
ELS3VIER Comput. Methods Appl. Mech. Engrg. 143 (1997) 373-391 

Computer methods 
in appllad 

mechanics and 
englnserlng 

A finite element formulation for the Stokes problem allowing equal 
velocity-pressure interpolation 

Ramon Codina*, Jordi Blasco 
.&C&I Tkcnica, Superior d ‘Enginyers de Camins, Canals i Ports, Universitat Polirhzica de Catalunya, Gran CapitC; s/n, Edjjci Cl, 

08034 Barcelona, Spain 

Received 17 July 1995 

Abstract 

In this paper we study a variational formulation of the Stokes problem that accommodates the use of equal velocity-pressure finite 

element interpolations. The motivation of this method relies on the analysis of a class of fractional-step methods for the Navier-Stokes 

equations for which it is known that equal interpolations yield good numerical results. The reason for this turns out to be the difference 

between two discrete Laplacian operators computed in a different manner. The formulation of the Stokes problem considered here aims to 

reproduce this effect. From the analysis of the finite element approximation of the problem we obtain stability and optimal error estimates 
using velocity-pressure interpolations satisfying a compatibility condition much weaker than the inf-sup condition of the standard 

formulation. In particular, this condition is fulfilled by the most common equal order interpolations. 

1. Introduction 

The choice of the velocity and pressure spaces for the finite element approximation of the Stokes problem is 
of major importance. The standard Galerkin approach necessitates an interpolation for both fields satisfying the 
classical inf-sup or Babulka-Brezzi stability condition (see e.g. [ 11). Elements satisfying it have been blamed to 
be complicated and expensive in practice, especially in three-dimensional problems. This being unavoidable or 
not, the fact is that several numerical methods have been recently developed with the goals of either using equal 
interpolations or stabilizing simple elements, such as the Q, /PO pair (multilinear velocity, piecewise constant 
pressure). Examples of the first group are the methods of Brezzi and Douglas [2], Douglas and Wang [3] and the 
popular Galerkin/least-squares (GLS) technique of Hughes et al. [4,5]. Fortin and Boivin [6] and Silvester and 
Kechkar [7] developed stabilization techniques for the Q, lP, element, and similar ideas can also be found in 
[8,9]. The analysis of a rather general stabilization technique is presented in the paper of Franca and Stenberg 

IlOl. 
On the other hand, it has been observed in practice that some fractional+tep methods for the incompressible 

Navier-Stokes equations that employ a pressure Poisson equation in the projection step allow to use equal 
interpolation. This is in general true for methods that segregate the pressure and compute it via a Poisson 
equation (see for example [l l-131). In the fractional-step method presented by Zienkiewicz and Codina in [ 141, 

this fact was intuitively explained by the presence of a non-zero matrix multiplying the pressure in the 
continuity equation. This matrix is the difference between two discrete Laplacian matrices computed in a 
different way. It turns out that it is a positive semi-definite [15], thus explaining in part why equal interpolation 
is possible. 
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In this paper we present a new formulation for the Stokes problem whose motivation is to have the same 
stabilization properties as the fractional-step methods just mentioned, even though the equations to be solved are 
very different. We introduce a new vector variable which, in the discrete problem, is the projection onto the 

space of continuous vector functions of the pressure gradient. This results in an important increase in the number 
of nodal unknowns, making the applicability of the method limited from the computational standpoint. 
Nevertheless, iterative strategies may be devised to make the method more efficient, although we shall not 
pursue this in this paper. 

To analyze the stability of the finite element approximation, we introduce a technique based on the 
decomposition of the vector space that contains both velocities and pressure gradients into three orthogonal 

subspaces. We prove stability for each of the components of the pressure gradient separately. In order to bound 
one of these components we are led to an inf-sup condition for stability, similar to that obtained for the classical 
Galerkin approximation but much weaker. In particular, it is satisfied by most of the common equal order 
interpolations. To prove this fact, we use a macroelement technique similar to that presented by Stenberg in [ 161 
(see also [ 171). Once stability is established, optimal error estimates are proved under the usual regularity 
assumptions. 

We have organized the paper as follows. The formulation we propose is described in Section 2. After stating 
the problem and introducing some notation. we describe a type of fractional-step methods that motivate the 
method whose analysis is undertaken in Section 3. In Section 4 we present some very simple numerical tests and 

make some remarks concerning the implementation of the method and its relationship with the GLS technique. 
Finally, we draw some conclusions. 

2. The Stokes problem reformulated 

2.1. Statement of the problem 

Let us first consider the classical Stokes problem for an incompressible fluid. Let fj be an open, bounded and 
polyhedral domain of R”. where d = 2 or 3 is the number of space dimensions, and f y = dfi! its boundary. The 
Stokes problem consists in finding a velocity u and a pressure /7 such that 

-vau+Vp=f inR. (1) 

v.zl =o in R , (2) 

u=o on I-. (3) 

where v is the kinematic viscosity and f is the force vector. We have considered the homogeneous Dirichlet 
boundary condition (3) for simplicity. 

To write the weak form of problem (l)-(3) we need to introduce some notation. As usual, we denote by 
H”(w) the Sobolev space of mth order in a set w. consisting of functions whose distributed derivatives of order 
up to m belong to L’(o), and by H:,(w) the subspace of H’(o) of functions with zero trace on r A bold 

character is used for the vector counterpart of these spaces. The L’ scalar product is denoted by (. , . ),,,, and the 

H”’ norm by 11 . lllll.,,,. Th e subscript m is omitted when m = 0 and so is w when it is R. 

