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Abstract. We consider the linear elasticity problems and compare the approximations obtained by
the Least-Squares finite element method with the approximations obtained by the standard conforming
finite element method and the mixed finite element method. The main result is that the H'-conforming
displacement approximations (least-squares finite element and standard finite element) as well as the
H (div)-conforming stress approximations are higher-order pertubations of each other. This leads to
refined a priori bounds and superconvergence results. Numerical experiments illustrate the theory.

1 Introduction

Let Q € R? (d = 2,3) be a polytopal convex domain with boundary dQ divided into two parts I'p, and
Ty, ie. 0Q=Tp ULy, [pNI'y =0,Ip # 0. For given data f € (LZ(Q))Z, the linear elasticity problem
is modeled as
Ac—¢e(u)=0 inQ
dive = —f in Q
(1
u=>0 onI'p

c-n=0 on [y,

where 6 is a symmetric d-by-d stress tensor, u the displacement vector field, A4 is the inverse of the
elastic material law, defined in terms of the Lamé constants u and A by

fél'c—i ’C—Lt )
T\ 2uran )

the symmetric gradient is defined as
1

e(v) 5

(VV—l—(VV)T),
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tr(t) = Y'2_, T;; denotes the trace of a vector and n the outward unit normal vector to I'y. The presence
of 4 instead of the usual stress-strain relation C = 2u€u+ A(divu)I allows the formulations to be robust
in the incompressible limit (as A goes to infinity).

Finite element methods are the most widely used tools for computing the deformations of an elastic
body subject to forces. In the framework of the (non-robust) standard conforming theory, the variational
problem (see e.g. [10, Chapter 11.]) is to minimize the energy (A~ 'v,v) under all v € V = H}(Q).
An accurate approximation of the stress tensor, which is often of crucial interest, can be obtained with
stress-based variational formulations where the stress is directly seek in

.o {teH(div;Q)*: Tt n=00onTy} if[y#0
YTl it e H(div: Q) : [ytr(t)dx =0} ifTy =0’

where each component of the (column) vector divergence operator div is acting on the corresponding row
of H(div,Q) = H(div;Q)?. Those methods can either lead to a saddle-point formulation (see e.g. [8]) or
of Least-Squares type (see e.g. [7]). A comparison of the H'-conforming approximations (least-squares
finite element and standard finite element) as well as the H(div)-conforming approximations are was
performed in [9] for the Poisson equation, proving that they are higher-order perturbations of each other.
This leads to refined a priori bounds and superconvergence results. The purpose of this paper is to extend
these results to the linear elasticity problem. The next section will recall the formulations while section
3 presents the discretisations. The direct comparison will be performed in section 4 while section 5 is
dedicated to the numerical experiment.

2 Variational formulations

The standard non-robust displacement formulation according tho the energy principle introduced in the
introduction reads: find u € V such that

as(u,v) =2u(e(u),&(v))2(q) +Mdivu,divy) 2y = (£, V) 2q) VVEV. (S)

The stress-based mixed method maximizes the energy (At,T) under all T satisfying the divergence con-
straint

(div(o),w) = (f,v) VYwe L*(Q)? (2)
as well as the symmetry condition
(skewo,y() =0 VyecL*(Q) (3)

where the skew-symmetric part is defined as

skew(t) = % {’C—TT} and g = <(l) _01> .

This gives rises to the following stress-based mixed method: find (G,u, ®) such that

(46,7) + (div(T),u) + (skewt,®) =0 VteX (4a)
(div(o),w) = (f,w) vw € L2(Q)? (4b)
(skewo,yx) =0 vy e L*(Q). (4¢)
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Note that this system can be rewritten as

b
Q
Na )
>

—bp(T,(u,)) =0 VTeX (5a)
bu(0, (W) = (£,v) (w,y) € L2(Q). (5b)

with the bilinearform b,,(t, (w,Y)) = —(div(t),w) — (skewt,yx) and that the first term (A6,T) corre-
spond to a symmetric bilinear form, i.e.

