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Abstract. Two chemo-mechanical coupled models for electrode particles of lithium-ion bat-
teries are compared. On the one hand a Cahn–Hilliard-type phase-field approach models lithium
intercalation, phase separation and large deformations in phase transforming cathode materials
like lithium iron phosphate. On the other hand a chemo-mechanical particle model for lithium
intercalation and large deformations for an anode material such as silicon is studied. The
comparison of two different ways to define the deformation gradient for the large deformation
approach and the two different material properties lead to differences in the resulting quantities
and equations for the coupling of the chemo-mechanical model. The usage of an adaptive solu-
tion algorithm as well as the parallelization of the finite element solver via the message passing
interface concept results in a more reasonable computation time to perform two-dimensional
simulations. Both materials are numerically investigated and the results are compared from a
physical point of view. When fast charging a battery, higher stress values are reached, which
can cause a shorter cycle life. A strong scalability analysis shows good performance for the
assembling, however a saturation occurs in the performance of the solver used.

1 INTRODUCTION

Due to a higher energy density and the longevity of lithium-ion batteries, they have become
the standard for mobile applications [22]. To meet the challenges of climate change they are
also crucial in overcoming the difficulties in the mobility transition to sustainable transport.
However, the stress development, which can deteriorate the battery active material resulting
in faster aging and shorter battery lifetime [24, 25, 26], is an important aspect to investigate
during battery operation. This is also one crucial issue for fast charging batteries, e.g., for electric
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vehicles [22]. Silicon (Si) as anode material has the advantage of an even further increase of the
energy density, but this results at the cost of an increase in volume up to 300% [25, 26]. Other
materials like graphite or lithium iron phosphate LixFePO4 (LFP) feature a volume expansion
during intercalation of lithium up to 10% and 7%, respectively [17, 26]. Due to the large
swelling, in particular for silicon, the large deformation approach is a reasonable choice to model
chemo-mechanical intercalation effects during battery operation. Interested readers are referred
to [26] and the references therein for a detailed overview of electro-chemo-mechanical modeling
of lithium-ion batteries.

There are various possibilities to handle the order of the decomposition of the deformation
gradient due to chemical effects, elasticity or even further plasticity, compare [1, 10, 12, 15]
and the references therein. In [9, 11], the deformation gradient F is decomposed into FelFch.
Another possibility is given by the composition in the reverse order F = FchFel, as illustrated
in Figure 1 in [23]. Both variants are thermodynamically consistent [9, 23]. The latter one has
the advantage that it is easier to include a further plastic deformation before the elastic part
such as FelFpl and to hold the reversible part Frev = FchFel together.

Fel Fch

F = Frev

Ω0 Ω

Host Particle

Figure 1: Sketch of the used decomposition of the deformation gradient based on Figure 1 in [23] and
Figure 1 in [9].

Especially for materials with phase separation, numerical simulations are cost-intensive in
terms of computational resources, because a small mesh size and a small time step size are
required to adequately capture all physical effects. With the space and time adaptive solution
algorithm developed in [6], this disadvantage is circumvented. Furthermore, a parallelization
of the numerical algorithm for up-to-date high performance computers (HPCs) should lead to
additional resource savings. In this work, the parallelization of the numerical solution algorithm
is considered for anode materials like silicon without a phase separation after the first cycles [26]
as well as for cathode materials with a phase separation such as LFP [20]. The effects of fast
charging batteries on the stresses inside a particle are studied and compared with the stresses
that occur during phase separation of LFP. All numerical experiments are performed for two-
dimensional computational domains. Further, a strong scalability analysis study is executed to
evaluate the efficiency of the parallelization.