Let us now consider the spaces 

and the bilinear forms 

u(u, u) = v(Vu, Vu). h(q,u)=(q.V.u). (5) 

with u, u E V and q E Q. If (.;) denotes the duality pairing between V and its topological dual space V’ wheref 
is assumed to belong, the weak form of problem ( 1 j-(3) consists in finding (u, p) E V X Q such that 

a(u,u)-h([>,u)=(~u) YUEV. (6) 
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b(q,u)=O VqEQ. (7) 

Existence and uniqueness of solution to this problem follows from the coercivity of a in V X V, which is a 

consequence of the Poincare-Friedrics inequality, and from the inf-sup or Babuika-Brezzi condition. These 

conditions can be written as follows: there exist positive constants K, and K,, such that 

a(u,u)~K,~~u~~, VvEV, (8) 

inf sup b( q, v) > K,, , 
YEol UEV, 

(9) 

where Q, and V, are defined as 

Q, = {q E Q 1 ~kd = 1) 1 v, = {v E v 1 [lull, = 1) . (10) 

Condition (9) holds true for V and Q given by Eq. (4). 
If instead of having f E V’ = H- ‘(f2) we require f E L2(0) and f is sufficiently smooth, it is known that 

the solution of problem (6) and (7) verifies u E V fl H*(O) and p E Q n H’(0), that is, the regularity of the 

solution increases (see e.g. [18]). Also, the duality cf, v) in Eq. (6) can be replaced by (f, v). In the case of 
polygonal r that we consider, we need to require explicitly p E H’(R). This is the situation that we consider 

throughout in this paper. 
Let Y,, denote a finite element partition of the domain 0 of diameter h. For simplicity, we assume that all the 

element domains K E F,, are the image of a reference element R through a polynomial mapping F,, affine for 

simplicial elements, bilinear for quadrilaterals and trilinear for hexahedra. On i we define the polynomial spaces 
v = [Rk (Z?)]” and Q = R, (k), where, as usual, R, = Pk for simplicial elements and R, = Qk for quadrilaterals ” 
and hexahedra. From v ab Q we construct the finite element spaces 

(11) 

V, = {v, E [C”(f2)]d 1 vhlK = tioF,‘, ti E p, K E Yj}, (12) 

(13) 

Notice that both the velocity and pressure finite element spaces V, and Q,, are referred to the same partition and 
both are made up with continuous functions. The case k, = k, - 1 corresponds to Taylor-Hood type elements. 

In what follows, we put special emphasis on the case of equal interpolation k, = k,. 

The discrete finite element counterpart of problem (6) and (7) can now be written as follows: find 

(u,, ph) E V,., X Qh such that 

a(ll,,v,>-b(p,,v,)=(f,v,) ~V,~V,,O~ 

b(q,, u,,) = 0 Vq,EQ,. 

(14) 

(15) 

2.2, On a class of fractional-step methods 

In order to motivate the method to be introduced in the following section, let us first describe the application 
of the classical fractional-step method of Chorin [19] and Temam [20] to the transient version of problem 
(l)-(3), that is, 

$-vAu+Vp=f. 

v-u =o. (17) 

These equations must be supplied with initial and boundary conditions, although they are irrelevant for what 
follows. 

Consider a partition of the time internal into time steps of size At and denote by a superscript the time step 
counter. With un known, the classical fractional-step method consists in finding an intermediate velocity u~+“~ 
as the solution of the equation 
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_ @‘I) _ y Au” ’ Ii2 =f. (18) 

followed by the projection of u”+“’ onto the space of solenoidal vector fields. This leads to solving 

(19) 

v7.fgq =(J. (20) 

A common approach for solving problem ( 19)-(2(J) is to take the divergence of Eq. (19) and make use of Eq. 
(20), to yield a Poisson equation for the pressure. namely, 

Al, 
II + 1 +.ull+‘~:, (21) 

Once this equation is solved, Eq. ( 19) can be used to obtain u”+ ‘, thus uncoupling the calculation of the velocity 
and the pressure, which is one of the reasons for the success of fractional-step methods. 

Once a finite element space discretization is performed, the matrix form of Eqs. (19)-(21) will be 

L#“‘l _U”+ll?)+Gp”+’ =o, (22) 

-G’U”“=,,, (23) 

&LJ,“+1 _ GIU”+li’ = 0, 
(24) 

In these equations, we use capital letters to denote the vectors of nodal unknowns of the corresponding lower 
case variables, M is the mass matrix, G is the matrix coming from the gradient term and L is the one coming 

from the Laplacian. 
If the intermediate velocity U ‘I ’ I” is eliminated in Eq. (24) using Eq. (22), we obtain 

- G’U”” +Ar(L-G’Mm’G)P”-‘=O. (25) 

Therefore, we see that, whereas at the continuous level it is equivalent to use either Eqs. (19) and (20) or Eqs. 

( 19) and (2 1 ), at the discrete level there is a difference between using Eqs. (22) and (23) and Eqs. (22) and 

(24). The latter choice corresponds a modification of the continuity Eqs. (23)-(25). The term L - G’M-‘G may 
be understood as the difference between two discrete Laplacian operators computed in a different manner. This 

matrix turns out to be positive semi-definite [ 151, which increases the stability of the numerical method. Thus, 
the benefit of using Eqs. (22) and (24) is more than just uncoupling the velocity and pressure computations. 

The matrices appearing in these expressions should in fact be modified according to the boundary conditions 
imposed on ( 18) and ( 19) and (20), a point that we have deliberately omitted since it does not affect our 

discussion and boundary conditions are always controversial when using fractional-step methods. 

