LEAST-SQUARES METHODS FOR LINEAR ELASTICITY: REFINED ERROR ESTIMATES

Fleurianne BERTRAND ${ }^{12}$ and Henrik SCHNEIDER ${ }^{3}$
${ }^{2}$ University of Twente
Drienerlolaan 5, 7522 NB Enschede, Netherlands
f.bertrand@utwente.nl
${ }^{3}$ Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

Key words: Least-Squares Finite Element Method, linear elasticity

Abstract

We consider the linear elasticity problems and compare the approximations obtained by the Least-Squares finite element method with the approximations obtained by the standard conforming finite element method and the mixed finite element method. The main result is that the H^{1}-conforming displacement approximations (least-squares finite element and standard finite element) as well as the H (div)-conforming stress approximations are higher-order pertubations of each other. This leads to refined a priori bounds and superconvergence results. Numerical experiments illustrate the theory.

1 Introduction

Let $\Omega \in \mathbb{R}^{d}$ ($d=2,3$) be a polytopal convex domain with boundary $\partial \Omega$ divided into two parts Γ_{D} and Γ_{N}, i.e. $\partial \Omega=\overline{\Gamma_{D} \cup \Gamma_{N}}, \Gamma_{D} \cap \Gamma_{N}=\emptyset, \Gamma_{D} \neq \emptyset$. For given data $f \in\left(L^{2}(\Omega)\right)^{2}$, the linear elasticity problem is modeled as

$$
\begin{array}{ll}
\mathcal{A} \boldsymbol{\sigma}-\boldsymbol{\varepsilon}(\mathbf{u})=0 & \text { in } \Omega \\
\operatorname{div} \boldsymbol{\sigma}=-\mathbf{f} & \text { in } \Omega \\
\mathbf{u}=\mathbf{0} & \text { on } \Gamma_{D} \tag{1}\\
\boldsymbol{\sigma} \cdot \mathbf{n}=\mathbf{0} & \text { on } \Gamma_{N},
\end{array}
$$

where $\boldsymbol{\sigma}$ is a symmetric d-by- d stress tensor, \mathbf{u} the displacement vector field, \mathcal{A} is the inverse of the elastic material law, defined in terms of the Lamé constants μ and λ by

$$
\mathcal{A} \boldsymbol{\tau}=\frac{1}{2 \mu}\left(\boldsymbol{\tau}-\frac{\lambda}{2 \mu+d \lambda} \operatorname{tr}(\boldsymbol{\tau}) \mathbf{I}\right),
$$

the symmetric gradient is defined as

$$
\boldsymbol{\varepsilon}(\mathbf{v})=\frac{1}{2}\left(\nabla \mathbf{v}+(\nabla \mathbf{v})^{\top}\right),
$$

[^0]$\operatorname{tr}(\tau)=\sum_{i=1}^{2} \tau_{i i}$ denotes the trace of a vector and \mathbf{n} the outward unit normal vector to Γ_{N}. The presence of \mathcal{A} instead of the usual stress-strain relation $C=2 \mu \varepsilon \mathbf{u}+\lambda(\operatorname{div} \mathbf{u}) \mathbf{I}$ allows the formulations to be robust in the incompressible limit (as λ goes to infinity).

Finite element methods are the most widely used tools for computing the deformations of an elastic body subject to forces. In the framework of the (non-robust) standard conforming theory, the variational problem (see e.g. [10, Chapter 11.]) is to minimize the energy ($\mathcal{A}^{-1} \mathbf{v}, \mathbf{v}$) under all $\mathbf{v} \in \mathbf{V}=\mathbf{H}_{D}^{1}(\Omega)$. An accurate approximation of the stress tensor, which is often of crucial interest, can be obtained with stress-based variational formulations where the stress is directly seek in

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{ll}
\left\{\boldsymbol{\tau} \in H(\operatorname{div} ; \Omega)^{2}: \boldsymbol{\tau} \cdot \mathbf{n}=0 \text { on } \Gamma_{N}\right\} & \text { if } \Gamma_{N} \neq \emptyset \\
\left\{\boldsymbol{\tau} \in H(\operatorname{div} ; \Omega)^{2}: \int_{\Omega} \operatorname{tr}(\boldsymbol{\tau}) d \mathbf{x}=0\right\} & \text { if } \Gamma_{N}=\emptyset
\end{array},\right.
$$

where each component of the (column) vector divergence operator div is acting on the corresponding row of $\mathbf{H}(\operatorname{div}, \Omega)=H(\operatorname{div} ; \Omega)^{2}$. Those methods can either lead to a saddle-point formulation (see e.g. [8]) or of Least-Squares type (see e.g. [7]). A comparison of the H^{1}-conforming approximations (least-squares finite element and standard finite element) as well as the $H(d i v)$-conforming approximations are was performed in [9] for the Poisson equation, proving that they are higher-order perturbations of each other. This leads to refined a priori bounds and superconvergence results. The purpose of this paper is to extend these results to the linear elasticity problem. The next section will recall the formulations while section 3 presents the discretisations. The direct comparison will be performed in section 4 while section 5 is dedicated to the numerical experiment.

2 Variational formulations

The standard non-robust displacement formulation according tho the energy principle introduced in the introduction reads: find $u \in \mathbf{V}$ such that

$$
\begin{equation*}
a_{S}(\mathbf{u}, \mathbf{v})=2 \mu(\varepsilon(\mathbf{u}), \varepsilon(\mathbf{v}))_{L^{2}(\Omega)}+\lambda(\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{v})_{L^{2}(\Omega)}=(\mathbf{f}, \mathbf{v})_{L^{2}(\Omega)} \quad \forall \mathbf{v} \in \mathbf{V} . \tag{S}
\end{equation*}
$$

The stress-based mixed method maximizes the energy $(\mathscr{A} \tau, \tau)$ under all τ satisfying the divergence constraint

$$
\begin{equation*}
(\operatorname{div}(\boldsymbol{\sigma}), \mathbf{w})=(\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{w} \in L^{2}(\Omega)^{2} \tag{2}
\end{equation*}
$$

as well as the symmetry condition

$$
\begin{equation*}
(\text { skew } \boldsymbol{\sigma}, \gamma \boldsymbol{\gamma})=0 \quad \forall \boldsymbol{\gamma} \in L^{2}(\Omega) \tag{3}
\end{equation*}
$$

where the skew-symmetric part is defined as

$$
\operatorname{skew}(\boldsymbol{\tau})=\frac{1}{2}\left\{\boldsymbol{\tau}-\boldsymbol{\tau}^{\top}\right\} \text { and } \boldsymbol{\chi}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