This work is structured as follows: in Section 2, the theory used for the modeling approach is
introduced. Then the general aspects of the numerical implementation are declared in Section 3.
The specification for the numerical experiments as well as the simulation results are presented
and discussed in Section 4. Finally, this work is summarized in Section 5.
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2 THEORY

This section gives a short overview on the two different approaches for the deformation
gradient and their consequences for the whole system. In addition, the differences for materials
with phase separation, following Section 2 in [9], and for materials without phase separation,
following Section 2.1 in [23], are shown. For more information see also the supporting information
of [23].

Large deformation approach. Following Figure 1, there is a reference Lagrangian do-
main Ω0 and the Eulerian domain Ω which are related by the mapping x : Ω0 → Ω. This defines
the total deformation gradient F = ∂x/∂X0, which can also be written such as F = Id +∇u
with the deformation u and the identity matrix Id [4, 13]. As discussed in the introduction, the
reversible total particle deformation can be multiplicatively decomposed into an elastic part Fel

representing mechanical stresses and a chemical part Fch resulting from changes in lithium
concentration:

F = Frev = FchFel. (1)

Free energy density. With a thermodynamically consistent model based on a free energy
density ψ, a strictly positive entropy production is guaranteed [18]. We use the free energy
density ψ defined by two parts: a chemical part ψch and an elastic part ψel. For modeling
materials with phase separation as in [9], the energy density has to be extended by an interfacial
part ψint. If no phase separation occurs, the chemical part ψch has to be adapted since the
double-well function, used for materials with phase separation, has to be replaced. Instead, the
open circuit voltage (OCV) curve U0 of the specific material is used:

ψch(c) = −
∫ c

0
F U0(z) dz (2)

with the normalized concentration c (normalized with cmax) and the Faraday constant F . The
elastic part ψel follows the same linear elastic approach as in [4, 9, 13, 23]. The elastic strain
tensor Eel for our model is defined by

Eel =
1

2

(
FT
elFel − Id

)
=

1

2

(
λ−2
ch F

TF− Id
)
, (3)

which differs from the approach where the two deformation gradients are defined in the re-
verse order. In that case, the elastic strain tensor Eel is given by Eel =

1
2

(
FTF− FT

chFch

)
=

1
2

(
FTF− λ2chId

)
.

Chemistry. The change of the lithium concentration inside the host material can be defined
with the continuity equation

∂tc = −∇ ·N , (4)

where µ = ∂cψ is the chemical potential, N = −D
(
∂cµ

)−1∇µ the lithium flux and D the
diffusion coefficient. The lithium flux N is chosen to guarantee positive entropy production [23].
The simulation time t and the state of charge (SOC) can be related by

SOC =
1

V

∫

Ω0

cdX0 = c0 +Next · t (5)
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with a constant normalized initial condition c0.
Elastic deformation. The momentum balance in the Lagrangian frame

0 = −∇ ·P (6)

models the mechanical deformation, where P = det (F)σF−T is the first Piola–Kirchhoff stress
tensor and σ the Cauchy stress in the Eulerian frame. Further, P can be described by

P = ∂Fψ = λ−2
ch FCEel. (7)

Equation (7) differs by the factor λ−2
ch from the approach with the reverse order of the deformation

gradient parts.

3 NUMERICAL PROCEDURE

In this section, we briefly discuss all important aspects regarding the numerical treatment,
e.g., the normalization of the model parameters, the problem formulation as well as the space
and time discretization of the used adaptive numerical solution algorithm. Overall, the space
and time adaptive solution algorithm of [9] is applied. For further details on the numerical
method refer to [6].

Normalization. For the normalization of the basic model parameters, refer to Section 3.1.1
in [9] and, in addition, use F/RT as normalization for the OCV function U0 with the gas
constant R and the reference operation temperature T .