2.3. Modijed discrete problem 

We are now in a position to present the finite element formulation that we propose. The idea is to recover the 

stabilization properties of the fractional-step method discussed above. 
The term G'M- 'GP can be obtained by taking first the gradient of the pressure, projecting it onto the discrete 

space of velocities and then taking the divergence of the resulting vector field. 
Let (Y > 0 be given. The modification of problem ( 14) and (15) that we consider is as follows: find 

(u,, C,,. P,,) E &, X V,, X Q,, such that 

a@,,, u,,) - b(p/,, u,, 1 = t.f. u,,) v */, E vi,.,, . (26) 

a(b,, Vqh) - 4d,g, b,,) + Hq,,. u,,) = 0 v qh E Q,, ’ (27) 

- (VP,, a,) + w,, a,) = 0 v 8, E v,! (28) 

Observe that the vector ti2, is precisely the projection of Vp,! onto V,,. 
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If we denote by K the matrix coming from the viscous term (i.e. from a) and introduce a subscript naught to 
refer to the non prescribed degrees of freedom, the matrix version of this problem is 

KU +G,P=F,, (29) 

aLP-CYG’U-G;U=O, (30) 

-GP+Mo=O. 

Eliminating 0 from Eq. (31) and inserting it in Eq. (30) it is found that 

(31) 

cx(L - G’M-‘G)P - G;U = 0, 

an equation similar to Eq. (25). 

(32) 

Problem (26)-(28) is consistent, in the sense that the solution of the continuous problem satisfies it. If this 
solution is sufficiently smooth, the original problem (l)-(3) may be replaced by 

-vAu+Vp=f in 0 , (33) 

-a(Ap-V*ti)+V~u=O inn, (34) 

-vp+zi=o in J2 , (35) 

ll=O on r , (36) 

ap ---.~=O 

an on r, (37) 

where n is the unit outward normal to lY This problem is exactly equivalent to problem (l)-(3). Since problem 

(26)-(28) can be thought of as the discretization of the weak form of problem (33)-(37), we can expect the 
correct behavior of the pressure near the boundary. We shall come back to this point in Section 4. 

3. Numerical analysis 

3.1. Preliminaries 

In this section we analyze problem (26)-(28). We prove that the solution is stable under a mild condition for 
the velocity and pressure finite element spaces. After this, we give optimal error estimates for the unknowns. 

First, we need to introduce some notation. Let us consider the bilinear form on (V,., X Qh X V,)’ defined as 

B@,, ph, rib; vh? qhr Oh) = a(u@ vh) - b(ph, vh) + (y(v!h? &h) - (y(c@ &h) + b(qh, Uh) 

- a(@,,, &,) + @,,, a,). (38) 

Problem (26)-(28) can be written now as: find (u,, phr tih) E V,,., X Qh X V, such that 

B@,, ph, p,; vh* q,,9 e,,) = (A v,,) v(v,, qht Oh) EV,), ’ Qh “h . (39) 

We assume that the family of finite element partitions { Yh}h ,0 is quasi-uniform, that is, there exists a constant 

rr > 0 such that for all h > 0 

min{diam(B,)[K E Yh} 2 p max{diam(K)jK E Yh}, (40) 

where B, is the largest ball contained in K E Z$. Condition (40) is needed in order to have the following inverse 

estimate (see e.g. [21]): there exists a constant C > 0 such that 

(41) 

From now onwards we use C, possibly with subscripts, to denote a positive constant independent of the mesh 
size, not necessarily the same at different occurrences. 
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A possible modification of the bilinear form .% defined in Eq. (38) could be to define the parameter (Y and the 
terms that it multiplies elementwise, that is, cy(Vp,!, V9,,) could be replaced by 

c ffK(VP,,, VY,, )K ) 
K E i,, 

(42) 

and similarly for the rest of terms affected by U. This modification would allow to replace condition (40) by the 
weaker condition of nondegeneracy of the family {q,}/, ,(,, since only the elementwise version of the inverse 

estimate (41) would be needed (see [21]). 
Let VQ, denote the space of vector functions which are gradients of elements of Qh and consider the vector 

space 

E,c := v,, + VQ, =4., @E,,,z @E ,,.. 1 . (43) 

where E,,,, , i = I, 2.3, are three mutually L’ orthogonal subspaces defined as 

._ 
E KU’ /,.I .- (44) 

E 
h.? := v,:,,, n y, . (45) 

E,,, := V,; (46) 

Let us denote by P ,,,, the orthogonal projection from E,, to E ,,.,. and Ph.,, := P ,,,, + P ,,,,, i, j = I, 2,3. Also, we 

denote E,8,,, : = E,,,, 63 E,,,,. In order to prove that the pressure gradient in problem (39) is stable, we shall bound 
independently the three terms in the decomposition 

VP, = Ph.,(h) + P,,JVP,) + ph.,m,~~ (47) 

Finally, to obtain error estimates for the solution of problem (39) we shall make use of the approximation 

properties of the spaces v,,,,. Q/, and V,,. These can be written as follows. If u EH’(0) fl V, r 2 1, and 

9 E H”(0) II Q, s 2 1, there exist Z7,,, (u) E V,,,,,, G,.?(9) E Q,, and &0’s) E V, such that 

Ilo - K., (v)lI, 9 C, h” ’ IlUllr , ’ k, =min{i-,k, + 1)-m, (48) 

II9 - n/,.2(9)/l”, s C,~%4k~ ’ k, = min{s, k, + I} - m , (49) 

l/Vq - Z&,(Vq)ll,,, s C3hi(XllV911k, , k, = min{s - 1, k, + I} - nz . (50) 

3.2. Stability 

We now prove that the solution of problem (39) is stable. For the pressure gradient, the three components 
appearing in Eq. (47) are bounded separately. The bound for the first one can be obtained independently of (Y, 
whereas the third component can be bounded only if cy > 0. Thus, the stability provided by the method in 

comparison with the standard problem (14) and (15) is precisely in the control over the term P,,3(VpI,), that is, 
the component of the pressure gradient orthogonal to the space of continuous vector fields V,. 