This gives rises to the following stress-based mixed method: find $(\boldsymbol{\sigma}, \mathbf{u}, \omega)$ such that

$$
\begin{array}{ll}
(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\tau})+(\operatorname{div}(\boldsymbol{\tau}), \mathbf{u})+(\operatorname{skew} \boldsymbol{\tau}, \boldsymbol{\omega})=0 & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma} \\
(\operatorname{div}(\boldsymbol{\sigma}), \mathbf{w})=(\mathbf{f}, \mathbf{w}) & \forall \mathbf{w} \in L^{2}(\Omega)^{2} \\
(\operatorname{skew} \boldsymbol{\sigma}, \boldsymbol{\chi})=0 & \forall \gamma \in L^{2}(\Omega)
\end{array}
$$

Note that this system can be rewritten as

$$
\begin{array}{ll}
(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\tau})-b_{m}(\boldsymbol{\tau},(\mathbf{u}, \boldsymbol{\omega}))=0 & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma} \\
b_{m}(\boldsymbol{\sigma},(\mathbf{w}, \boldsymbol{\gamma}))=(\mathbf{f}, \mathbf{v}) & \forall(\mathbf{w}, \boldsymbol{\gamma}) \in L^{2}(\Omega)^{3}
\end{array}
$$

with the bilinearform $b_{m}(\boldsymbol{\tau},(\mathbf{w}, \boldsymbol{\gamma}))=-(\operatorname{div}(\boldsymbol{\tau}), \mathbf{w})-(\operatorname{skew} \boldsymbol{\tau}, \boldsymbol{\gamma} \boldsymbol{\chi})$ and that the first term $(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\tau})$ correspond to a symmetric bilinear form, i.e.

$$
\begin{equation*}
(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\tau})=(\mathscr{A} \boldsymbol{\tau}, \boldsymbol{\sigma}) \tag{6}
\end{equation*}
$$

A third approach, the two-field least-squares formulation of (1) considered in [11] consists in minimizing the functional

$$
\mathcal{F}(\boldsymbol{\tau}, \mathbf{v} ; \mathbf{f})=\|\mathcal{A} \boldsymbol{\tau}-\boldsymbol{\varepsilon}(\mathbf{v})\|_{0}^{2}+\|\operatorname{div} \boldsymbol{\tau}+\mathbf{f}\|_{0}^{2}
$$

in $\boldsymbol{\Sigma}_{N} \times \mathbf{V}$. Other two least-squares formulations have been introduced in [3] which make use of three and four fields, respectively, by the introduction of the vorticity and the pressure as new unknowns. The three-field formulation seeks a minimizer of the functional

$$
\mathcal{G}(\boldsymbol{\tau}, \mathbf{v}, q ; \mathbf{f})=\|\mathcal{A} \boldsymbol{\tau}-\boldsymbol{\nabla} \mathbf{v}+\boldsymbol{\chi} q\|_{0}^{2}+\|\operatorname{div} \boldsymbol{\tau}+\mathbf{f}\|_{0}^{2}+\| \text { skew } \boldsymbol{\tau} \|_{0}^{2}
$$

in $\boldsymbol{\Sigma}_{N} \times \mathbf{V} \times \bar{L}^{2}(\Omega)$ with

$$
\bar{L}^{2}(\Omega)= \begin{cases}L^{2}(\Omega) & \text { if } \Gamma_{N} \neq \emptyset \\ \left\{q \in L^{2}(\Omega): \int_{\Omega} q d \mathbf{x}=0\right\} & \text { if } \Gamma_{N}=\emptyset\end{cases}
$$

The minimization of the functional $\mathcal{F}(\boldsymbol{\tau}, \mathbf{v} ; \mathbf{f})$ gives rise to the following variational formulation: find $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}_{N}$ and $\mathbf{u} \in \mathbf{V}$ such that

$$
\begin{array}{ll}
(\mathcal{A} \boldsymbol{\sigma}, \mathcal{A} \boldsymbol{\tau})+(\operatorname{div} \boldsymbol{\sigma}, \operatorname{div} \boldsymbol{\tau})-(\mathcal{A} \boldsymbol{\tau}, \boldsymbol{\varepsilon}(\mathbf{u}))=-(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}) & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{N} \\
-(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\varepsilon}(\mathbf{v}))+(\boldsymbol{\varepsilon}(\mathbf{u}), \boldsymbol{\varepsilon}(\mathbf{v}))=0 & \forall \mathbf{v} \in \mathbf{V} \tag{7b}
\end{array}
$$

The variational formulation associated with the minimization of the functional \mathcal{G} is obtained by seeking $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}_{N}, \mathbf{u} \in \mathbf{V}$, and $p \in \bar{L}^{2}(\Omega)$ such that

$$
\begin{align*}
(\mathcal{A} \boldsymbol{\sigma}, \mathcal{A} \boldsymbol{\tau})+(\operatorname{div} \boldsymbol{\sigma}, \operatorname{div} \boldsymbol{\tau})+(\operatorname{skew}(\boldsymbol{\sigma}), \boldsymbol{\tau})-(\mathcal{A} \boldsymbol{\tau}, \boldsymbol{\varepsilon}(\mathbf{u}))+(\operatorname{skew}(A \boldsymbol{\tau}), p)=-(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}) & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{N} \tag{8a}\\
-(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\varepsilon}(\mathbf{v}))+(\boldsymbol{\varepsilon}(\mathbf{u}), \boldsymbol{\varepsilon}(\mathbf{v}))-(p, \operatorname{skew}(\boldsymbol{\nabla} \mathbf{v}))=0 & \forall \mathbf{v} \in \mathbf{V} \tag{8b}\\
(\operatorname{skew}(A \boldsymbol{\sigma}), q)-(q, \operatorname{skew}(\boldsymbol{\nabla} \mathbf{u}))+2(p, q)=0 & \forall q \in \bar{L}^{2}(\Omega) . \tag{8c}
\end{align*}
$$

In order to consider these Least-Squares formulations in a unified setting, we introduce the space $\boldsymbol{\Phi}=$ $\mathbf{V} \times \bar{L}^{2}(\Omega)$ and reformulate (7) and (8) as follows

$$
\begin{equation*}
\mathcal{B}_{k}((\boldsymbol{\tau}, \boldsymbol{\phi}) \mid(\boldsymbol{\tau}, \boldsymbol{\psi}))=-(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}) \quad k=1,2 \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{B}_{1}((\boldsymbol{\sigma},(\mathbf{u}, p)) \mid(\boldsymbol{\tau},(\mathbf{v}, q)))=(\mathcal{A} \boldsymbol{\sigma}-\boldsymbol{\varepsilon}(\mathbf{u}), \mathcal{A} \boldsymbol{\tau}-\boldsymbol{\varepsilon}(\mathbf{v}))+(\operatorname{div} \boldsymbol{\sigma}, \operatorname{div} \boldsymbol{\tau}) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{2}((\boldsymbol{\sigma},(\mathbf{u}, p)) \mid(\boldsymbol{\tau},(\mathbf{v}, q)))=(\mathcal{A} \boldsymbol{\sigma}-\boldsymbol{\nabla}(\mathbf{u})+p \chi, \mathcal{A} \boldsymbol{\tau}-\boldsymbol{\nabla}(\mathbf{v})+q \boldsymbol{\chi})+2(p, q)++(\operatorname{div} \boldsymbol{\sigma}, \operatorname{div} \boldsymbol{\tau}) . \tag{11}
\end{equation*}
$$