Problem statement. The resulting dimensionless initial boundary value problem for the
discussed model from Section 2 is given as: Let tend > 0 the final simulation time and Ω0 ⊂ Rd

a bounded electrode particle as reference configuration with dimension d ∈ {1, 2, 3}. Find the
concentration c : [0, tend] × Ω0 → [0, 1], the chemical potential µ : [0, tend] × Ω0 → R and the
displacement u : [0, tend]× Ω0 → Rd satisfying





∂tc = −∇ ·N in (0, tend)× Ω0,
µ = ∂cψ in (0, tend)× Ω0,
0 = −∇ ·P in (0, tend)× Ω0,

∇c · n = 0 on (0, tend)× ∂Ω0,
N · n = Next on (0, tend)× ∂Ω0,
P · n = 0 on (0, tend)× ∂Ω0,
c(0, ·) = c0 in Ω0

with the outer unit normal vector n of the reference configuration, a constant external lithium
flux Next and an initial condition c0, which is consistent with the boundary conditions. Rigid
body motions are excluded by using appropriate boundary conditions for the deformation.

Numerical solution algorithm. The finite element method is used for the spatial dis-
cretization of the above stated model equations, which are solved with the developed adaptive
solution algorithm from [9]. However, note the following changes: the omitted interfacial en-
ergy ψint, the change in the chemical energy ψch and the lithium flux N . The resulting nonlinear
differential algebraic equation (DAE) is linearized with a Newton–Raphson method and is solved
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in time by using a variable-step, variable-order algorithm [19]. The Newton updates are com-
puted with a direct LU-decomposition. A gradient recovery estimator serves as a local criterion
for the adaptive mesh refinement and coarsening. For further details refer to [6, 7, 8, 9], especially
the solver validation in Section 4.3.1 and adaptivity results in Section 4.3.2, both in [9].

4 NUMERICAL INVESTIGATIONS

In the following section we describe the simulation setup and discuss our numerical results.

4.1 Simulation setup

In this subsection we first specify the particle geometries and the model parameters. Then
implementation details are given.

Model parameters. For all simulations, the model parameters can be found in Table 1 if
not otherwise specified. The open circuit voltage (OCV) function U0 for silicon is given by

U0(z) :=
−0.2453z3 − 0.00527z2 + 0.2477z + 0.006457

z + 0.002493
(8)

displayed in Figure 2 [23].
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0

0.2

0.4

0.6

0.8

Normalized concentration c

U
0
(c
)

Figure 2: OCV curve U0 for silicon over the normalized concentration c ∈ [0.01, 0.99] [23].

Particle geometries. Two particle geometries are investigated: a two-dimensional quarter
domain of a cross-section of a spheroidal particle and a two-dimensional quarter domain of a
cross-section of a spherical particle. For the first case, refer to Figure 3 in [9]. The second case
is similar to the first one but has equal axes ratio. This configuration follows the shape of silicon
nano pillars [26].

Implementation. The implementation of the numerical methods are based on the func-
tionalities of the finite element library deal.II [2] written in C++. Furthermore, fourth-order
isoparametric Lagrangian finite elements are used for all numerical simulations. The simulations
are solved with SuperLU DIST [16]. Finally, the adaptive solution algorithm is parallelized us-
ing Message Passing Interface (MPI) for parallel computing architectures. We use the parallel
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Table 1: Model parameters for numerical experiments [9, 23].

Description Symbol Value Unit Dimensionless

Universal gas constant R 8.314 Jmol−1K−1 1

Faraday constant F 96 485 JV−1mol−1 1

Operation temperature T 298.15 K 1

LFP

Particle length scale L0 150× 10−9 m 1

Diffusion coefficient D 1× 10−14 m2 s−1 1.6× 103

Coefficient for ψch α1 4.5 - 4.5

Coefficient for ψch α2 −9 - −9

Coefficient for ψint κ 8.8× 10−18 m2 3.91× 10−4

Young’s modulus EH 124.5× 109 Pa 2.23× 103

Poisson ratio ν 0.25 − 0.25

Partial molar volume v 2.9× 10−6 m3mol−1 3.41

Maximal concentration cmax 2.29× 104 molm−3 1

Initial concentration c0 2.29× 102 molm−3 1× 10−2

Silicon

Particle length scale L0 50× 10−9 m 1

Diffusion coefficient D 1× 10−17 m2 s−1 14.4

Open circuit voltage (OCV) U0 Equation (8) V F/RT · (8)
Young’s modulus EH 90.13× 109 Pa 116.74