(40,7) = (4t,0). 6)

A third approach, the two-field least-squares formulation of (1) considered in [11] consists in minimizing
the functional
F(w,vif) = | Av—e(v)[[5 + || dive -+ 1|3

in Xy x V. Other two least-squares formulations have been introduced in [3] which make use of three
and four fields, respectively, by the introduction of the vorticity and the pressure as new unknowns. The
three-field formulation seeks a minimizer of the functional

G(t,v.¢:f) = [|AT — Vv +xq|[5 + || dive +£][§ + || skew 3
in Ly x V x L?(Q) with

iy JLA(Q) if Ty #0
L= {{q€L2(Q):qudx:0} if Ty = 0.

The minimization of the functional ¥ (t,v;f) gives rise to the following variational formulation: find
6 € Xy and u € V such that

(406, At) + (divo,divt) — (At,e(u)) = —(f,divt) VT eXy (7a)
—(40,&(v)) + (¢(u),g(v)) =0 Vvev. (7b)

The variational formulation associated with the minimization of the functional G is obtained by seeking
6 Xy, ucV,and p € L*(Q) such that

(40, A1) + (dive,divt) + (skew(o),T) — (At,€(u)) + (skew(AT), p) = —(f,divt) VT Xy (8a)
—(40,€&(v )) (€(u),&(v)) — (p,skew(Vv)) =0 VveV (8b)
(skew(AG),q) — (¢q,skew(Vu)) +2(p,q) =0 Vg€ L*(Q). (8¢)

In order to consider these Least-Squares formulations in a unified setting, we introduce the space ® =
V x L*(Q) and reformulate (7) and (8) as follows

B((T,9)|(T.y)) = —(f.divt) k=12 ©)
with

Bi((0,(u,p))|(t,(v,q))) = (A6 —€(u), AT —€(v)) + (dive,divt) (10)
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and
B((0,(u,p))|(T,(v,q))) = (A6 —V(u) + px, AT —V(v) +qx) +2(p,q) ++(dive,divt). (1)

We also define define the exact solution
1
¢ = (u, Ecurlu) = (u,p). (12)

A further useful notation splits the bilinear form B; in terms defining an inner product and terms corre-
sponding to a mixed formulation:

Bj((G,(I)), (T,\V)) = ((Gaq’)a (17‘|'>)LS_,' - bLSj (67\") - bLSj (T7¢) (13)

with
((67¢)7 (T7‘|,))LSI = ((674))7 (U,V))le - (ﬂlc,ﬂl’t) + (S(u),S(V)), (14a)
((674))7 (Tv‘V))LSz = ((674))7 ((u,p), (V,Q)))LSZ = (’{467 "QlT) + (chVT)v +2(1’7‘1) (14b)

and
bis, (G,W) = bis, (6,v) = (46,(v)) (15a)
brs,(6,¥) =brs,(6,(v,q)) = (A6, Vv—qy) + (Vv,qx) . (15b)

The difference between the energy considered in the mixed formulation and the inner product arising in
the Least-Squares method is crucial and we therefore define further

(€(u),&(v)) k=1
(V(),V(v)) +(p.q) k=2

We will also drop the index & in the equations where both k = 1,2 are allowed.

(th)LS): = (/q.O', .ﬂ_’t) and ((|)7\|’)LS£‘[> - ((ll,p), (Vvq))LSfi) = { (16)

3 Discretisations

Let Q; be a regular triangulation of Q. The approximation of the formulation presented in the previ-
ous section is performed by choosing appropriate subspaces of £y,V and L?(Q). For the conforming
approximations of the displacement in the standard and Least-Squares formulations, we choose V, C V
as the conforming Lagrange element of degree k. The discrete version of the standard formulation (S)
therefore reads: find u;, € V;, such that

(A 'e(uy), Vv) = (£,v) Vv E V. (Sn)
Recall that the Galerkin orthogonality
(A 'e(u—uy),Vv)=0 Vv € V. (17)

implies the non-robust a priori estimates ||u — up||; < C(u, M)A¥||ul|2.
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For the conforming approximations of the stress tensor in the mixed and Least-Squares formulations,
we choose the tensor space X, C Xy whose rows consists in the H(div; Q)-conforming Raviart-Thomas
space of degree k. The discrete version of the two-fields formulation (7) therefore reads: find u}1 ev,
and O‘}l € X, such that