We also define define the exact solution

$$
\begin{equation*}
\boldsymbol{\phi}=\left(\mathbf{u}, \frac{1}{2} \mathbf{c u r l} \mathbf{u}\right)=(\mathbf{u}, p) \tag{12}
\end{equation*}
$$

A further useful notation splits the bilinear form B_{j} in terms defining an inner product and terms corresponding to a mixed formulation:

$$
\begin{equation*}
B_{j}((\boldsymbol{\sigma}, \boldsymbol{\phi}),(\boldsymbol{\tau}, \boldsymbol{\psi}))=((\boldsymbol{\sigma}, \boldsymbol{\phi}),(\boldsymbol{\tau}, \boldsymbol{\psi}))_{L S_{j}}-b_{L S_{j}}(\boldsymbol{\sigma}, \boldsymbol{\psi})-b_{L S_{j}}(\boldsymbol{\tau}, \boldsymbol{\phi}) \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& ((\boldsymbol{\sigma}, \boldsymbol{\phi}),(\boldsymbol{\tau}, \boldsymbol{\psi}))_{L S_{1}}=((\boldsymbol{\sigma}, \boldsymbol{\phi}),(\mathbf{u}, \mathbf{v}))_{L S_{1}}=(\mathcal{A} \boldsymbol{\sigma}, \mathcal{A} \boldsymbol{\tau})+(\boldsymbol{\varepsilon}(\mathbf{u}), \boldsymbol{\varepsilon}(\mathbf{v})), \tag{14a}\\
& ((\boldsymbol{\sigma}, \boldsymbol{\phi}),(\tau, \boldsymbol{\tau}, \boldsymbol{\psi}))_{L S_{2}}=((\boldsymbol{\sigma}, \boldsymbol{\phi}),((\mathbf{u}, p),(\mathbf{v}, q)))_{L S_{2}}=(\mathcal{A} \boldsymbol{\sigma}, \mathcal{A} \boldsymbol{\tau})+(\boldsymbol{\nabla} \boldsymbol{\sigma}, \boldsymbol{\nabla} \boldsymbol{\tau}),+2(p, q) \tag{14b}
\end{align*}
$$

and

$$
\begin{align*}
& b_{L S_{1}}(\boldsymbol{\sigma}, \boldsymbol{\Psi})=b_{L S_{1}}(\boldsymbol{\sigma}, \mathbf{v})=(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\varepsilon}(\mathbf{v})) \tag{15a}\\
& b_{L S_{2}}(\boldsymbol{\sigma}, \boldsymbol{\Psi})=b_{L S_{2}}(\boldsymbol{\sigma},(\mathbf{v}, q))=(\mathcal{A} \boldsymbol{\sigma}, \boldsymbol{\nabla} \mathbf{v}-q \boldsymbol{\chi})+(\boldsymbol{\nabla} \mathbf{v}, q \boldsymbol{\chi}) . \tag{15b}
\end{align*}
$$

The difference between the energy considered in the mixed formulation and the inner product arising in the Least-Squares method is crucial and we therefore define further

$$
(\boldsymbol{\sigma}, \boldsymbol{\tau})_{L S_{\boldsymbol{\Sigma}}}=(\mathcal{A} \boldsymbol{\sigma}, \mathcal{A} \boldsymbol{\tau}) \text { and }(\boldsymbol{\phi}, \boldsymbol{\Psi})_{L S_{\boldsymbol{\Phi}}^{k}}=((\mathbf{u}, p),(\mathbf{v}, q))_{L S_{\boldsymbol{\Phi}}^{k}}= \begin{cases}(\boldsymbol{\varepsilon}(\mathbf{u}), \boldsymbol{\varepsilon}(\mathbf{v})) & k=1 \tag{16}\\ (\boldsymbol{\nabla}(\mathbf{u}), \boldsymbol{\nabla}(\mathbf{v}))+(p, q) & k=2\end{cases}
$$

We will also drop the index k in the equations where both $k=1,2$ are allowed.

3 Discretisations

Let Ω_{h} be a regular triangulation of Ω. The approximation of the formulation presented in the previous section is performed by choosing appropriate subspaces of $\boldsymbol{\Sigma}_{N}, \mathbf{V}$ and $\bar{L}^{2}(\Omega)$. For the conforming approximations of the displacement in the standard and Least-Squares formulations, we choose $\mathbf{V}_{h} \subset \mathbf{V}$ as the conforming Lagrange element of degree k. The discrete version of the standard formulation (S) therefore reads: find $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{equation*}
\left(\mathcal{A}^{-1} \varepsilon\left(\mathbf{u}_{h}\right), \nabla \mathbf{v}\right)=(\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_{h} \tag{h}
\end{equation*}
$$

Recall that the Galerkin orthogonality

$$
\begin{equation*}
\left(\mathcal{A}^{-1} \varepsilon\left(\mathbf{u}-\mathbf{u}_{h}\right), \nabla \mathbf{v}\right)=0 \quad \forall \mathbf{v} \in \mathbf{V}_{h} \tag{17}
\end{equation*}
$$

implies the non-robust a priori estimates $\left\|u-u_{h}\right\|_{1} \leq C(\mu, \lambda) h^{k}\|u\|_{2}$.

For the conforming approximations of the stress tensor in the mixed and Least-Squares formulations, we choose the tensor space $\Sigma_{h} \subset \Sigma_{N}$ whose rows consists in the H (div; Ω)-conforming Raviart-Thomas space of degree k. The discrete version of the two-fields formulation (7) therefore reads: find $\mathbf{u}_{h}^{1} \in \mathbf{V}_{h}$ and $\boldsymbol{\sigma}_{h}^{1} \in \boldsymbol{\Sigma}_{h}$ such that

$$
\begin{array}{ll}
\left(\mathcal{A} \boldsymbol{\sigma}_{h}^{1}, \mathcal{A} \boldsymbol{\tau}\right)+\left(\operatorname{div} \boldsymbol{\sigma}_{h}^{1}, \operatorname{div} \boldsymbol{\tau}\right)-\left(\mathcal{A} \boldsymbol{\tau}, \boldsymbol{\varepsilon}\left(\mathbf{u}_{h}^{1}\right)\right)=-(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}) & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{h} \\
-\left(\mathcal{A} \boldsymbol{\sigma}_{h}^{1}, \boldsymbol{\varepsilon}(\mathbf{v})\right)+\left(\boldsymbol{\varepsilon}\left(\mathbf{u}_{h}^{1}\right), \boldsymbol{\varepsilon}(\mathbf{v})\right)=0 & \forall \mathbf{v} \in \mathbf{V}_{h} \tag{18b}
\end{array}
$$

