and

B2((σσσ,(u, p))|(τττ,(v,q))) = (Aσσσ−∇∇∇(u)+ pχ,Aτττ−∇∇∇(v)+qχ)+2(p,q)++(divσσσ,divτττ). (11)

We also define define the exact solution

φφφ = (u,
1
2

curlu) = (u, p). (12)

A further useful notation splits the bilinear form B j in terms defining an inner product and terms corre-
sponding to a mixed formulation:

B j((σσσ,φφφ),(τττ,ψψψ)) = ((σσσ,φφφ),(τττ,ψψψ))LS j −bLS j(σσσ,ψψψ)−bLS j(τττ,φφφ) (13)

with

((σσσ,φφφ),(τττ,ψψψ))LS1 = ((σσσ,φφφ),(u,v))LS1 = (Aσσσ,Aτττ)+(εεε(u),εεε(v)), (14a)

((σσσ,φφφ),(τττ,ψψψ))LS2 = ((σσσ,φφφ),((u, p),(v,q)))LS2 = (Aσσσ,Aτττ)+(∇∇∇σσσ,∇∇∇τττ),+2(p,q) (14b)

and

bLS1(σσσ,ψψψ) = bLS1(σσσ,v) = (Aσσσ,εεε(v)) (15a)

bLS2(σσσ,ψψψ) = bLS2(σσσ,(v,q)) = (Aσσσ,∇∇∇v−qχχχ)+(∇∇∇v,qχχχ) . (15b)

The difference between the energy considered in the mixed formulation and the inner product arising in
the Least-Squares method is crucial and we therefore define further

(σσσ,τττ)LSΣΣΣ
= (Aσσσ,Aτττ) and (φφφ,ψψψ)LSk

ΦΦΦ

= ((u, p),(v,q))LSk
ΦΦΦ

=

{
(εεε(u),εεε(v)) k = 1
(∇∇∇(u),∇∇∇(v))+(p,q) k = 2

. (16)

We will also drop the index k in the equations where both k = 1,2 are allowed.

3 Discretisations

Let Ωh be a regular triangulation of Ω. The approximation of the formulation presented in the previ-
ous section is performed by choosing appropriate subspaces of ΣΣΣN ,V and L̄2(Ω). For the conforming
approximations of the displacement in the standard and Least-Squares formulations, we choose Vh ⊂ V
as the conforming Lagrange element of degree k. The discrete version of the standard formulation (S)
therefore reads: find uh ∈ Vh such that

(A−1
ε(uh),∇v) = (f,v) ∀v ∈ Vh. (Sh)

Recall that the Galerkin orthogonality

(A−1
ε(u−uh),∇v) = 0 ∀v ∈ Vh. (17)

implies the non-robust a priori estimates ‖u−uh‖1 ≤C(µ,λ)hk‖u‖2.
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For the conforming approximations of the stress tensor in the mixed and Least-Squares formulations,
we choose the tensor space Σh ⊂ ΣN whose rows consists in the H(div;Ω)-conforming Raviart-Thomas
space of degree k. The discrete version of the two-fields formulation (7) therefore reads: find u1

h ∈ Vh
and σσσ1

h ∈ΣΣΣh such that

(Aσσσ
1
h,Aτττ)+(divσσσ

1
h,divτττ)− (Aτττ,εεε(u1

h)) =−(f,divτττ) ∀τττ ∈ΣΣΣh (18a)

− (Aσσσ
1
h,εεε(v))+(εεε(u1

h),εεε(v)) = 0 ∀v ∈ Vh. (18b)

The three-fields Least-Squares method requires an additional subspace Wh of L2(Ω) for the vorticity. As
the Least-Squares method does not requires any compatibility condition between the space we choose
the space of piecewise discontinuous polynomials of degree k−1 in order to obtain corresponding con-
vergence rates for the stress, the displacement and the vorticity. The Galerkin approximation of (8) reads:
find u2

h ∈ Vh, σσσ2
h ∈ΣΣΣh and ph ∈Wh such that

(Aσσσ
2
h−εεε(u2

h + phχχχ),Aτττ)+(divσσσ
2
h,divτττ)+(skew(σσσ2

h),τττ) =−(f,divτττ) ∀τττ ∈ΣΣΣh (19a)