The second component in Eq. (47) deserves special attention. It depends on the properties of the finite 
element spaces, and not on the problem actually solved. For the moment, we assume that there is a positive 
constant KS such that 

tlV9,ll s K#?,.,,(V9,,)1/ v 9/r E Q,, 3 (51) 

which means that l(Ph,2(Vqh)(I can be bounded in terms of lIPh,,3(Vqh)ll. In the next subsection we show that this is 
similar to the inf-sup condition of the standard problem, although much weaker and, in particular, verified when 
equal interpolation is used. 

We also need to make an assumption on the behavior of (Y in terms of h: there is a constant a,,, independent 
of h, such that 

LY 2 a;,h' . (52) 
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Under all these assumptions we can prove the following: 

THEOREM 1. Suppose that the family of finite element partitions { Yh}h,O is such that the inverse estimate (41) 

and condition (51) hold, and suppose also that CY satisfies (52). Then, there exists a unique solution to problem 

(39) that verifies the stability estimate 

\luhl1, + hllVp,ll s C\lfll (53) 

for a constant C independent of h. 

PROO..r. Since the problem is finite-dimensional, it is enough to prove that (53) holds. From the definition of 

the bilinear form ??? in Eq. (38) it is easy to see that 

a(u,,, Phr u”h; % ph’ u”h) = a(uh? uh) + aiivPh - dhii2 = (.fi ‘d s Il.flllluhlll (54) 

From the coercivity of the bilinear form a (Eq. (8)) it follows that 

bhll 1 c + kfli . (55) 
a 

On the other hand, Eq. (28) can now be written as rib = P,,,,(Vp,), and therefore from Eq. (54) it follows that 

aIIph,,(vPh)Ii2 = allvPh - ‘hii s l!.fll bhil, 

and, from estimate (55), 

On the other hand, from Eq. (26) we have that 

IIph,,(bh)l~’ = (bh* ph.,(vph)) 

= <.f, Ph,I(VPh)) - a(uh7 ph,l(vPh)) 

s llfll ~~Ph,,(VPh)l~ + N,ll”h~~,llph,,(vP,)ll, 

(56) 

(57) 

where we have called N, the norm of a and we have used the inverse estimate (41). 

Estimate (53) follows now from (51), (55)-(57) and the assumption (52) on (Y. 0 

3.3. A weakened inf-sup condition 

The previous stability estimate, as well as the error estimate in Section 3.4, depend on whether condition (51) 
holds or not. This condition is equivalent to the existence of a constant K2 > 0 such that 

(58) 

The equivalence between conditions (51) and (58) is easy to prove. In particular, it is found that the constant K2 
in Eq. (58) may be taken as l/K:, where Ki is the constant in Eq. (51). 

Condition (58) is similar to the standard Babugka-Brezzi condition for the discrete problem, that is, the 
discrete version of condition (9). The only difference is the space where vh runs: it is Eh,r3, and not only E, , as 

it happens with the standard condition. This is possible due to the fact that control over \IP,,,(Vp,)II is provided 
by the formulation itself, without having to rely on a compatibility condition on the velocity and pressure finite 

element spaces. Thus, condition (58) is weaker than the standard one. 
This section is devoted to show that condition (58) holds under mild conditions over the finite element 
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interpolation and, in particular, that it is satisfied when using some equal interpolations. To this end, we apply a 

macroelement technique similar to that of Stenberg [16,17], from which we take part of our notation. 
For each h, let .41h be a collection of macroelements covering 0, a macroelement M being the union of one or 

more element domains of *Y,,. One of these macroelements ME A,, is said to be equivalent to another 
macroelement M, E J&,, if there exists an homeomorphism G, : MO + M such that: 

(i) G,(M,,) = M. 
(ii) IfM,,=U:‘=,K,,,,.thenM=U:“~,G,(K,,,,),whereK ,,,, EY,Z. j=l,..., m. 

(iii) GMIK ,, = F,oF,‘, wh 0 ere K = G,(K,,) and F, and F,,, are the mappings from the reference element Z? to 
G- r <,- K E J,, dnd to K, E .I,$,,. respectively, introduced earlier. 

Note that equivalent macroelements can be associated with the same or with a different finite element partition. 
Thus, with this definition, {Ah}, ,(, is split into a finite number of equivalence classes 8,, . , ii!?,,, . 

Let us consider the spaces VM,(,, Q,,,, V,, E, and E,,,, i = 1,2, 3, defined as their analogues V,,,: Qh, V,, E,, 

and JL i = 1, 2. 3, but replacing the partition q;, by the partition of a macroelement M E Ju, (the zero mean 
restriction is not imposed on QM). Also, PM,, are the orthogonal projections from EM to EM ,, i = 1, 2, 3. 

We first show that if a condition like (5 1) holds in a marcroelement, then it also holds in a: 

LEMMA 1. Jf there exists cl constant C > 0 .such thut 

bvq,il, d ~tkw,,(vq,,)~~, v qh E Q,, 1 

for all ME Ju,,, then condition (51) holds ,fbr (I constant KI independent of h. 

(59) 

PROOF. Let q,, E Qh and let uM,, be the extension by zero of P,,,( Vqh), i = 1,3, to the whole domain a. 

Consider also the vector field 

Uh = F v, = z (v,., + VW.3 ) - (60) 

Clearly, v,,,EE,,,CE,~,, VM and thus X,v,,,EE ,,,. Let u~.,~EE,,,~. Since V,.,,~,EE,.,Z=E~..~ 
(orthogonality in E,,,) we have that 

that is, C, v~,~ E E ,‘. , z = E,,,,. Therefore, ul, in Eq. (60) belongs to E,,,,. 