The three-fields Least-Squares method requires an additional subspace W_{h} of $L^{2}(\Omega)$ for the vorticity. As the Least-Squares method does not requires any compatibility condition between the space we choose the space of piecewise discontinuous polynomials of degree $k-1$ in order to obtain corresponding convergence rates for the stress, the displacement and the vorticity. The Galerkin approximation of (8) reads: find $\mathbf{u}_{h}^{2} \in \mathbf{V}_{h}, \boldsymbol{\sigma}_{h}^{2} \in \boldsymbol{\Sigma}_{h}$ and $p_{h} \in W_{h}$ such that

$$
\begin{array}{ll}
\left(\mathcal{A} \boldsymbol{\sigma}_{h}^{2}-\boldsymbol{\varepsilon}\left(\mathbf{u}_{h}^{2}+p_{h} \boldsymbol{\chi}\right), \mathcal{A} \boldsymbol{\tau}\right)+\left(\operatorname{div} \boldsymbol{\sigma}_{h}^{2}, \operatorname{div} \boldsymbol{\tau}\right)+\left(\operatorname{skew}\left(\boldsymbol{\sigma}_{h}^{2}\right), \boldsymbol{\tau}\right)=-(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}) & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{h} \\
\left.\left(\boldsymbol{\varepsilon}\left(\mathbf{u}_{h}^{2}\right)-\mathcal{A} \boldsymbol{\sigma}_{h}^{2}, \boldsymbol{\varepsilon}(\mathbf{v})\right), \boldsymbol{\varepsilon}(\mathbf{v})\right)-\left(\boldsymbol{\chi} p_{h}, \boldsymbol{\nabla} \mathbf{v}\right)=0 & \forall \mathbf{v} \in \mathbf{V}_{h} \\
\left(A \boldsymbol{\sigma}_{h}^{2}-\boldsymbol{\nabla} \mathbf{u}_{h}^{2}, q \boldsymbol{\chi}\right)+2\left(p_{h}, q\right)=0 & \forall q \in W_{h} . \tag{19c}
\end{array}
$$

Similarly to the continuous setting we introduce the spaces $\boldsymbol{\Phi}_{h}=\mathbf{V}_{h} \times W_{h}$ and reformulate (18) and (19) as follows

$$
\begin{equation*}
\mathcal{B}_{k}\left(\left(\boldsymbol{\sigma}_{h}, \boldsymbol{\phi}_{h}\right) \mid\left(\boldsymbol{\tau}_{h}, \boldsymbol{\Psi}_{h}\right)\right)=-\left(\mathbf{f}, \operatorname{div} \boldsymbol{\tau}_{h}\right) \text { for all }\left(\boldsymbol{\tau}_{h}, \boldsymbol{\Psi}_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \boldsymbol{\Phi}_{h} \quad k=1,2 \tag{h}
\end{equation*}
$$

as well as

$$
\boldsymbol{\phi}_{h}^{k}=\left\{\begin{array}{ll}
\left(\mathbf{u}_{h}, \frac{1}{2} \mathbf{c u r l}_{\left.\mathbf{u}_{h}\right)}\right. & \text { if } k=1 \tag{20}\\
\left(\mathbf{u}_{h}, p_{h}\right) & \text { if } k=2
\end{array} .\right.
$$

For the discretisation of the mixed method we choose the remaining discrete spaces \mathbf{W}_{h} for the approximation of the displacement and X_{h} for the approximation of the vorticity such that the well-posedness of the system is satisfied. According to [8] we can choose \mathbf{W}_{h} as the space of discontinuous piecewise vector polynomials of degree k and X_{h} as the space of continuous piecewise polynomials of degree k. The discrete version of (4c) the reads: find $\left(\boldsymbol{\sigma}_{h}^{m}, \mathbf{u}_{h}^{m}, \omega_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \mathbf{W}_{h} \times X_{h}$ such that

$$
\begin{array}{ll}
\left(\mathcal{A} \boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\tau}_{h}\right)+\left(\operatorname{div}\left(\boldsymbol{\tau}_{h}\right), \mathbf{u}_{h}^{m}\right)+\left(\operatorname{skew} \boldsymbol{\tau}_{h}, \omega_{h}\right)=0 & \forall \boldsymbol{\tau}_{h} \in \boldsymbol{\Sigma}_{h} \\
\left(\operatorname{div}\left(\boldsymbol{\sigma}_{h}^{m}\right), \mathbf{w}_{h}\right)=\left(\mathbf{f}, \mathbf{w}_{h}\right) & \forall \mathbf{w}_{h} \in \mathbf{W}_{h} \\
\left(\operatorname{skew} \boldsymbol{\sigma}_{h}^{m}, \gamma_{h}\right)=0 & \forall \gamma_{h} \in X_{h}, \tag{21c}
\end{array}
$$

i.e.

$$
\begin{equation*}
\left(\mathcal{A} \boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\tau}_{h}\right)+\left(\operatorname{div}\left(\boldsymbol{\tau}_{h}\right), \mathbf{u}_{h}^{m}\right)+\left(\operatorname{skew} \boldsymbol{\tau}_{h}, \omega_{h}\right)+\left(\operatorname{div}\left(\boldsymbol{\sigma}_{h}^{m}\right), \mathbf{w}_{h}\right)+\left(\operatorname{skew} \boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\gamma}_{h}\right)=\left(\mathbf{f}, \mathbf{w}_{h}\right) \tag{h}
\end{equation*}
$$

for all $\left(\boldsymbol{\tau}_{h}, \mathbf{w}_{h}, \gamma_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \mathbf{W}_{h} \times X_{h}$. Based on the Galerkin orthogonalities

$$
\begin{array}{ll}
\left(\mathcal{A} \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\tau}_{h}\right)+\left(\operatorname{div}\left(\boldsymbol{\tau}_{h}\right), \mathbf{u}-\mathbf{u}_{h}^{m}\right)+\left(\operatorname{skew} \boldsymbol{\tau}_{h}, \omega-\omega_{h}\right)=0 & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{h} \\
\left(\operatorname{div}\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}\right), \mathbf{w}_{h}\right)=0 & \forall \mathbf{w}_{h} \in \mathbf{W}_{h} \\
\left(\operatorname{skew}\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}\right), \gamma_{h}\right)=0 & \forall \gamma_{h} \in X_{h} .
\end{array}
$$

we obtain the a priori estimates

$$
\left\|\sigma-\sigma_{h}^{m}\right\|_{0}+\left\|u-u_{h}\right\|_{0}+\left\|\omega-\omega_{h}\right\|_{0} \leq C h^{k+1}\left(\|\sigma\|_{0}+\|u\|_{0}+\|\omega\|_{0}\right)
$$