(εεε(u2
h)−Aσσσ

2
h,εεε(v)),εεε(v))− (χχχph,∇∇∇v) = 0 ∀v ∈ Vh (19b)

(Aσσσ
2
h−∇∇∇u2

h,qχχχ)+2(ph,q) = 0 ∀q ∈Wh. (19c)

Similarly to the continuous setting we introduce the spaces ΦΦΦh = Vh×Wh and reformulate (18) and (19)
as follows

Bk((σσσh,φφφh)|(τττh,ψψψh)) =−(f,divτττh) for all (τττh,ψψψh) ∈ΣΣΣh×ΦΦΦh k = 1,2 (LSh)

as well as

φφφ
k
h =

{
(uh,

1
2 curluh) if k = 1

(uh, ph) if k = 2
. (20)

For the discretisation of the mixed method we choose the remaining discrete spaces Wh for the approx-
imation of the displacement and Xh for the approximation of the vorticity such that the well-posedness
of the system is satisfied. According to [8] we can choose Wh as the space of discontinuous piecewise
vector polynomials of degree k and Xh as the space of continuous piecewise polynomials of degree k.
The discrete version of (4c) the reads: find (σσσm

h ,u
m
h ,ωh) ∈ΣΣΣh×Wh×Xh such that

(Aσσσ
m
h ,τττh)+(div(τττh),um

h )+(skewτττh,ωh) = 0 ∀τττh ∈ΣΣΣh (21a)

(div(σσσm
h ),wh) = (f,wh) ∀wh ∈Wh (21b)

(skewσσσ
m
h ,γh) = 0 ∀γh ∈ Xh, (21c)

i.e.

(Aσσσ
m
h ,τττh)+(div(τττh),um

h )+(skewτττh,ωh)+(div(σσσm
h ),wh)+(skewσσσ

m
h ,γh) = (f,wh) (Mh)

for all (τττh,wh,γh) ∈ΣΣΣh×Wh×Xh. Based on the Galerkin orthogonalities

(Aσσσ−σσσ
m
h ,τττh)+(div(τττh),u−um

h )+(skewτττh,ω−ωh) = 0 ∀τττ ∈ΣΣΣh (22a)

(div(σσσ−σσσ
m
h ),wh) = 0 ∀wh ∈Wh (22b)

(skew(σσσ−σσσ
m
h ),γh) = 0 ∀γh ∈ Xh. (22c)
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we obtain the a priori estimates

‖σ−σ
m
h ‖0 +‖u−uh‖0 +‖ω−ωh‖0 ≤Chk+1(‖σ‖0 +‖u‖0 +‖ω‖0).

According to [8] (see also [2] for on general domains), this element combination allows for positive
constants C1 and C2 independent on h, such that

(Aτττh,τττh)≥C1‖τττh‖2
ΣΣΣ ∀τττh ∈ΣΣΣN with bm(τττh,(v,ωωω)) = 0 ∀(v,ωωω) ∈Wh×Xh.

and

inf
(v,ωωω)∈Wh×Xh

sup
τττ∈ΣΣΣh

bm(τττ,v,ωωω)
|||(v,ωωω)|||‖τττ‖ΣΣΣ

≥C2

4 Comparison of the approximations

The results of this paper are based on the crucial Galerkin properties of the Least-Squares methods, i.e.
for k = 1,2

Bk((σσσ−σσσ
k
h,φφφ−φφφ

k
h)|(τττ,ψψψ)) = 0 (23)

for all (τττ,ψψψ) ∈ Σh×ΦΦΦk
h. Since τττ needs to be H(div;Ω)-conforming, we can compare the conforming

stress approximations, i.e. the stress approximations of the mixed and of the Least-Squares methods. We
therefore define σσσ

∆,1
h =σσσ1

h−σσσm
h , σσσ

∆,2
h =σσσ2

h−σσσm
h , and σσσ

∆,0
h =σσσ1

h−σσσ2
h. For the displacement test function,

we can insert any conforming displacement, i.e. the displacement approximations of the standard and of
the Least-Squares method. We therefore define u∆,1

h = u1
h−uh, u∆,2

h = u2
h−uh as well as u∆,0

h = u2
h−u1

h.
In order to deal with the three-fields formulation we also define φφφ

∆,1
h = φφφ1

h−φφφh, φφφ
∆,2
h = φφφ2

h−φφφh as well as
φφφ

∆,0
h = φφφ2

h−φφφ1
h.