Poisson ratio ν 0.22 − 0.22

Partial molar volume v 10.96× 10−6 m3mol−1 3.41

Maximal concentration cmax 311.47× 103 molm−3 1

Initial concentration c0 3.11× 103 molm−3 1× 10−2

capabilities of deal.II implemented through the interface to p4est [3] to distribute the mesh on
distributed memory and the Trilinos wrapper package for parallel solvers to solve the linear
system [21]. The simulations were performed on a single compute node of the BwUniCluster 2.0
with 40 Intel Xeon Gold 6230 with 2.1GHz and 96GB RAM [5].

4.2 Numerical results

This subsection deals with the discussion of performed numerical simulations, in particular
with the parallelization of the finite element solver and the comparison of two-dimensional anode
and cathode particles. For the cathode particles, LFP is used as simulated material and the
theory of [9] is applied.
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Parallelization. With the parallelization of the finite element solver for HPCs using MPI,
the computational domain is distributed over the number of available CPUs. For the start of the
numerical simulation, the decomposition of the computational domain is displayed in Figure 3a.
The domain is uniformly refined and each CPU is connected to a spatially similar area to handle
approximately the same workload. During the simulation of LFP, lithium is intercalated into
the particle and the domain is adaptively refined within the areas of high gradients, i.e. within
the areas of the phase front. This results in a redistribution of the area one CPU is connected
to, because each CPUs has to deal with the similar number of degrees of freedom (DOFs). This
redistribution also continues in the further development of the simulation, compare Figure 3b-d.
For a concentration development see Figure 10 in [9].

(a) SOC = 0.01 (b) SOC = 0.13

(c) SOC = 0.50 (d) SOC = 0.95
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Figure 3: Decomposition of the computational domain for each CPU using a parallelization of the finite
element solver for different SOCs with an adaptively refined mesh for a full lithiation of a particle.

Large deformation. As mentioned in the introduction, the anode material silicon has a
larger volume expansion compared to the cathode material LFP. This difference can also be
detected in Figure 4 in comparison to Figure 3. In both figures the computational domain
is warped by the displacement field u. This leads to a larger growth in the silicon domain
compared to LFP. In particular, note the large growth of the particle size during the intercalation
of lithium into the particle, displayed Figure 4a-d. Therefore, the large deformation approach,
used in the theory Section 2, is justified and a small deformation theory like in [14] would not
be an appropriate choice in this case. Due to the spatial adaptivity, the number of cells can
be reduced, so if the problem size is too small to be distributed over all available CPUs, some
CPUs will not be used.
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(a) SOC = 0.01 (b) SOC = 0.06

(c) SOC = 0.50 (d) SOC = 0.95
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Figure 4: Full lithiation of a particle resulting in large deformations for silicon as anode material and
development of von Mises stresses σvM in GPa for different SOCs.

Stress development. Indicated by the colorbar, Figure 4 shows the development of the
von Mises stress σvM in the general plane state defined by

σvM =
√
σ211 + σ222 − σ11σ22 + 3σ212. (9)

In the beginning of the intercalation of lithium into the host material, the von Mises stress
increases to its maximum around 1.4GPa in Figure 4b and then decreases again. The maximum
of the von Mises stress over the total simulation is displayed in Figure 5 in blue. The reason for
the peak value at this early stage is the strong gradient in the OCV for silicon (Equation (8),
Figure 2). The change from larger gradient values of the OCV function U0 to smaller ones leads
to a larger lithium flux and a higher concentration gradient resulting in larger stresses.

