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ABSTRACT

The evaluation of forces acting on marine structures and modelling the complex fluid-body interac-
tion of floating structures is crucial in marine engineering. While current CFD models based on the
Navier-Stokes equation are able to represent the behaviour of floating bodies with great accuracy, fully
non-linear potential flow solvers are able to model realistic extreme sea states at a fraction of usual
computational costs. A Finite Difference based fully non-linear potential flow model with the ability
to represent complex fluid-structure interaction and floating, would therefore be a major advantage
for the design of marine structures. The first step is hereby the solver itself.

Therefore the fully non-linear potential low model REEF3D::PTF is developed, using a Finite Differ-
ences Scheme. A level set function is used for free surface representation and an immersed boundary
method is used to enforce boundary conditions. The free surface potential and location are advanced
in time, while the potential field is gained from solving the Laplace Equation. Different numerical
methods for solving the Laplace Equation at the free surface are developed, implemented and tested.
Comparison, to analytical values, experimental data and the o-grid solver REEF3D::FNPF show
a high sensibility of the fixed grid solver REEF3D::PTF regarding the used free surface treatment
method in the Laplace Equation. Since this sensibility is found to be the main reason for small re-
maining inaccuracies, the fixed grid model PTF shows to have great potential to be further perfected
and suitable for future implementation of complex structures and floating bodies. Thus, the future
work will focus on addressing this sensitivity and optimise the free surface treatment for improved
accuracy and reliability.

Keywords: Computational Fluid Dynamics; ; Potential Flow; Non-linear; REEF3D; Finite Differ-
ences Method; Marine Engineering.
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NOMENCLATURE

Gravitation constant

Water depth at stillwater level
Numerical index for Finite Difference Scheme
time

Velocity vector

First horizontal coordinate
Second horizontal coordinate
Vertical coordinate

Vertical free surface position
Nabla operator

Velocity potential

Tensor

Vector
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1. INTRODUCTION

The evaluation of wave loads acting on marine structures and floating objects is crucial for their
design. Non-linear waves in extreme sea states result in especially high structural loads and should
therefore be considered in the safety evaluation and design process. Current developments in the field
of Computational Fluid Dynamics allow to model complex fluid structure interaction, including float-
ing structures and force calculation (Martin et al., 2021). At the current state, the CFD solvers, able
to represent floating structures in complex, highly non-linear waves are mainly built upon solving the
Navier-Stokes equation, like in Martin et al. (2021). For numerical modelling of non-linear ocean waves
and extreme sea states, fully non-linear potential flow solvers have proven to be a suitable tool (Bihs
et al., 2020), as compared to common Navier-Stokes solvers, fully non-linear potential flow solvers
allow for accurate wave representation at a fraction of the usual computational costs (Bihs et al.,
2020). Regarding the method used to model fully non-linear potential flow, different approaches exist.
Newest Spectral Element models, as the one by Ducrozet et al. (2012), as well as Boundary Element
models, as presented in Grilli (1996) and Grilli et al. (2001), allow for modelling of non-linear waves.
However SEM models fail to fully represent strong refraction and reflection (Wang et al., 2022) , while
BEM models suffer from their mathematical complexity regarding full asymmetrical matrices (Wang
et al., 2022). A Finite Differences Method approach has first been presented by Li & Fleming (1997)
and and followed up in a detailed accuracy analysis by Bingham & Zhang (2007) Recent examples
for advanced fully non-linear potential solvers are given by Wang et al. (2023) and Engsig-Karup
et al. (2012). Like other non-linear potential flow solvers, these use a o-coordinate grid, for increased
computational stability (Xu, 2021) (Bihs et al., 2020) (Engsig-Karup et al., 2012). This impedes the
implementation of floating structures (Xu, 2021), as the sigma grid coordinate transformation compels
the availability of a water height value for the entire domain. Therefore a fully nonlinear potential
flow model using a fixed coordinate grid is needed, to allow for future implementation of a floating
algorithm by the means of an FDM solver. For boundary condition implementation most current ap-
proaches, like Xu et al. (2021), use an Immersed Boundary method which has first been described by
Peskin (1972). Regarding boundary conditions and Immersed Boundary implementation, the major
difference between a fixed grid potential flow solver and a o-grid solver is, that the domain does not
follow the free surface. This causes the stencil, used for discretising the Laplace equation, to reach
across the free surface and out of the fluid. Thus a free surface treatment method to the Laplace
equation needs to be derived for a fixed grid fully non-linear potential low FDM solver. In Xu et al.
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(2021) an approach is derived, by solving an interpolation scheme at the free surface, using Ghost Cells
outside of the fluid region. Further ambitions of Xu (2021) and Xu et al. (2023), to implement bodies
into the solver presented in Xu et al. (2021), have not reached the stage of floating. Furthermore, no
detailed tests of the free surface treatment method implemented in Xu et al. (2021) and Xu (2021)
have been presented.