Choosing τττ =σσσ
∆, j
h and ψψψ = φφφ

∆, j
h in (23) leads to

B j((σσσ−σσσ
j
h,φφφ−φφφ

j
h)|(τττ

∆, j
h ,φφφ

∆, j
h )) = 0 (24)

for j = 0,1,2. This immediately leads to

B j((σσσ
∆, j
h ,φφφ

∆, j
h )|(σσσ∆, j

h ,φφφ
∆, j
h )) = B j((σσσ

j
h−σσσ

m
h ,φφφ

j
h−φφφh)|(σσσ∆, j

h ,φφφ
∆, j
h ))

= B j((σσσ
j
h−σσσ+σσσ−σσσ

m
h ,φφφ

j
h−φφφ+φφφ−φφφh)|(σσσ∆, j

h ,φφφ
∆, j
h ))

= B j((σσσ−σσσ
m
h ,φφφ−φφφh)|(σσσ∆, j

h ,φφφ
∆, j
h ))

= B j((σσσ
∆,φφφ∆)|(σσσ∆, j

h ,φφφ
∆, j
h )),

(25)

where we denote u∆ = u−uh, φφφ∆ = φφφ−φφφh and σσσ∆ =σσσ−σσσm
h .

Considering the difference σσσ∆
h ∈ΣΣΣh of the least-squares problem and the mixed method we now state the

following auxiliary problem: find (ηηη,ξξξ,ζ) ∈ΣΣΣN×V×L2(Ω) such that

Aηηη−εεε(ξξξ) = 0 in Ω (26a)

divηηη = divσσσ
∆
h in Ω (26b)

skew(ηηη) = skew(σσσ∆
h ) in Ω. (26c)
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Figure 1: Exact solution for displacement u (left) and vorticity p (right)

The corresponding mixed formulation reads

(Aηηη,τττ)+(div(τττ),ξξξ)+(skewτττ,ζ) = 0 ∀τττ ∈ΣΣΣN (27a)

(div(ηηη),w) = (div(σσσ∆
h ),w) ∀w ∈W (27b)

(skew(ηηη−σσσ
∆
h ),γ) = 0 ∀γ ∈ L2(Ω). (27c)

The discretisation of this problem using the mixed method introduced in the previous section reads: find
(ηηηh,ξξξh,ζh) ∈ΣΣΣh×Wh×Xh such that

(Aηηηh,τττh)+(div(τττh),ξξξh)+(skewτττh,ζh) = 0 ∀τττh ∈ΣΣΣh (28a)

(div(ηηηh),wh) = (div(σσσ∆
h ),wh) ∀wh ∈Wh (28b)

(skew(ηηηh−σσσ
∆
h ),γh) = 0 ∀γh ∈ Xh. (28c)

The crucial relation div(ηηηh−σσσ∆
h ) = 0 together with the weakly symmetric condition implies

bm(σσσ
∆
h −ηηη,(u−um

h ,ω−ωh)) = 0. (29)

Inserting this in equation (22a) we obtain

(Aσσσ
∆,σσσm

h ) =−(div(σσσ∆
h ),u−um

h )− (skewσσσ
∆
h ,ω−ωh)

=−b(σσσ∆
h ,(u−um

h ,ω−ωh))

=−b(ηηηh,(u−um
h ,ω−ωh)) = (Aσσσ

∆,ηηηh)

This leads to

(Aσσσ
∆,σσσm

h ) = (Aσσσ
∆,ηηηh−ηηη)+(Aσσσ

∆,ηηη) (30)

as well as

(σσσ∆,σσσm
h )LSΣΣΣ

= (Aσσσ
∆,Aσσσ

m
h ) = (Aσσσ

∆,A(ηηηh−ηηη))+(Aσσσ
∆,Aηηη) (31)
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Figure 2: Difference of the approximations of the stress tensor the H(div;Ω)-seminorm and in the L2(Ω)-norm