Totally different is the profile of the von Mises stresses for LFP, where three things are eye
catching: Firstly, two peaks (one at the beginning and one at the end), secondly (apart from
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that two peaks) a plateau in middle area of the simulation and thirdly nearly no stress at the
start and at the very end of the simulation. The last point can be explained by the fact that in
these cases the concentration is nearly constant and has approximately a zero gradient, resulting
in an almost not visible stress. The higher stress values during the plateau area are related to
the migration of the phase separation that moves from the area of highest curvature on the
right corner to the top left corner of the computational domain. The first stress peak can be
explained by the fact that for a short moment two further phase fronts emerge in the area of the
top left corner. Due to the displacement constraints on the short half axis of the computational
domain, one of two emerging phase fronts near to the short half axis causes the high stress. The
displacement constraints are also the reason for the second peak just before SOC = 0.8, where
the remaining phase front passes through the lower left corner, the center of the spheroidal
particle under consideration.

The green graph in Figure 5 is simulated with the silicon parameters of Table 1 and the
Fourier number Fo = 2.88. The Fourier number describes the ratio of the diffusive transport
rate to the storage rate. A smaller Fourier number can therefore be interpreted as a use case for
fast charging. This results in a stretched curve of the stress values in comparison to the usual
application being even higher than the stress values for phase separation case. Fast charging
therefore implies large stresses inside a particle, which can cause particle fracture and have a
negative effect on the aging of lithium-ion batteries.
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Figure 5: Maximal von Mises stresses in GPa of the total domain over the SOC for silicon, LFP and
silicon with a smaller Fourier number, representing fast charging.

Solver scalability analysis. The parallelization of the finite element solver should lead
to a corresponding time saving for the total simulation time. To investigate the strong parallel
scalability behavior, the mesh is uniformly refined to consider a sufficient large problem size with
approximately 1.4 million DOFs for the LFP simulation setup with a full ellipse and tend = 0.17.
The results of the time measurements are shown in Figure 6. The assembling of the linearized
systems in each Newton step including the Jacobian and the residual shows nearly optimal
linear scaling with increase of the CPU number. However, the time for solving the linear system
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saturates and clearly shows a bottleneck in the performance. This has an impact on the total
simulation time, which also runs into saturation. This means that the overall parallel scaling
is dominated by the saturation due to the direct LU decomposition through superLU Dist. A
more scalable parallel solver can circumvent this issue.
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Figure 6: Computational wall clock time in seconds for the total simulation, the assembly and the
solution of the linear system for different numbers of CPUs. The dashed black line indicates optimal
scaling.

5 CONCLUSIONS AND OUTLOOK

In summary, we have used two thermodynamically consistent chemo-mechanical models to
analyze the intercalation of lithium in anode and cathode battery particles. For this the two
modeling approaches of [9] and [23] were compared and the differences for materials with and
without phase separation were marked out. Especially, the order of the multiplicative decom-
position of the deformation gradient vector was discussed and both options were declared ad-
missible, since both ways are thermodynamically consistent. Further numerical investigations
on this comparison will be executed.

The adaptivity together with the MPI parallelization of the finite element solver allows to
compute two-dimensional domains for silicon as anode material and LFP as cathode material
within a shorter, more reasonable time. The alteration of the distribution of computational area
to the respective CPU during the intercalation of lithium into the particle was pointed out. An
anode material such as silicon shows a larger volume expansion than the cathode material LFP.
This was confirmed by two-dimensional simulations for the respective material. Reducing the
Fourier number illustrates a problem for the current issue of fast charging lithium-ion batteries,
e.g., for mobility transition. Fast charging leads to larger stresses and can even result in particle
fracture which has a decisive effect on the health and aging of the battery. Therefore, additional
effects like plasticity and fracture should be added to the modeling approach. The strong scaling
analysis revealed a saturation for solving the linear system with the direct LU decomposition
through superLU Dist. The development of a parallel scalable solver is part of the current
research in our group. With an adapted solver, the faster computation of even three-dimensional,
arbitrarily shaped geometries is a promising research topic.
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