In this study, approaches different to the one presented by Xu et al. (2023) shall be examined. There-
fore a fixed grid fully non-linear potential flow solver is built and different free surface treatment
methods are implemented for solving the Laplace Equation. The solvers stability and precision is
evaluated in different test cases. The results of different free surface treatment methods are compared
to the results of a potential flow solver using a o-coordinate grid and to experimental data. The
overall goal is to maximise the stability and precision of the fully non-linear potential flow solver, by
adapting the optimal free surface treatment method. This shall allow for further implementation of
floating structures in the developed solver. A fully non-linear potential flow solvers highly reduced
computational costs make it preferable over a CFD simulation, when several different designs and
layouts shall be tested. A fully nonlinear potential flow solver, able to implement floating structures,
would therefore allow a tighter integration of the numerical analysis into the design process, which
benefits the iterative progress and creates clarity regarding the design’s safety and efficiency.

2. NUMERICAL MODEL
2.1 Governing Equations

Under the assumption of an irrational flow, the velocity field can be defined as the gradient of a
velocity potential ¢.

7=V¢ (1)
The assumption of irrationality prevents the consideration of viscosity and turbulence, as turbulence
itself is a rotational phenomenon. The governing equation for incompressible potential flow is a Laplace
equation which follows from the incompressible continuity equation.

V-oi=0 (2)
V=0 (3)
The Laplace equation of the velocity potential is solved in the domain by the application of suitable

boundary conditions. The boundary condition for the sea bed follows from the prohibition of flow
through the sea bed.
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Whereas h = h(z) denotes the water depth from the sea bed to the stillwater level. On the free surface
7, a kinematic boundary condition can be derived from the relation of the velocity at the free surface
to the velocity of the free surface itself.
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Further, a dynamic boundary condition for the free surface can be derived by usage of Bernoulli’s
Equation and the assumption of a constant atmospheric pressure along the free surface.
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2.2 Numerical Implementation

The Boundary Value Problem described in section 2.1 is solved numerically by usage of a Finite
Differences Scheme on a structured, staggered grid (Li & Fleming, 1997). The boundary conditions
are implemented via an Immersed Boundary method, using Ghost Cells to implicitly enforce the
boundary conditions in the domain (Peskin, 1972).

At the inlet, a wave generation zone of minimum one wavelength is used in combination with a
relaxation function (Mayer et al., 1998) (Jacobsen et al., 2012). At the outlet, a numerical beach of
minimum two wavelengths is used to dissipate waves and avoid reflections. The numerical beach is
based on a relaxation method as well.

The free surface is defined by a level set method using a signed distance function (Sussman et al.,
1994).

The Laplace equation is discretised by the second-order central difference scheme. Wave propagation
in time is defined by the free surface boundary conditions. The convective terms of these are discretised
by the fifth-order weighted essentially non-oscillatory (WENO) scheme (Jiang & Shu, 1996).

The discretised Laplace equation is solved with the parallelised geometric multi-grid algorithm given
by hypre (van der Vorst, 1992). Parallelisation is achieved by domain decomposition and solving for
each domain fracture on a different CPU. Communication across the domain fractures is realised via
Ghost Cells, which are updated from the adjacent CPUs using MPI.

For advancing in time, a third-order TVD Runge-Kutta scheme is used (Shu & Osher, 1988). The
time step size is determined adaptively to keep a constant CFL number defined by the phase velocity.