(46}, 21) + (dive},divt) — (At,e(u))) = —(f,divt) vt eX, (182)
— (406},e(v)) + (€(u}),&(v)) =0 Vv e V. (18b)

The three-fields Least-Squares method requires an additional subspace Wj, of L?(Q) for the vorticity. As
the Least-Squares method does not requires any compatibility condition between the space we choose
the space of piecewise discontinuous polynomials of degree k — 1 in order to obtain corresponding con-
vergence rates for the stress, the displacement and the vorticity. The Galerkin approximation of (8) reads:
find uﬁ €Vy, 0‘% € X, and p;, € W}, such that

(462 —e(u2 + ppx), At) + (dive?, dive) + (skew(63),1) = — (£, divT) Vteyx, (192)
(e(u;) — A07,£(v)).£(v)) — (Xpr,Vv) =0 Y eV, (19b)
(Ao} —Vui,qx) +2(ph,q) =0 Vg €W (19¢)

Similarly to the continuous setting we introduce the spaces ®;, = V;, x W), and reformulate (18) and (19)
as follows

Q%k((ch,%)]('ch,\ph)) = —(f, diVTh> for all (Th,\|lh) e, x®, k= 1,2 (LSp)

as well as

(20)

ot (uy, 3 curluy) ifk=1
h (llh,ph) ifk=2 .

For the discretisation of the mixed method we choose the remaining discrete spaces W, for the approx-
imation of the displacement and X, for the approximation of the vorticity such that the well-posedness
of the system is satisfied. According to [8] we can choose W, as the space of discontinuous piecewise
vector polynomials of degree k and Xj, as the space of continuous piecewise polynomials of degree k.
The discrete version of (4¢) the reads: find (6", u}, w;,) € Ej, x W), X X, such that

(Ao}, Th) + (div(Ty), up') + (skew Ty, @p) =0 VT, €Ly (21a)
(div(ey), wn) = (£, wp) Yw, € W), (21b)
(skewo) ,y,) =0 YV € Xp, (21¢)

i.e.
(Ao} ,Th) + (div(ty),u))) + (skew Ty, 0p) + (div(o}'), wy) + (skewo)), yi) = (£, wy) (My,)

for all (Ty, Wp,Yn) € Ep X W), x Xj. Based on the Galerkin orthogonalities

(40 — o' ,t,) + (div(Ty),u —uj’) + (skewt,, 0 — ;) =0 VTelX, (22a)
(div(c —6),wy) =0 Yw, € W), (22b)
(skew (6 —0}'),Yn) =0 YYh € Xp. (22¢)



Fleurianne Bertrand and Henrik Schneider

we obtain the a priori estimates
l6 =G5 llo + llu — unllo + | — wnllo < CHH (|l + [Jullo + [|]o)-

According to [8] (see also [2] for on general domains), this element combination allows for positive
constants C; and C, independent on A, such that

(.q’th,'th) >C HThH)ZZ V1, € Xy with bm('th, (V,O))) =0 V(V,O)) e Wy, xXj,.

and b
T,V,®
inf sup M >0
(v@)eW, <X, rey, [[(v, @)l

4 Comparison of the approximations

The results of this paper are based on the crucial Galerkin properties of the Least-Squares methods, i.e.
fork=1,2

Bi((6—0},,0 —¢)|(T.¥)) =0 (23)

for all (T,y) € &), X <I>’,‘l. Since T needs to be H(div;Q)-conforming, we can compare the conforming
stress approximations, i.e. the stress approximations of the mixed and of the Least-Squares methods. We
therefore define 62’1 = G}l -0y, Gﬁ’z = 6%, —o;', and 62"0 = 0‘}l - 0‘%. For the displacement test function,
we can insert any conforming displacement, i.e. the displacement approximations of the standard and of
the Least-Squares method. We therefore define uﬁ’l =u} —uy, uﬁ’2 =u2 —uy as well as ufl’o =u —u}.

In order to deal with the three-fields formulation we also define ¢}Al’1 = (|>}1 —0p, ¢ﬁ>2 = ¢,21 — ¢y as well as
& =0~ 0.