Let NM be the maximum number of macroelements to which an element domain belongs, and NK the 
maximum number of element domains per macroelement. Let us bound first /Iuhl(: 

Ibh/l* = i,, (F %‘>* df2 

c; h,l1* + 2 M,M,;nM,i, h,ll h,‘tl 

s T (Iv,I12 + M+M,;nM,_e (Ild + lid) 

c (1 + N,N,) c IIq,ll* 
M 

s (1 + NMN,)&,IIvq,l12 3 

that is, there exists a constant C,, > 0 such that 

lbhll s c,Ilvqhll . (61) 
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On the other hand, from (59) it follows that 

But, using inequality (61), 

(62) 

J Qq, . v,, da = 
J R h(Qd. ‘h dfl c cOl~ph,,,(Q~h)I~ IIQqhii . (63) 

R 

The lemma follows combining inequalities (62) and (63) with Ki = C,C’. 0 

The next step is to give sufficient conditions for property (59) to hold. First we give a rather technical lemma 
whose proof is omitted: 

LEMMA 2. Let M be a metric space with distance dist, X and Y two subsets of M and {Y,}p,O a family of 

subsets such that 

(64) 

Let Z be another subset of M such that Y C Z and Y, C Z for all ,u > 0. Consider a family of functions (f,},,, 
from M X M to [w that converge uniformly in X X Z to a function f uniformly continuous in the second argument. 

Then 

This result is used now to prove the following: 

LEMMA 3. Let %,$ be one of the equivalence classes introduced above, i E {1,2, . 
following condition holds: 

3 MO E gi such that V q E Qu, 
I Ml1 

$-vdM=O VvE&,,,,*Qq=O 

Then, there exists a constant Ci > 0 such that, for all M E 5, 

IlQsllnr ~Cc,lk,.,,(Qdh, Vq E Q.w. 

PROOF. Let us consider the following function defined on the class 8,: 

/3(M) = inf 
(Qq, v>, 

~EQM uEEM ,3 ““4 IlQsl~ullh, ' 

(65) 

, n,}, and suppose that the 

(66) 

(67) 

(68) 

Inequality (67) is equivalent to saying that /3(M) > 1 /C, for all M E ‘k?;. This can be proved as the equivalence 
between (51) and (58). 

From assumption (66) it is easy to see that p(M) > 0 for all M E gi. Since M is defined by the coordinates of 
its modes, p can be considered as a function of these coordinates. Due to the quasi-uniformity of the family 
{Yh}h,O (or simply due to its non-degeneracy), all the nodes are isolated points of Rd, and therefore they form a 
compact set. Thus, p can be considered as a function defined on a compact set. To prove that it is bounded 
below by a positive constant it is enough to prove that it is continuous. 
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Let M, M’ E d,. We want to show that /3(M’) + /3(M) as M’ -FM. Let G: M + M’ be the homeomorphism 
that relates M and M’. We denote its Jacobian matrix (piecewise continuous) by DG. Let also 

J’ := y$ii;, IDG ‘I@‘). j’:=xn$, /DG~ ‘J(x’), (69) 

where 1 . 1 stands now for the determinant of a matrix. Here and below, we use the symbol ’ to refer to quantities 

associated with M’. The two functions in (69) depend on the macroelement M’ and tend to 1 as M’ +M, that is, 
as G-+I. 

Let us write the function ,B as 

where QM.(, = {q E Q,,,lVq # 0} and S is the the unit sphere of E,,, 1. 

Let u’ EE,,.,,, q’ E Q,,.,, and u, q the pull-backs of u’ and q’ (that is, u = G*u’ = u’oG, q = G*q’ = 
q’oG). It can be readily checked that 

V’q’ . u’ &+f’ = 
I 

Vq.DG-‘.uIDGIdM, 
M 

ur. u’ d&f’ = I u . u,DG, dM , 
M 

I Vq’.Vfq’dM’= (Vq.DG-‘).(Vq-DG ‘)(DGjdM. 
M’ I M 

If we introduce the abbreviation V,q : = Vq . DG ’ and denote by 

weight IDGI, we have that 
(-“)&&, the L’ scalar product in M with 

r , (V&L U),,M 
f’(V’4’~ u’) = ,,;:;y$;, = ,,vGq,~G~M,,u,,c;,M =:f,m* u). 

where 11. IIG.M is the norm associated with (.;)(;,,,. 
Since DG is nonsingular, if V’q’ # 0 then Vq # 0, that is, if q’ E QMs,o then G*q’ E QM.o. If U’ ES’, let us 

see where does u = G*u’ belong. Let u’ = u; + u:, with ui E E,. , and ui E EM8 3. Since u: is continuous and 

vanishes on &M’ and G is continuous, G*u I E E,,, . In general, G*u12 E EM,,* for all u :, E EMr,,2. However, 

G*ui 55 E,,, if ul E EM.,,. This is due to the fact that 

vu,* EEM.12 I u,;G*u;dM= (u,~G')~u;,DG,dM', 
M I 

which is in general #0 since u ,z 0G -r,LYG, t?ZE M.,,Z if lDG/ is not continuous. Therefore, if S, = G*S’ then 

S,#S. 
Using the previous results, the function /3 evaluated at M’ can be written as 

p(M’) = inf sup j&Vq, u) . 
4~QM.O UES,, 

Now we use Lemma 2 to prove the continuity of p. Let 

We have that 

IlG*#, = i,, u'w',DG~-'(dA4', 

and thus $ s J(G*ul( M c v/5;, with j’ and J’ defined in Eq. (69). If we take M’ sufficiently close to M, j’ > l/4 
and J’<4, so thatSCZandS,CZ. 

It is now easy to prove that f(Vq, u) is uniformly continuous in the second argument in QM,-, X Z and that 
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&(Vq, v) converges uniformly to f(Vq, v) in Q,,. X 2. To apply Lemma 2 it remains to check condition (64) 

with Y = S and Y, = So, the parameter p being now replaced by the function G and p + 0 by G + I. 