According to [8] (see also [2] for on general domains), this element combination allows for positive constants C_{1} and C_{2} independent on h, such that

$$
\left(\mathcal{A} \boldsymbol{\tau}_{h}, \boldsymbol{\tau}_{h}\right) \geq C_{1}\left\|\boldsymbol{\tau}_{h}\right\|_{\boldsymbol{\Sigma}}^{2} \quad \forall \boldsymbol{\tau}_{h} \in \boldsymbol{\Sigma}_{N} \text { with } b_{m}\left(\boldsymbol{\tau}_{h},(\mathbf{v}, \boldsymbol{\omega})\right)=0 \forall(\mathbf{v}, \boldsymbol{\omega}) \in \mathbf{W}_{h} \times X_{h}
$$

and

$$
\inf _{(\mathbf{v}, \boldsymbol{\omega}) \in \boldsymbol{W}_{h} \times X_{h} \in \boldsymbol{\Sigma}_{h}} \sup _{\|} \frac{b_{m}(\boldsymbol{\tau}, \mathbf{v}, \boldsymbol{\omega})}{(\mathbf{v}, \boldsymbol{\omega})\| \|\|\boldsymbol{\tau}\|_{\boldsymbol{\Sigma}}} \geq C_{2}
$$

4 Comparison of the approximations

The results of this paper are based on the crucial Galerkin properties of the Least-Squares methods, i.e. for $k=1,2$

$$
\begin{equation*}
B_{k}\left(\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{k}, \boldsymbol{\phi}-\boldsymbol{\phi}_{h}^{k}\right) \mid(\boldsymbol{\tau}, \boldsymbol{\psi})\right)=0 \tag{23}
\end{equation*}
$$

for all $(\boldsymbol{\tau}, \boldsymbol{\Psi}) \in \Sigma_{h} \times \boldsymbol{\Phi}_{h}^{k}$. Since $\boldsymbol{\tau}$ needs to be $H(\mathrm{div} ; \Omega)$-conforming, we can compare the conforming stress approximations, i.e. the stress approximations of the mixed and of the Least-Squares methods. We therefore define $\boldsymbol{\sigma}_{h}^{\Delta, 1}=\boldsymbol{\sigma}_{h}^{1}-\boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\sigma}_{h}^{\Delta, 2}=\boldsymbol{\sigma}_{h}^{2}-\boldsymbol{\sigma}_{h}^{m}$, and $\boldsymbol{\sigma}_{h}^{\Delta, 0}=\boldsymbol{\sigma}_{h}^{1}-\boldsymbol{\sigma}_{h}^{2}$. For the displacement test function, we can insert any conforming displacement, i.e. the displacement approximations of the standard and of the Least-Squares method. We therefore define $\mathbf{u}_{h}^{\Delta, 1}=\mathbf{u}_{h}^{1}-\mathbf{u}_{h}, \mathbf{u}_{h}^{\Delta, 2}=\mathbf{u}_{h}^{2}-\mathbf{u}_{h}$ as well as $\mathbf{u}_{h}^{\Delta, 0}=\mathbf{u}_{h}^{2}-\mathbf{u}_{h}^{1}$. In order to deal with the three-fields formulation we also define $\boldsymbol{\phi}_{h}^{\Delta, 1}=\boldsymbol{\phi}_{h}^{1}-\boldsymbol{\phi}_{h}, \boldsymbol{\phi}_{h}^{\Delta, 2}=\boldsymbol{\phi}_{h}^{2}-\boldsymbol{\phi}_{h}$ as well as $\boldsymbol{\phi}_{h}^{\Delta, 0}=\boldsymbol{\phi}_{h}^{2}-\boldsymbol{\phi}_{h}^{1}$.
Choosing $\boldsymbol{\tau}=\boldsymbol{\sigma}_{h}^{\Delta, j}$ and $\boldsymbol{\psi}=\boldsymbol{\phi}_{h}^{\Delta, j}$ in (23) leads to

$$
\begin{equation*}
B_{j}\left(\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{j}, \boldsymbol{\phi}-\boldsymbol{\phi}_{h}^{j}\right) \mid\left(\boldsymbol{\tau}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right)=0 \tag{24}
\end{equation*}
$$

for $j=0,1,2$. This immediately leads to

$$
\begin{align*}
B_{j}\left(\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right) & =B_{j}\left(\left(\boldsymbol{\sigma}_{h}^{j}-\boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\phi}_{h}^{j}-\boldsymbol{\phi}_{h}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right) \\
& =B_{j}\left(\left(\boldsymbol{\sigma}_{h}^{j}-\boldsymbol{\sigma}+\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\phi}_{h}^{j}-\boldsymbol{\phi}+\boldsymbol{\phi}-\boldsymbol{\phi}_{h}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right) \\
& =B_{j}\left(\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}, \boldsymbol{\phi}-\boldsymbol{\phi}_{h}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right) \tag{25}\\
& =B_{j}\left(\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta, j}, \boldsymbol{\phi}_{h}^{\Delta, j}\right)\right),
\end{align*}
$$

where we denote $\mathbf{u}^{\Delta}=\mathbf{u}-\mathbf{u}_{h}, \boldsymbol{\phi}^{\Delta}=\boldsymbol{\phi}-\boldsymbol{\phi}_{h}$ and $\boldsymbol{\sigma}^{\Delta}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}$.
Considering the difference $\boldsymbol{\sigma}_{h}^{\Delta} \in \boldsymbol{\Sigma}_{h}$ of the least-squares problem and the mixed method we now state the following auxiliary problem: find $(\boldsymbol{\eta}, \boldsymbol{\xi}, \zeta) \in \boldsymbol{\Sigma}_{N} \times \mathbf{V} \times L^{2}(\Omega)$ such that

$$
\begin{array}{ll}
\mathfrak{A} \boldsymbol{\eta}-\boldsymbol{\varepsilon}(\boldsymbol{\xi})=0 & \text { in } \Omega \\
\operatorname{div} \boldsymbol{\eta}=\operatorname{div} \boldsymbol{\sigma}_{h}^{\boldsymbol{\Delta}} & \text { in } \Omega \\
\operatorname{skew}(\boldsymbol{\eta})=\operatorname{skew}\left(\boldsymbol{\sigma}_{h}^{\Delta}\right) & \text { in } \Omega . \tag{26c}
\end{array}
$$

Figure 1: Exact solution for displacement \mathbf{u} (left) and vorticity p (right)