Choosing T = O‘ﬁ"j and Y = ¢2’j in (23) leads to

j NN BNY,
Bi((6—0;,6—9)|(,".,”)) =0 24)
for j =0,1,2. This immediately leads to

AJ A A A . j Aj AAj
B;((o, /, h j>|(6h /, i ') = GZ_GZ[7¢/11 —01)| (o), /7¢h )

(

(6] —G+G 00, —0-+b—d)[(c,”,0p))
m Aj aAj (25)

(G_Gh7¢_¢h)‘(o‘h ?¢h ))

(

where we denote u® =u—uy, ¢* =¢ — ¢, and 6* =6 — 0"

Considering the difference G}Al € X, of the least-squares problem and the mixed method we now state the
following auxiliary problem: find (,&,{) € EZy x V x L*(Q) such that

an—-eE)=0 in Q (26a)
divn = dive) in Q (26b)
skew(n) = skew(65) in Q. (26¢)



Fleurianne Bertrand and Henrik Schneider

L 1 \'\\
A A
O8‘: -+ v s | 0.8
A A A A A AV A A A A A A S S A A
s S S S s s s s 1
oSS S S S s s s s
s S SSSSSSSSSSSSSs s
0.6 PSS SIS S S S s - 1 10.6
oSS S S S s
;oSS S S S S s, 05
. oSS S S S s
s s s PSS S S s s s
04y . ... .0 00 s 00 104
. S S S S S S SSSSSssss
. oSS S S S S S s, 0
. P A A A A A A A A A A A S S A A .
T P A A A S A A A A A A A S S D
0'27_,///////////////////,_7 IO‘2 O
ol R e R 0 0'60.8 e
0 0.2 04 0.6 0.8 1 y
Figure 1: Exact solution for displacement u (left) and vorticity p (right)
The corresponding mixed formulation reads
(AM,7) + (div(t),&) + (skewt,£) =0 VTeXy (27a)
(div(n),w) = (div(c5),w) YweW (27b)
(skewm —67),7) =0 Yy e L*(Q). (27¢)

The discretisation of this problem using the mixed method introduced in the previous section reads: find
(Mn,&r,Cn) € En X W, x X, such that

(/‘Zl’l']h,'th) + (diV(‘Ch),gh) + (SkeW‘Ch, Ch) =0 V1, €X;, (28a)
(divmg), ws) = (div(e5), wy) vw;, € W), (28b)
(skew (M), —64),Yx) =0 VY € Xn. (28¢)

The crucial relation div(n, — Gﬁ) = 0 together with the weakly symmetric condition implies
bu(6y —m, (u—ul",®—wy)) = 0. (29)
Inserting this in equation (22a) we obtain
(46%,67) = —(div(c}),u —u") — (skewoh,® — @y)
= —b(cy, (u—uj, 0 wy))
= —b(My, (u—uj, 0 — o)) = (A6",)
This leads to
(46%,0)") = (40*,n, —M) + (A0% 1) (30)

as well as

(6%,0})Ls; = (A6*, 40)) = (46", A(M; —N)) + (A6*, An) 31)
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Figure 2: Difference of the approximations of the stress tensor the H(div;Q)-seminorm and in the L?()-norm

Moreover, the symmetry (6) together with (27a) implies
(A6%,M) = (An,6°%) = —(div(6?),&) — (skew (6),0) = ~bu(c*, (€,0))
Combining this with (31) leads to
(A6%.67') = (A6* M —M) — b (6, (§,0))
Using (22b) and (22¢) we have for any (wp,, V) € W, X Xj,
(46%,67) = (6%, M), —1M) — b (6®, (§ — Wi, §— ).

On the other hand, (29) and integrating by parts allow

1 ) 1
bm(cﬁ, (u—uy, Ecurl(u—u;,))) =b,(M, (u—uy, Ecurl(u—uﬁ,)))

= (div(n), (a—u}) + (skewn, S curl(u —u}) 1)

(0.7 (1 u})) + (skewn, ; curl(u— u}) )

M.e(u—w)) = (2"'e€).e(u—u}))
(€@®), 2 'e(u—u}))

The Galerkin orthogonality (17) now implies
1
bu(0}, (u—uj, S curl(u—u}))) = (€€~ i), A 'e(u—u})

for any v, € V. Both results (34) and (35) leads to the following supercloseness theorem.