Let 8, ES, CE, and u’= ui + vi ES’ such that b, =G*u’, with UI EE,,,, and UJ EE,.,,. Then 

6, = G*ui + G*ui, with G*ui EB,,, but G*ui &ZEE,,, (in general). Let 

w = G”u; + 
G”u; 

(ZIG-'1 0~ ’ 

It is easily verified that the second component in w belongs to E,,,, and therefore 0 E S. A simple calculation 

shows that dist(d,, a) + 0 as G +I, that is, as j’, J’ + 1. Hence, 

sup inf dist(u,, u) + 0 as G -+I . 
U&S, UE.7 

(70) 

Also, given d = u, + u3 E S, with u, E E,,, and u3 E B,,,, let 

u;oG-' 
w'=ujG' + ,DG,oG-, 3 UG=j$ 

It turns out that U, E S, and that dist(ti,, a) + 0 as G +I, thus proving that 

sup inf dist(u,, u) + 0 as G +I . 
VE.9 U&SG 

(71) 

From (70) and (71) it may be concluded that hypothesis (64) holds in the present situation and ultimately that 
the function p defined in Eq. (68) is continuous, which is what had to be proved. 0 

Combining Lemmas 1 and 3 we obtain the following result: 

THEOREM 2. Suppose that for all the equivalence classes %$, i = 1, . . . , n,. of macroelements of { .9jj}h,0 

condition (66) holds. Then, there exists a constant K2 > 0, independent of h, for which the inf-sup condition 
(58) is verified. 

PROOF. Let C = min{C, , . . . , Cnc}, where Ci is the constant for the equivalence class ‘Z?; established by Lemma 
3. Since for all h > 0 functions q,, E Qh restricted to a macroelement M E .A,, belong to QM. we are in the 

hypothesis of Lemma 1. The theorem follows from the equivalence between (51) and (58). 0 

From this result we see that condition (66) is the key for proving that the finite element formulation is stable. 
Again, it is similar to the condition obtained in [16], the only difference being the space where the function u 

runs: E, , in that reference, EM ,3 in our case. 
Next, ‘we prove that condition (66) is verified in a simple case using equal interpolation, namely, using 

complete polynomials of degree k 5 1 for simplicial elements. According to Theorem 2, we prove it on arbitrary 
classes of macroelements. The only restriction on them is specified next. The macroelement technique can also 
be applied to other cases of interest, such as the use of tensor product polynomials for quadrilaterals and 
hexahedra. 

PROPOSITION 1. Suppose that k, = k, = k and that K is a simplex. Let 8 be a class of equivalent 

macroelements with reference macroelement A?, such that there is at least one interior vertex and, for d = 3 and 

k a 2, no element K C h? has three faces on aA. Then, condition (66) is satisjed on fi-. 

PROOF. We prove condition (66) by imposing continuity of Vq on A? rather than orthogonality to E,,,, due to 
the difficulty of characterizing this space. Orthogonality to Eti,, is enforced directly. 

Let us consider the case of linear elements (k = 1) first. For a given q E Qfi, Vq is constant on each element 

K C 2; if we assume Vq is continuous, it must be constant on &?. Since we have assumed the existence of at 
least one vertex P interior to &?, orthogonality of Vq with respect to all velocity fields which take arbitrary 

values on P and zero at the nodes of afi implies the vanishing of Vq. 
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and u and p are the solution of the continuous problem (6) and (7) 

PROOF. Since problem (39) is consistent we have that 

~(u,P.VP;V,,~,,~,)=(~,U,) ~(~,,q,,B,)EV,,,xehxV,. 

Subtracting this equation from Eq. (39) and taking as test functions (v, - I(~, qh - p,,, 6, - ti,) E V,,, X Qh X V, 
we obtain 

~9(u-u,,p-P,,vP-c ,,; u - u,,, p -p,,? vp - a,> 

= g(u - u,, p - p,,, Vp - &,; u - v,,. p - q,,, vp - e,) 9 
(74) 

for all (u,, qh, 0,) E V,,, X Qh X V,,. Using the expression of the form B given in Eq. (38), from Eq. (74) it is 

found that 

a(u - Uh, u - Uh) + a(ri, -Vp,,ti, -Vp,)=a(u -uh,u -uh) 

+(Vp-Vp,,u-u,)+b(p-q,,u-u,)+cu(~,-Vp,,O,-Vq,). 

Using the coercivity of a, the continuity of a and b and Schwarz inequality we get 

k - u,II: + g (1% - ‘Phil2 c ‘[lb - ‘hii ,Ib - ‘hiI I + lb - vPh~~\b - uhli 
a 

+ lb - qhi lb - ‘hill + +h - ‘!hii \I’, - vqhii] * (75) 

Let us denote by E,(s) the error in the H” norm of either u, p or Vp and Z,,,(u) := (Ju - u,,(Jm, Z,(p) := I(p - qhll, 

Z,(Vp) := IlVp -Vq,ll and Z,,(zi) := \lVp - B,[[. Also, let G := I(tih - Vp,(l. We can thus write Eq. (75) as 

E:(u) + $ G* c C[E,(u)Z, (U) + E,(vP)&(U) + &,(P)&(u) + ~GIb, - vq,lll . (76) 
u 

Since 

IIfih - vq,ll s [Iti,, - ‘pll + llvp - v$,l\ = I,(‘) + Z,(‘p) 1 

from Eq. (76) we obtain 

E;(u) + f G* s C[E,(u) + hE,(Vp) + CX”~G] 
u 

(77) X max Z,(u). Z,(p). i Z,(u), LY “*Z,(a), (Y ’ "Z,(Vp) 
1 

. 