The corresponding mixed formulation reads

$$
\begin{array}{ll}
(\mathfrak{A} \boldsymbol{\eta}, \boldsymbol{\tau})+(\operatorname{div}(\boldsymbol{\tau}), \boldsymbol{\xi})+(\operatorname{skew} \boldsymbol{\tau}, \zeta)=0 & \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{N} \\
(\operatorname{div}(\boldsymbol{\eta}), \mathbf{w})=\left(\operatorname{div}\left(\boldsymbol{\sigma}_{h}^{\Delta}\right), \mathbf{w}\right) & \forall \mathbf{w} \in \mathbf{W} \\
\left(\operatorname{skew}\left(\boldsymbol{\eta}-\boldsymbol{\sigma}_{h}^{\Delta}\right), \boldsymbol{\gamma}\right)=0 & \forall \boldsymbol{\gamma} \in L^{2}(\Omega) .
\end{array}
$$

The discretisation of this problem using the mixed method introduced in the previous section reads: find $\left(\boldsymbol{\eta}_{h}, \boldsymbol{\zeta}_{h}, \zeta_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \mathbf{W}_{h} \times X_{h}$ such that

$$
\begin{array}{ll}
\left(\mathcal{A} \boldsymbol{\eta}_{h}, \boldsymbol{\tau}_{h}\right)+\left(\operatorname{div}\left(\boldsymbol{\tau}_{h}\right), \boldsymbol{\xi}_{h}\right)+\left(\operatorname{skew} \boldsymbol{\tau}_{h}, \zeta_{h}\right)=0 & \forall \boldsymbol{\tau}_{h} \in \boldsymbol{\Sigma}_{h} \\
\left(\operatorname{div}\left(\boldsymbol{\eta}_{h}\right), \mathbf{w}_{h}\right)=\left(\operatorname{div}\left(\boldsymbol{\sigma}_{h}^{\Delta}\right), \mathbf{w}_{h}\right) & \forall \mathbf{w}_{h} \in \mathbf{W}_{h} \\
\left(\operatorname{skew}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\sigma}_{h}^{\Delta}\right), \gamma_{h}\right)=0 & \forall \gamma_{h} \in X_{h} . \tag{28c}
\end{array}
$$

The crucial relation $\operatorname{div}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\sigma}_{h}^{\Delta}\right)=0$ together with the weakly symmetric condition implies

$$
\begin{equation*}
b_{m}\left(\boldsymbol{\sigma}_{h}^{\Delta}-\boldsymbol{\eta},\left(\mathbf{u}-\mathbf{u}_{h}^{m}, \boldsymbol{\omega}-\omega_{h}\right)\right)=0 . \tag{29}
\end{equation*}
$$

Inserting this in equation (22a) we obtain

$$
\begin{aligned}
\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{m}\right) & =-\left(\operatorname{div}\left(\boldsymbol{\sigma}_{h}^{\Delta}\right), \mathbf{u}-\mathbf{u}_{h}^{m}\right)-\left(\operatorname{skew} \boldsymbol{\sigma}_{h}^{\Delta}, \omega-\omega_{h}\right) \\
& =-b\left(\boldsymbol{\sigma}_{h}^{\Delta},\left(\mathbf{u}-\mathbf{u}_{h}^{m}, \omega-\omega_{h}\right)\right) \\
& =-b\left(\boldsymbol{\eta}_{h},\left(\mathbf{u}-\mathbf{u}_{h}^{m}, \omega-\omega_{h}\right)\right)=\left(\mathscr{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}_{h}\right)
\end{aligned}
$$

This leads to

$$
\begin{equation*}
\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{m}\right)=\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right)+\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}\right) \tag{30}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{m}\right)_{L S_{\Sigma}}=\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \mathcal{A} \boldsymbol{\sigma}_{h}^{m}\right)=\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \mathcal{A}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right)\right)+\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \mathcal{A} \boldsymbol{\eta}\right) \tag{3}
\end{equation*}
$$

Figure 2: Difference of the approximations of the stress tensor the $H(\operatorname{div} ; \Omega)$-seminorm and in the $L^{2}(\Omega)$-norm

Moreover, the symmetry (6) together with (27a) implies

$$
\begin{equation*}
\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}\right)=\left(\mathcal{A} \boldsymbol{\eta}, \boldsymbol{\sigma}^{\Delta}\right)=-\left(\operatorname{div}\left(\boldsymbol{\sigma}^{\Delta}\right), \boldsymbol{\xi}\right)-\left(\operatorname{skew}\left(\boldsymbol{\sigma}^{\Delta}\right), \zeta\right)=-b_{m}\left(\boldsymbol{\sigma}^{\Delta},(\boldsymbol{\xi}, \zeta)\right) \tag{32}
\end{equation*}
$$

Combining this with (31) leads to

$$
\begin{equation*}
\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{m}\right)=\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right)-b_{m}\left(\boldsymbol{\sigma}^{\Delta},(\boldsymbol{\xi}, \zeta)\right) \tag{33}
\end{equation*}
$$

Using (22b) and (22c) we have for any $\left(\mathbf{w}_{h}, \gamma_{h}\right) \in \mathbf{W}_{h} \times X_{h}$

$$
\begin{equation*}
\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{m}\right)=\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right)-b_{m}\left(\boldsymbol{\sigma}^{\Delta},\left(\boldsymbol{\xi}-\mathbf{w}_{h}, \zeta-\gamma_{h}\right)\right) . \tag{34}
\end{equation*}
$$

On the other hand, (29) and integrating by parts allow

$$
\begin{aligned}
b_{m}\left(\boldsymbol{\sigma}_{h}^{\Delta},\left(\mathbf{u}-\mathbf{u}_{h}^{s}, \frac{1}{2} \operatorname{curl}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)\right) & =b_{m}\left(\boldsymbol{\eta},\left(\mathbf{u}-\mathbf{u}_{h}^{s}, \frac{1}{2} \operatorname{curl}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)\right) \\
& \left.=\left(\operatorname{div}(\boldsymbol{\eta}),\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)+\left(\operatorname{skew} \boldsymbol{\eta}, \frac{1}{2} \operatorname{curl}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right) \boldsymbol{\chi}\right) \\
& \left.=\left(\boldsymbol{\eta}, \nabla\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)+\left(\operatorname{skew} \boldsymbol{\eta}, \frac{1}{2} \operatorname{curl}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right) \boldsymbol{\chi}\right) \\
& =\left(\boldsymbol{\eta}, \boldsymbol{\varepsilon}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)=\left(\mathcal{A}^{-1} \boldsymbol{\varepsilon}(\boldsymbol{\xi}), \boldsymbol{\varepsilon}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right) \\
& =\left(\boldsymbol{\varepsilon}(\boldsymbol{\xi}), \mathscr{A}^{-1} \boldsymbol{\varepsilon}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)
\end{aligned}
$$

The Galerkin orthogonality (17) now implies

$$
\begin{equation*}
b_{m}\left(\boldsymbol{\sigma}_{h}^{\Delta},\left(\mathbf{u}-\mathbf{u}_{h}^{s}, \frac{1}{2} \operatorname{curl}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right)\right)=\left(\boldsymbol{\varepsilon}\left(\boldsymbol{\xi}-\mathbf{v}_{h}\right), \mathcal{A}^{-1} \boldsymbol{\varepsilon}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right) \tag{35}
\end{equation*}
$$

for any $\mathbf{v}_{h} \in \mathbf{V}_{h}$. Both results (34) and (35) leads to the following supercloseness theorem.