Moreover, the symmetry (6) together with (27a) implies

(Aσσσ
∆,ηηη) = (Aηηη,σσσ∆) =−(div(σσσ∆),ξξξ)− (skew(σσσ∆),ζ) =−bm(σσσ

∆,(ξξξ,ζ)) (32)

Combining this with (31) leads to

(Aσσσ
∆,σσσm

h ) = (Aσσσ
∆,ηηηh−ηηη)−bm(σσσ

∆,(ξξξ,ζ)) (33)

Using (22b) and (22c) we have for any (wh,γh) ∈Wh×Xh

(Aσσσ
∆,σσσm

h ) = (Aσσσ
∆,ηηηh−ηηη)−bm(σσσ

∆,(ξξξ−wh,ζ− γh)). (34)

On the other hand, (29) and integrating by parts allow

bm(σσσ
∆
h ,(u−us

h,
1
2

curl(u−us
h))) = bm(ηηη,(u−us

h,
1
2

curl(u−us
h)))

= (div(ηηη),(u−us
h))+(skewηηη,

1
2

curl(u−us
h))χχχ)

= (ηηη,∇∇∇(u−us
h))+(skewηηη,

1
2

curl(u−us
h))χχχ)

= (ηηη,εεε(u−us
h)) = (A−1

εεε(ξξξ),εεε(u−us
h))

= (εεε(ξξξ),A−1
εεε(u−us

h))

The Galerkin orthogonality (17) now implies

bm(σσσ
∆
h ,(u−us

h,
1
2

curl(u−us
h))) = (εεε(ξξξ−vh),A−1

εεε(u−us
h)) (35)

for any vh ∈ Vh. Both results (34) and (35) leads to the following supercloseness theorem.
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Figure 3: Difference of the approximations of the stress approximations

Theorem 1. Let u∈V and σσσ∈ΣΣΣN be the exact solution of the linear elasticity problem (1). Consider the
discrete solutions us

h of (Sh), (σσσm
h ,u

m
h ,ωh) ∈ ΣΣΣh×Wh×Xh of (Mh) and (σσσh,φφφh) of (LSh). Define u∆ =

u−uh, φφφ∆ =φφφ−φφφh and σσσ∆ =σσσ−σσσm
h . Moreover, let (ηηη,ξξξ,ζ)∈ΣΣΣ×W×X and (ηηηh,ξξξh,ζh)∈ΣΣΣh×Wh×Xh

be the solution of the auxiliary problem defined as in (27) and (28). Then, it holds

||(σσσ∆
h ,φφφ

∆
h )||ΣΣΣ×ΦΦΦ . ‖σσσ∆‖A ||(A(ηηηh−ηηη),ξξξ−wh,ζ− γh)||ΣΣΣhW×X +‖εεε(ξξξ−vh)‖‖εεε(u∆)‖ . (36)

The coercivity of the Least-Squares bilinearform together with (25) implies

||(σσσ∆
h ,φφφ

∆
h )||ΣΣΣ×ΦΦΦ . B((σσσ∆

h ,φφφ
∆
h ),(σσσ

∆
h ,φφφ

∆
h )) = B((σσσ∆,φφφ∆)|(σσσ∆

h ,φφφ
∆
h ))

= ((σσσ∆,φφφ∆),(σσσ∆
h ,φφφ

∆
h ))LS−bLS(σσσ

∆,φφφ∆
h )−bLS(σσσ

∆
h ,φφφ

∆)

= (σσσ∆,σσσ∆
h )LSΣΣΣ

+(φφφ∆,φφφ∆
h )LSV−bLS(σσσ

∆,φφφ∆
h )−bLS(σσσ

∆
h ,φφφ

∆)

The first term can be replaced by (33) for arbitrary function (wh,γh) ∈Wh × Xh while the Galerkin
orthogonality (17) allows the second term and the fourth term to vanish. For the third term, simple
computations (in both Least-Squares cases) show that

bLS(σσσ
∆
h ,φφφ

∆
h ) = (εεε(ξξξ−vh),A−1

εεε(u−us
h)) ∀vh ∈ Vh (37)

follows from (35). Altogether we obtain

||(σσσ∆
h ,φφφ

∆
h )||ΣΣΣ×ΦΦΦ . (Aσσσ

∆,A(ηηηh−ηηη))−bm(σσσ
∆,(ξξξ−wh,ζ− γh))− (εεε(ξξξ−vh),A−1

εεε(u∆))