2.3 Solving the Laplace Equation at the Free Surface

The temporal part of the numerical model is given by the free surface boundary conditions in equation
5 & 6. The correct evaluation of spatial derivatives at the free surface is hence crucial for the precision
and stability of the simulation. This sets high demands for the stencils used at the free surface. Since
there are no values for the velocity potential above the free surface, the vertical derivative d¢/0z
uses an upwind stencil built upon ¢ at the free surface, and the six elements below. The horizontal
derivatives for the free surface boundary conditions are taken along the free surface, using a fifth-order
WENO scheme.
At the free surface, the central difference scheme used for discretising the Laplace equation 3 reaches
out of the fluid domain. Therefore the ordinary Central difference scheme needs to be adapted at
the free surface, and a definition for the values of ¢ at the free urface interception point needs to be
clarified. Since the simulation is sensitive regarding values at the free surface, the choice of stencil
modification and ¢ definition are expected to have a significant impact on the solvers stability and
precision.
Four different methods of defining the relation at the free surface are implemented and tested for
their impact on the solver’s stability and precision. The test results are presented in section 3. All
implemented methods have in common, that they determine the value of ¢ for each spatial dimension
independently, and also independent of the definitions used for other cells. To explain this in more
detail, first the ordinary central difference scheme for solving the Laplace equation in one spatial
dimension is presented.

Pi—1 — 2¢i + dit1

Axi_1; Amiip

=0 (7)

This stencil is applied in each spatial direction, leading to a linear equation system which is solved by
hypre.

=|

=0 (8)
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The matrix is solved for the entire domain, whereas the stencil is only built for points below the free
surface, therefore the centred values ¢; are always available. For points above the free surface, all
values are set zero. At the free surface a non-centre value of the stencil might be situated outside
of the free surface. In that case one of the four following options can be used to substitute for that value.

The first method uses the value determined for the free surface below the point. Since the free surface
values originate from the DFSBC in equation 6, they are known and not solved for in equation 8.
The second method uses the absolute values of the signed distance function for the adjacent points
below and above the free surface as spatial distances to interpolate linear between the free surface value
above the centred point and the free surface value below the point above the free surface. Additionally,
the terms of the stencil around the free surface are weighted by the ratio of the two absolute signed
distance function values.

The third method is in many parts identical to the second method. The difference between them is,
that the third method does not weight the stencil terms by the signed distance function ratio. Instead
the signed distance function values are used to determine the relative position of the free surface
between the two points around it. The relative position of the free surface is used to modify the Ax
of that part of the stencil accordingly.

The fourth method uses a three node Laplace Interpolation scheme at the free surface, with the signed
distance function values as spatial distances, to determine the interpolated free surface value to be
used and to weight the stencil terms.

3. STABILITY AND ACCURACY ANALYSIS

Two different test setups are used to investigate the solver’s stability and precision. The first one is a
numerical wave tank used to simulate the propagation of 2nd-order Stokes waves. This case is chosen
since Stokes waves are non-linear, but offer the option of comparing to a theoretical mathematical
solution.

The second test case are waves propagating over a submerged bar. This case offers the possibility to
observe effects implied by the sea bed contour, such as shoaling. Furthermore experimental data is
available for the second test case (Beji & Battjes, 1993).

In all tests it became clear, the fourth implemented method for free surface treatment of the Laplace
Equation, using a three node Laplace Interpolation, is generally unstable in its current implementation,
as it tends to crash in most cases due to an ill-defined matrix. Therefore no values can be presented
for the fourth method.

3.1 Stokes 2nd-order Wave Tank

=
-
=1

35m 7m

60.5m

Figure 1: Two-dimensional numerical wave tank used to inspect 2nd-order Stokes-wave propagation.

The solver is tested for wave propagation in a 2D numerical wave tank as shown in figure 1. Regular
2nd-order Stokes-waves with a wave height of H = 0.06 m and a wave period of T' = 1.43 s are created
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in a wave generation zone of 3.5 m, using a relaxation function. The overall length of the tank is chosen
as 60.5 m and the stillwater level is 2 m. The last 7 m of the tank are defined as a numerical beach,
where waves are dissipated by a relaxation function to avoid reflection. Wave gauges are are placed at a
distance of 10 m, 30 m and 50 m to the beginning of the wave tank. Since a mathematical formulation
of 2nd-order Stokes-Waves exists, the data from the numerical wave gauges can be compared to an
analytical solution. The idea behind this setup is to investigate numerical dispersion and diffusion as
the waves propagate. Since these properties depend on mesh resolution, two different mesh sizes are
used. The coarser one using N, = 160 nodes in x-direction and N, = 15 nodes in z-direction, while
the fine mesh consists of N, = 1600 horizontal and N, = 50 vertical nodes. Both meshes are refined
in vertical direction around the stillwater level at 2 m using a sinus hyperbolicus with a factor of 4.5.
The setup is tested with all four methods presented in section 2.3 as well as with REEF::3D FNPF,
a fully non-linear potential flow solver using a o-grid coordinate transformation (Bihs et al., 2020).
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Figure 2: Wave gauge data for the coarse Stokes 2nd-order Wave tank setup (N, = 160, N, = 15).
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Figure 3: Wave gauge data for the fine Stokes 2nd-order Wave tank setup (N, = 1600, N, = 50).