Figure 3: Difference of the approximations of the stress approximations

Theorem 1. Let $\mathbf{u} \in \mathbf{V}$ and $\boldsymbol{\sigma} \in \mathbf{\Sigma}_{N}$ be the exact solution of the linear elasticity problem (1). Consider the discrete solutions \mathbf{u}_{h}^{s} of $\left(S_{h}\right),\left(\boldsymbol{\sigma}_{h}^{m}, \mathbf{u}_{h}^{m}, \omega_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \mathbf{W}_{h} \times X_{h}$ of $\left(M_{h}\right)$ and $\left(\boldsymbol{\sigma}_{h}, \boldsymbol{\phi}_{h}\right)$ of $\left(L S_{h}\right)$. Define $\mathbf{u}^{\Delta}=$ $\mathbf{u}-\mathbf{u}_{h}, \boldsymbol{\phi}^{\Delta}=\boldsymbol{\phi}-\boldsymbol{\phi}_{h}$ and $\boldsymbol{\sigma}^{\Delta}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}^{m}$. Moreover, let $(\boldsymbol{\eta}, \boldsymbol{\xi}, \zeta) \in \boldsymbol{\Sigma} \times \mathbf{W} \times X$ and $\left(\boldsymbol{\eta}_{h}, \boldsymbol{\xi}_{h}, \zeta_{h}\right) \in \boldsymbol{\Sigma}_{h} \times \mathbf{W}_{h} \times X_{h}$ be the solution of the auxiliary problem defined as in (27) and (28). Then, it holds

$$
\begin{equation*}
\left\|\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma} \times \boldsymbol{\Phi}} \lesssim\left\|\boldsymbol{\sigma}^{\Delta}\right\|_{\mathfrak{A}}\left\|\left(\mathcal{A}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right), \boldsymbol{\xi}-\mathbf{w}_{h}, \zeta-\gamma_{h}\right)\right\|_{\boldsymbol{\Sigma}_{h} \mathbf{W} \times X}+\left\|\boldsymbol{\varepsilon}\left(\boldsymbol{\xi}-\mathbf{v}_{h}\right)\right\|\left\|\boldsymbol{\varepsilon}\left(\mathbf{u}^{\Delta}\right)\right\| . \tag{36}
\end{equation*}
$$

The coercivity of the Least-Squares bilinearform together with (25) implies

$$
\begin{aligned}
\left\|\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma} \times \boldsymbol{\Phi}} & \lesssim \mathcal{B}\left(\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right),\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right)=B\left(\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right) \mid\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right) \\
& =\left(\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right),\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right)_{L S}-b_{L S}\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)-b_{L S}\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right) \\
& =\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\sigma}_{h}^{\Delta}\right)_{L S_{\boldsymbol{\Sigma}}}+\left(\boldsymbol{\phi}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)_{L S_{\mathbf{v}}}-b_{L S}\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)-b_{L S}\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right)
\end{aligned}
$$

The first term can be replaced by (33) for arbitrary function $\left(\mathbf{w}_{h}, \gamma_{h}\right) \in \mathbf{W}_{h} \times X_{h}$ while the Galerkin orthogonality (17) allows the second term and the fourth term to vanish. For the third term, simple computations (in both Least-Squares cases) show that

$$
\begin{equation*}
b_{L S}\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)=\left(\boldsymbol{\varepsilon}\left(\boldsymbol{\xi}-\mathbf{v}_{h}\right), \mathcal{A}^{-1} \boldsymbol{\varepsilon}\left(\mathbf{u}-\mathbf{u}_{h}^{s}\right)\right) \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \tag{37}
\end{equation*}
$$

follows from (35). Altogether we obtain

$$
\begin{aligned}
\left\|\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma}_{\times \boldsymbol{\Phi}}} & \lesssim\left(\mathcal{A} \boldsymbol{\sigma}^{\Delta}, \mathcal{A}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right)\right)-b_{m}\left(\boldsymbol{\sigma}^{\Delta},\left(\boldsymbol{\xi}-\mathbf{w}_{h}, \zeta-\gamma_{h}\right)\right)-\left(\boldsymbol{\varepsilon}\left(\boldsymbol{\xi}-\mathbf{v}_{h}\right), \mathcal{A}^{-1} \boldsymbol{\varepsilon}\left(\mathbf{u}^{\Delta}\right)\right) \\
& \lesssim\left\|\boldsymbol{\sigma}^{\Delta}\right\|_{\mathcal{A}}\left\|\left(\mathcal{A}\left(\boldsymbol{\eta}_{h}-\boldsymbol{\eta}\right), \boldsymbol{\xi}-\mathbf{w}_{h}, \zeta-\gamma_{h}\right)\right\|_{\boldsymbol{\Sigma}_{h} \mathbf{W} \times X}+\left\|\boldsymbol{\varepsilon}\left(\boldsymbol{\xi}-\mathbf{v}_{h}\right)\right\|\left\|\mathcal{A}^{-1} \boldsymbol{\varepsilon}\left(\mathbf{u}^{\Delta}\right)\right\|
\end{aligned}
$$

Figure 4: Difference of the approximations of the displacements

This immediately leads to refined a priori bounds for the Least-Squares method. For this, we now assume that the problem is H^{2} regular. For all $f \in L^{2}(\Omega)$, the solution u of the elasticity problem fulfills

$$
\|u\|_{2} \lesssim\|f\|,
$$

and it follows

$$
\begin{equation*}
\|\boldsymbol{\eta}\|_{1} \leq C\|\boldsymbol{\xi}\|_{2} \leq C\left\|\operatorname{div} \boldsymbol{\sigma}_{h}\right\| \leq C\left\|\boldsymbol{\sigma}_{h}\right\|_{H(\operatorname{div} ; \Omega)} . \tag{38}
\end{equation*}
$$