(32)

(33)

(34

(35)
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Figure 3: Difference of the approximations of the stress approximations

Theorem 1. Letu € V and 6 € Xy be the exact solution of the linear elasticity problem (1). Consider the
discrete solutions w; of (Sp), (6], w)!,wy,) € Xy x Wy, X Xj, of (My,) and (6,¢1) of (LSy). Define ud =
u—uwy, ¢* =0 —0;, and 6* =6 —067". Moreover, let(M,&,0) €Ex W x X and My, &, Ci) € Zp X Wy X X
be the solution of the auxiliary problem defined as in (27) and (28). Then, it holds

105,03 lzxe < [16°]|al| (A0 —1).& = Wi E =) [z, wx + € E—va) €@ . (36)

The coercivity of the Least-Squares bilinearform together with (25) implies
(k. 0%)|lzxe < B((67.94), (07.,03)) = B((6*,4%)|(ch.0%))
= ((6,0%), (67,04) s — brs(6°.0%) — brs(c)y,¢°)
= (6%,67)Ls; + (0°,00)Lsy — brs(6%,0) — bis(cy,0%)

The first term can be replaced by (33) for arbitrary function (wy,Yy,) € W;, x X, while the Galerkin
orthogonality (17) allows the second term and the fourth term to vanish. For the third term, simple
computations (in both Least-Squares cases) show that

bLs(Gﬁ,(I)%) = (e (&—vh),ﬂl‘le(u—ufl)) Vv, €V 37
follows from (35). Altogether we obtain
1(07,9%)|[zx@ S (6%, AM4 —N)) = b (6, (§ — Wi, G — 1)) — (€(E —va), A" 'e(u))
SlIotlall(Am —1).& — Wi, E— 1) |l wox + 1€ E—va) |27 € ()]
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This immediately leads to refined a priori bounds for the Least-Squares method. For this, we now assume
that the problem is H? regular. For all f € L?(), the solution u of the elasticity problem fulfills

Jull2 S 1I£1,
and it follows
Inlli < ClEll2 < Clldives|| < Cllonl|aaiv:0)- (38)

We choose v, as the orthogonal interpolation of & in V;, such that ||§ — v;|| < #*||€||; holds. Similarly,
wj, and 7, are the L2-orthogonal projections of § and { on W, and X), such that

[1& = Wi, § =¥ lzsewsx S A (18l + [19]]) -

This leads to

(. 0%) < < i (Il6® .2+ € (u®)]]) - (39)
By the triangle inequality we obtain similarly to [9] the refined estimate

10— 03lle < [lu—wjl| +7[|(6°,0%)|lzxe - (40)

Moreover, if f is a piece-wise constant the mixed finite element method (M) has exact local mass con-
servation we obtain

[div(e —o)llo = [|div(6” —6n)llo < H*[/(6%,0%)|[zxe , 4D

i.e. the mass conservation of the Least-Squares method is of higher-order.

5 Numerical results

Our numerical results confirm the theoretical investigations of the previous sections. A simple polygonal
design of an exact displacement with homogeneous boundary conditions on 0Q implies

_ (o1 =x)(1-y)
o = (0 201 ) @

and thus
e(u) = (W ) 0 Do 1)3_)))) ’ )
div(u) = (v +x~ 1)(2y —x~ ) and plx.y) = 3 (2x—x—y + () (44)
This leads to
o) = (00T D) T (o ) M)
and

e <y(2x2+4xy+4y2—4x—6y—|-1)+7»(4xy+2y2—2x—4y+1)> 45)

p(4x? +dxy +2y% — 6x — 4y +1) +M2x% +4xy — dx — 2y + 1)

11
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6 Conclusions

For the linear elasticity problems, we compared the approximations obtained by the Least-Squares finite
element method with the approximations obtained by the standard conforming finite element method
and the mixed finite element method and prove that the H'-conforming displacement approximations
(least-squares finite element and standard finite element) as well as the H(div)-conforming stress ap-
proximations are higher-order perturbations of each other. Future work will consider domain with curved
boundaries in the spirit of [5, 4, 6, 1].
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