The problem now is to bound E,(Vp). We have that 

E”(vp) s llvp - ph,,2(vqh)ll + IIph,,2(vqh) -v&II 

c lb - ph,12(v~h)I~ + ~~Ph,I(V~h) - ph,I(v.,)II + lIph,2(v~h) - Ph,2(VPh)ii + IIph.,(vPhil . (78) 

Using now the stability condition (5 1) we obtain 

iiPh.2(Vqh) - ph~2(vqh)iI s CIiph,,3(Vqh) - Ph,,3(V~h)~\ 

s c~lph,,(v%,) - ph.,(v~h)~~ + cI~ph,,(v~h)II + cllph,,(vqh)ll . 

On the other hand 

(79) 
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Using this in Eq. (79) it is found that 

IPAW - ~,,.z(VPd/I c culfi.Abh) - ~,,.m,,)/l 

+ II% -WI + IIVP - ~,,.,2(Wll + llfx%~lll . 

Using this inequality in the estimate (78) we get 

E”(VP) c (1 + CwqJ - ~,,.,2(VqJl + ( 1 + cw,,,,mh) - ~,,.Im+!P,,lI 

+ (1 + Oll~/J%Jll + CIIVP - b,ll (80) 

Let US bound now the different terms in Eq. (80). If we still denote by Ph. II the extension of the projection onto 

E h,,Z = V,, from the whole space L’(O), we have that 

[/VP - &(Vq/Jll c IIVP - ~,,.,m~ll + IP,,.,z~VP~ - ~,,.I?(%)ll (81) 

Since 

(Vp-P ,,., JVp).~,,)=() Vfi,,EV,#. 

and P,,, , ?( Vp) - u^,, E V,, for ti,, E V,>. we have that 

IlVp - P,JVp)# = COP - P,z.,2(VP)’ VP - pi, ,,CVP) + PII.I1(VP) - u”,,) 

= cg ~ P ,,.I ,Cb),, VP - fi,>) 

c P/J - ~,,,,2C~.>ll IV,, - fi,,ll ’ 

that is, 

IlVp - ~,,.,,CWll 5s MC) (82) 

If IIP ,,,, :I/ is the norm of P,s.,l as a linear operator from L’(f.2) to E,,,,,, since this norm is $1 we have that 

Using inequalities (82) and (83 ) in (8 1) we obtain 

I/VP - p I,., ?m,,)II 5 1,,(1 1 + WP) . (84) 

The second term in Eq. (80) can be bounded using the tirst equation of the problem, that is, Eq. (261, and 

making use of the inverse estimate (41): 

II&JVq,,) -&(V,,,# = (Vq,, -VP,vP 11.1 ml,) - P,,,,(VPh)) 

=cg-vr~,,‘P,,,(vq,~)-P,, ,(~P,~P,,~+(~~q,-vP~~,,.,(~~,~-~,,,(vP,,)) 

= -a(u-u,,,P ,,,, C&q,)-p ,,., cvP,~,)+(vq4h-VPI~h.l(Vqh)~t;l.l(VPL)) 

where N, is the norm of u. Therefore 

(85) 

The third term in Eq. (80) is ( 1 + C)G and the last one is Cf,,(Vp). So, using bounds (84) and (85) in (80) we 

obtain 
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E,(Vp)~C zo(a)+zo(Vp)+~E,(u)+G 
[ 1 

) (86) 

and using this in (77) we get 

E;(u) + g G* s C[E,(u) + hZ,,(Vp) + hZ,(ti) + (h + cz”*)G] 
” 

X max Z,(u), Z,(p), :I,@), a”‘&(@), cy”‘Z,(Vp) 
1 

. (87) 

From the behavior assumed for the parameter CY, Eq. (87) implies that there exist constants C, and C, such that 

E,(u) c C, max Z, (u), i Z&L hZ,(Vp), Z,(p), hZ@ ) { 1 , (88) 

Gs+max I,(u).~I~(U),~Z~(V~),Z,(~),~Z~(Q) -L I . (8% 

Eq. (88) is the error estimate for the velocity. Using (88) and (89) in (86) we obtain the error estimate for the 
pressure: 

&(VP) s C, max Z,(u), t Z&L hZ,(p), hZ@) { I . (90) 

On the other hand, 

I]% - %ll= ]]vP, -VP - P,,,<Vp,)II c 40~) + G . 

The theorem follows combining inequalities (88)-(91). 0 

(91) 

Clearly, estimate (73) is optimal. From the approximation properties (48)-(50) it follows that if u E H’(a) 0 
V, ral, and pEH”(LZ)nQ, s 2 1, then the error function E(h) in Eq. (73) behaves like hk, with k = 

min{r - 1, S, k,, k, + 1). 
It is also remarkable that we have had to use the fact that cz,,h* s cr s a,/~‘, whereas to prove stability in 

Theorem 1 we only used that ~yoh* S CL Thus, the behavior of cz is dictated by the stability and convergence 

analysis. To make it dimensional, we take it as (Y = @*IV, where LU~ is a dimensionless parameter. 

4. Numerical tests 

In this section we present two simple numerical examples of the solution of problem (26)-(28). In the 

implementation on the computer, we have solved this problem iteratively, first updating u,, from Eq. (26) using 
a guess for ph, then updating ph from Eq. (27) using a guess for tih and the current uh and finally updating 1, 
from Eq. (28) using the ph just computed. Although the performance of this scheme has not been completely 
satisfactory, the problems to be solved in this iterative process are very simple, all of them requiring the solution 
of algebraic systems with symmetric and positive-definite matrices. We have solved them using the conjugate 
gradient method. 