We choose \mathbf{v}_{h} as the orthogonal interpolation of $\boldsymbol{\xi}$ in \mathbf{V}_{h} such that $\left\|\boldsymbol{\xi}-\mathbf{v}_{h}\right\| \lesssim h^{k}\|\xi\|_{1}$ holds. Similarly, \mathbf{w}_{h} and γ_{h} are the L^{2}-orthogonal projections of $\boldsymbol{\xi}$ and ζ on \mathbf{W}_{h} and X_{h} such that

$$
\left\|\left(\boldsymbol{\xi}-\mathbf{w}_{h}, \zeta-\gamma_{h}\right)\right\| \boldsymbol{\Sigma}_{\times \mathbf{W} \times X} \lesssim h^{k}\left(\left\|\boldsymbol{\xi}_{h}\right\|+\left\|\boldsymbol{\gamma}_{h}\right\|\right) .
$$

This leads to

$$
\begin{equation*}
\left\|\left(\boldsymbol{\sigma}_{h}^{\Delta}, \boldsymbol{\phi}_{h}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma} \times \boldsymbol{\Phi}} \lesssim h^{k}\left(\left\|\boldsymbol{\sigma}_{\mathcal{A}}+\right\| \boldsymbol{\varepsilon}\left(\mathbf{u}^{\Delta}\right) \|\right) . \tag{39}
\end{equation*}
$$

By the triangle inequality we obtain similarly to [9] the refined estimate

$$
\begin{equation*}
\left\|\boldsymbol{\phi}-\boldsymbol{\phi}_{h}^{\Delta}\right\|_{\boldsymbol{\Phi}} \lesssim\left\|\mathbf{u}-\mathbf{u}_{h}^{s}\right\|+h^{k}\left\|\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma} \times \boldsymbol{\Phi}} . \tag{40}
\end{equation*}
$$

Moreover, if \mathbf{f} is a piece-wise constant the mixed finite element method $\left(M_{h}\right)$ has exact local mass conservation we obtain

$$
\begin{equation*}
\left\|\operatorname{div}\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right)\right\|_{0}=\left\|\operatorname{div}\left(\boldsymbol{\sigma}^{m}-\boldsymbol{\sigma}_{h}\right)\right\|_{0} \lesssim h^{k}\left\|\left(\boldsymbol{\sigma}^{\Delta}, \boldsymbol{\phi}^{\Delta}\right)\right\|_{\boldsymbol{\Sigma} \times \boldsymbol{\Phi}}, \tag{41}
\end{equation*}
$$

i.e. the mass conservation of the Least-Squares method is of higher-order.

5 Numerical results

Our numerical results confirm the theoretical investigations of the previous sections. A simple polygonal design of an exact displacement with homogeneous boundary conditions on $\partial \Omega$ implies

$$
\begin{equation*}
\mathbf{u}(x, y)=\binom{x y(1-x)(1-y)}{x y(1-x)(1-y)} \tag{42}
\end{equation*}
$$

and thus

$$
\begin{gather*}
\varepsilon(\mathbf{u})=\left(\begin{array}{cc}
y(y-1)(2 x-1) & \frac{1}{2}(y+x-1)(2 x y-x-y) \\
\frac{1}{2}(y+x-1)(2 x y-x-y) & x(x-1)(2 y-1)
\end{array}\right), \tag{43}\\
\operatorname{div}(\mathbf{u})=(y+x-1)(2 x y-x-y) \text { and } p(x, y)=\frac{1}{2}(2 x-x-y+1)(x-y) . \tag{44}
\end{gather*}
$$

This leads to

$$
\boldsymbol{\sigma}(x, y)=\left(\begin{array}{cc}
2 \mu y(y-1)(2 x-1) & 0 \\
0 & 2 \mu x(x-1)(2 y-1)
\end{array}\right)+(y+x-1)\left(\begin{array}{cc}
\lambda(2 x y-x-y) & \mu(2 x y-x-y) \\
\mu(2 x y-x-y) & \lambda(2 x y-x-y)
\end{array}\right)
$$

and

$$
\begin{equation*}
\mathbf{f}=\binom{\mu\left(2 x^{2}+4 x y+4 y^{2}-4 x-6 y+1\right)+\lambda\left(4 x y+2 y^{2}-2 x-4 y+1\right)}{\mu\left(4 x^{2}+4 x y+2 y^{2}-6 x-4 y+1\right)+\lambda\left(2 x^{2}+4 x y-4 x-2 y+1\right)} \tag{45}
\end{equation*}
$$

Figure 5: Difference of the approximations

6 Conclusions

For the linear elasticity problems, we compared the approximations obtained by the Least-Squares finite element method with the approximations obtained by the standard conforming finite element method and the mixed finite element method and prove that the H^{1}-conforming displacement approximations (least-squares finite element and standard finite element) as well as the $H(d i v)$-conforming stress approximations are higher-order perturbations of each other. Future work will consider domain with curved boundaries in the spirit of $[5,4,6,1]$.

REFERENCES

[1] Fleurianne Bertrand. First-order system least-squares for interface problems. SIAM Journal on Numerical Analysis, 2018.
[2] Fleurianne Bertrand, Daniele Boffi, and Rui Ma. On the Hellinger-Reissner elasticity mixed eigenvalue problem, to appear.
[3] Fleurianne Bertrand, Zhiqiang Cai, and Eun Young Park. Least-squares methods for elasticity and Stokes equations with weakly imposed symmetry. Comput. Methods Appl. Math., 19(3):415-430, 2019.
[4] Fleurianne Bertrand, Steffen Münzenmaier, and Gerhard Starke. First-order system least squares on curved boundaries: Higher-order Raviart-Thomas elements. SIAM Journal on Numerical Analysis, 2014.
[5] Fleurianne Bertrand, Steffen Münzenmaier, and Gerhard Starke. First-order system least squares on curved boundaries: Lowest-order Raviart-Thomas elements. SIAM Journal on Numerical Analysis, 2014.
[6] Fleurianne Bertrand and Gerhard Starke. Parametric Raviart-Thomas elements for mixed methods on domains with curved surfaces. SIAM Journal on Numerical Analysis, 2016.
[7] Pavel Bochev and Max Gunzburger. Least-squares finite element methods. In International Congress of Mathematicians, ICM 2006, 2006.
[8] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed finite element methods and applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
[9] Jan Brandts, Yanping Chen, and Julie Yang. A note on least-squares mixed finite elements in relation to standard and mixed finite elements. IMA Journal of Numerical Analysis, 2006.
[10] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
[11] Zhiqiang Cai and Gerhard Starke. Least-squares methods for linear elasticity. SIAM J. Numer. Anal., 42(2):826-842, 2004.

[^0]: ${ }^{1}$ Acknowledgments: The first author gratefully acknowledge support by the Deutsche Forschungsgemeinschaft in the Priority Program SPP 1748 Reliable simulation techniques in solid mechanics, Development of non standard discretization methods, mechanical and mathematical analysis under the project number BE 6511/1-1.