. ||σσσ∆||A ||(A(ηηηh−ηηη),ξξξ−wh,ζ− γh)||ΣΣΣhW×X +‖εεε(ξξξ−vh)‖‖A−1
εεε(u∆)‖ .
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Degrees of freedom

||u1,∆||V
||u2,∆||V
||u0,∆||V
||u1,∆

h ||V
||u2,∆

h ||V
||u0,∆

h ||V

Figure 4: Difference of the approximations of the displacements
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This immediately leads to refined a priori bounds for the Least-Squares method. For this, we now assume
that the problem is H2 regular. For all f ∈ L2(Ω), the solution u of the elasticity problem fulfills

‖u‖2 . ‖ f‖,

and it follows

‖ηηη‖1 ≤C‖ξξξ‖2 ≤C‖divσσσh‖ ≤C‖σσσh‖H(div;Ω). (38)

We choose vh as the orthogonal interpolation of ξξξ in Vh such that ‖ξξξ− vh‖ . hk‖ξ‖1 holds. Similarly,
wh and γh are the L2-orthogonal projections of ξξξ and ζ on Wh and Xh such that

||(ξξξ−wh,ζ− γh)||ΣΣΣ×W×X . hk(||ξξξh||+ ||γh||) .

This leads to

||(σσσ∆
h ,φφφ

∆
h )||ΣΣΣ×ΦΦΦ . hk (‖σσσ∆‖A +‖εεε(u∆)‖

)
. (39)

By the triangle inequality we obtain similarly to [9] the refined estimate

||φφφ−φφφ
∆
h ||ΦΦΦ . ||u−us

h||+hk||(σσσ∆,φφφ∆)||ΣΣΣ×ΦΦΦ . (40)

Moreover, if f is a piece-wise constant the mixed finite element method (Mh) has exact local mass con-
servation we obtain

||div(σσσ−σσσh)||0 = ||div(σσσm−σσσh)||0 . hk||(σσσ∆,φφφ∆)||ΣΣΣ×ΦΦΦ , (41)

i.e. the mass conservation of the Least-Squares method is of higher-order.

5 Numerical results

Our numerical results confirm the theoretical investigations of the previous sections. A simple polygonal
design of an exact displacement with homogeneous boundary conditions on ∂Ω implies

u(x,y) =
(

xy(1− x)(1− y)
xy(1− x)(1− y)

)
(42)

and thus

ε(u) =
(

y(y−1)(2x−1) 1
2(y+ x−1)(2xy− x− y)

1
2(y+ x−1)(2xy− x− y) x(x−1)(2y−1)

)
, (43)

div(u) = (y+ x−1)(2xy− x− y) and p(x,y) =
1
2
(2x− x− y+1)(x− y) . (44)

This leads to

σσσ(x,y) =
(

2µy(y−1)(2x−1) 0
0 2µx(x−1)(2y−1)

)
+(y+ x−1)

(
λ(2xy− x− y) µ(2xy− x− y)
µ(2xy− x− y) λ(2xy− x− y)

)
and

f =
(

µ(2x2 +4xy+4y2−4x−6y+1)+λ(4xy+2y2−2x−4y+1)
µ(4x2 +4xy+2y2−6x−4y+1)+λ(2x2 +4xy−4x−2y+1)

)
(45)
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Degrees of freedom

||(σσσ,u)1,∆||ΣΣΣ×V
||(σσσ,u)2,∆||ΣΣΣ×V
||(σσσ,u)0,∆||ΣΣΣ×V
||(σσσ,u)1,∆

h ||ΣΣΣ×V

||(σσσ,u)2,∆
h ||ΣΣΣ×V

Figure 5: Difference of the approximations
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6 Conclusions

For the linear elasticity problems, we compared the approximations obtained by the Least-Squares finite
element method with the approximations obtained by the standard conforming finite element method
and the mixed finite element method and prove that the H1-conforming displacement approximations
(least-squares finite element and standard finite element) as well as the H(div)-conforming stress ap-
proximations are higher-order perturbations of each other. Future work will consider domain with curved
boundaries in the spirit of [5, 4, 6, 1].
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