4.1. A test with analytical solution 

The purpose of this first test is to check numerically the convergence rates predicted by Theorem 3, that is, 
the convergence of u,, to u in the H’ norm and the convergence of Vp, and 1, to Vp in the L* norm. For that 
purpose we consider the test problem presented in [22], in which 0 is the unit square and the force term is 
selected so that the solution of problem (l)-(3) with v = 1 is u = (u,, u,), with u, = x2( 1 - x2)(2y - 6y2 + 4y3) 
and uy = (-2x + 6x2 - 4x3)y’( 1 - y)*, and p = x - x2. 

We have solved the problem using the P, and the P, elements. We have also solved the standard problem (14) 
and (15) using the mixed P,IP, element (continuous quadratic velocities, continuous linear pressures), which 



R. Codinu. J. Blasco I Cornput. Methods Appl. Mech. Engrg. 143 (1997) 37.7-391 

0.10 

Mesh size (h) 

1.00 0.10 

Mesh size (h) 

1.00 

Fig. I. Convergence of j/Vu ~Vu,,il. 0: P, element: 0: Pz element; X : mixed P./P, element. 

Fig. 2. Conver&ence of IlVp --tp,,li. 0: P, element; 0: P? element; X : mixed P,IP, element. 

satisfies the discrete counterpart of the inf-sup condition (9). All the finite element meshes that we have 
employed are uniform. 

We have plotted in Fig. 1 the convergence of the velocity. As expected, the rate of convergence is 1 for the PI 

element and 2 for the PI and the mixed P21P, elements. In this case, these last two elements give the same error 
for the three meshes that we have used. 

Fig. 2 shows the convergence of the pressure gradient. For the P, and the mixed P21P, elements the rate of 

convergence is 1, being the absolute error of the latter greater than that of the former. What is not predicted by 
Theorem 3 is the convergence of the pressure gradient for the P, element observed in Fig. 2. Notice that for the 
finest mesh the rate of convergence found for the first three meshes is lost. 

Convergence of the projected pressure gradient (6,) is very similar to that of the pressure gradient itself for 
the P, and PI elements. It is shown in Fig. 3. 

0.10 

Mesh size (h) 
Fig. 3. Convergence of IlVp - ti,ll. 0: P, element; 0: P2 element 
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Fig. 4. Finite element mesh using 12 X 12 P, elements for the Poiseuille flow example. 

4.2. Behavior of the pressure near the boundary 

This second example is intended to discuss a misbehavior of the pressure near the boundary using the GLS 
formulation, as described in [23]. In essence, the GLS method consists in replacing d, in Eq. (27) by 
g, : = f + v Au, and evaluating the integrals involved in the L2 inner product element by element (see [4]). In 

other words, instead of using the projection of the pressure gradient onto the space of continuous vector 
functions, the expression resulting from the differential form of the momentum equation (Eq. (1)) evaluated on 
each element is employed. 

Although the rate of convergence of the method in the H ’ and L2 norms is optimal [2,4], the pressure may be 
poorly approximated near the boundary. Suppose that f = 0 and that the flow is induced by a non-homogeneous 
Dirichlet condition. Then, g, = v AuI, and this approximates Y Au within the elements only using polynomials 
of order k 3 2. In the case of linear elements, g, = 0. If we take P, = 0 in problem (33)-(37), it is clear that the 
pressure verifies (weakly) the condition ap,,l&z = 0 on r (see Eq. (37)), which is wrong. Therefore, we may 

I 1 1 , 

Fig. 5. Pressure contours for the Poiseuille flow example. (1) GLS method, coarse mesh: (2) GLS method, fine mesh; (3) Present method, 

coarse. mesh; (4) Present method, fine mesh. 



expect an incorrect pressure near the boundary, especially using linear elements. To overcome this. a 
modification of the GLS method including a boundary term was presented in 1231. This problem does not appear 
in the formulation introduced in this paper. 

One of the numerical examples of Droux and Hughes [23] consists in the solution of a Poiseuille flow in a 

trapezoidal domain. We have also solved this problem using two meshes of P, elements with I3 X I3 and 
25 X 25 nodes uniformly distributed along the sides. The first mesh is shown in Fig. 4. For this problem, f= 0 
and a parabolic velocity profile is prescribed at both the inlet and the outlet; on the top and bottom edges u = 0 
is prescribed. The pressure gradient in this case must be constant. 

Pressure contours computed with both the GLS method and the formulation presented in this paper are shown 
in Fig. 5. In spite of the improvement obtained with the mesh of 25 X 25 nodes with respect to that of 13 X I3 

nodes, pressure contours using the GLS method are wrong near the boundary. whereas results solving problem 
(26)-(28) are correct on both meshes. 

5. Conclusions 

We have analyzed in this paper a finite element formulation for the Stokes problem that has a compatibility 
restriction for the velocity and pressure interpolations weaker than that of the standard approach. We have seen 
that this restriction can be formulated in terms of a condition that involves only macroelements, that is, 

assemblies or ‘patches’ of elements. and that is easy to check. In particular, it is verified using equal 
interpolation for the velocity and the pressure. From this compatibility condition we have proved stability and 
obtained optimal error estimates. Also, the formulation depends on an algorithmic parameter (Y whose 

dependence on the mesh diameter has been dictated by this convergence analysis. 
The development of efficient numerical methods for solving the Stokes problem from the formulation that we 

have presented remains open. Although the straight solution of problem (29)-(31) is unacceptable from the 
computational point of view. we believe that the idea of using the projection of the pressure gradient onto the 
velocity space can be used for the design of practical numerical algorithms, especially in the context of iterative 

schemes for the Navier-Stokes equations. 
We think that the fact that the formulation presented here allows equal velocity-pressure interpolation makes 

it interesting by itself. However. in our opinion the real interest of our analysis relies on the fact that it explains 
why equal interpolation is possible in some commonly used fractional step methods and. in general, in any 

method that in terms of a primitive u -11 approach introduces the difference between the two discrete 
Laplacians appearing in Eq. (32). 
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