Figure 2 and figure 3 both show, that numerical diffusion is generally slightly larger for the PTF solver,
than for FNPF using a o-grid. Further, the numeric diffusion of Method 3 seems to be irregular for a
coarse resolution, but levels in with the other methods for the fine resolution. Regarding dispersion,
Method 1 shows a large backwards phase shift for the coarse resolution, which gets smaller for the
finer resolution. Contrary to that, Method 2 and 3 feature a small forwards phase shift for the coarse
resolution, which increases with the finer mesh. The FNPF solver has a small backwards phase shift
for the coarse grid and a small forwards phase shift for the fine grid. It must be noted, that the setup
has been tuned to benefit the needs of PTF, for example regarding the vertical mesh refinement factor.
The settings are thus suboptimal for FNPF.
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3.2 Submerged Bar Test Case

The second test case of a submerged bar originates from an experimental study presented in Beji &
Battjes (1993), therefore experimental data for comparison is available. The numerical implementation
is again two-dimensional. Specifications for the test case are shown in figure 4. The mesh resolution
is set as N, = 2000 horizontal nodes and N, = 60 vertical nodes, with a vertical refinement around
the stillwater level at 0,4 m using a sinus hyperbolicus with a factor of 4.5. Wave gauges are located
at © = 4.0 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m, 17.3 m, 19.0 m (Bihs et al., 2020).
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Figure 4: Two-dimensional submerged bar test case (Bihs et al., 2020)

Regular waves with a wave height of H = 0.01 m and a wavelength of L = 3.75 m are generated
in the 3.73 m long wave generation zone at the beginning of the tank. The last 8.73 m are defined
as a numerical beach. The setup is tested with all four methods presented in section 2.3 as well as
REEF::3D FNPF, a fully non-linear potential flow solver using a o-grid coordinate transformation

(Bihs et al., 2020).
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Figure 5: Water surface elevation of submerged bar test at probe 1

For the submerged bar test case, good conformity can be found for the upwards shoaling of the incoming
waves (figure 5) up to the end of the submerged plateau (figure 6). Up from the bar’s decreasing part
at Probe 5 (figure 7 differences between the models and the experimental data increase gradually with
the downward shoaling. Especially Method 2 and Method 3 overshoot at the higher wave peaks and
have a slight forward phase shift, while Method 1 seems to overshoot the secondary peaks at probe 9
(figure 10). Overall FNPF shows the best ability, while again it has to be mentioned, that the setup
has been tuned to benefit the needs of PTF. The settings are thus suboptimal for FNPF.
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Figure 6: Water surface elevation of submerged bar test at probe 4
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Figure 7: Water surface elevation of submerged bar test at probe 5
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Figure 8: Water surface elevation of submerged bar test at probe 7
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Figure 9: Water surface elevation of submerged bar test at probe 8

4. CONCLUSION

A fully non-linear potential flow solver has been developed, which uses a domain with a fixed Cartesian
coordinate system, instead of a o-grid, and therefore allows the future implementation of overhanging
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Figure 10: Water surface elevation of submerged bar test at probe 9

or floating structures. Due to the domain not following the free surface, special methods for free
surface handling in the equation system used for solving the Laplace Equation have been proposed,
implemented and tested. Two test cases have been examined The first one investigated the numerical
diffusion and dispersion for 2nd-order Stokes Waves. It was found that the choice of free surface
treatment method is significant for the phase shift, observable at coarse resolution. The second test
case, propagation over a submerged bar (Beji & Battjes, 1993), showed, that all models can accurately
capture the upward shoaling effect, but inaccuracies manifest during the downward shoaling, also
depending on the used free surface treatment method.

Overall it can be concluded, that the current implementation of the fixed grid fully non-linear potential
flow solver PTF is still less stable and precise, than the o-grid solver FNPF. Nonetheless PTF shows
the ability to simulate non-linear waves and wave-bottom interaction with a small error. Furthermore
this error proves to be mainly dependent on the treatment of the free surface intersection in the
solving scheme of the Laplace Equation. Since only a few methods have been implemented and tested,
there is a significant potential that PTF can reach the same stability and precision as FNPF with
an improved method for free surface treatment in the Laplace Equation. Thus, the future work will
focus on addressing this sensitivity and optimise the free surface treatment for improved accuracy and
reliability.
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