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Summary. Materials such as composites are heterogeneous at the micro-scale, where
several constituents with different material properties can be distinguished like elastic
inclusions and the elasto-plastic matrix with isotropic hardening. One has to deal with
these heterogeneities on the micro-scale and then perform a scale transition to obtain the
overall behavior on the macro-scale, which is often referred to as homogenization. The
present contribution deals with the combination of numerically inexpensive mean-field
and numerically expensive full-field homogenization methods in elasto-plasticity coupled
to adaptive finite element method (FEM) which takes into account error generation and
error transport at each time step on the macro-scale. The proposed adaptive procedure
is driven by a goal-oriented a posteriori error estimator based on duality techniques. The
main difficulty of duality techniques in the literature is that the backwards-in-time al-
gorithm has a high demand on memory capacity since additional memory is required to
store the primary solutions computed over all time steps. To this end, several down-
wind and upwind approximations are introduced for an elasto-plastic primal problem by
means of jump terms [1]. Therefore, from a computational point of view, the forwards-in-
time duality problem is very attractive. A numerical example illustrates the effectiveness
of the proposed adaptive approach based on forwards-in-time method in comparison to
backwards-in-time method.
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1 INTRODUCTION

In this work, a goal oriented framework considers error generation and error transport
at each time step. The discretization errors generated in the current time step are trans-
ported into the next time step. This error accumulation over time is described either with
a forwards-in-time method or a backwards-in-time method by resolving a dual problem.
Furthermore, the primal problem is resolved with jump terms for time integration by
temporally constant test and trial functions applied to the constitutive equations of von
Mises elasto-plasticity. By means of the jump terms, the primal problem is solved either
with a downwind approximation or an upwind approximation leading to eight different
approximations not only for solution of primal problem, but also for problems dual to
primal problem. These approximations require the Prandtl-Reuss tensor and a strain
tensor or a stress tensor at each time step.

2 A TWO-SCALE PROBLEM

2.1 Initial boundary value problem of the micro-structure and macro-structure

The macro initial value boundary problem (IVBP) P and the micro problem P read

P :



1. Div(σ) + b = 0, in Ω× I
2. ε(u) = ∇symu, in Ω× I
3. σ̇ = P(x)ε̇(x), in Ω× I
4. σN = t, on Γ t

5. u = u∗, on Γ u

6. u = u0(x), in Ω× {t0}

, P :



7. Div(σ(x)) = 0, in Ω× I
8. ε(u) = ∇symu, in Ω× I
9. σ̇ = P(x)ε̇(x), in Ω× I

10. u = u0(x), in Ω× {t0}
11. + boundary conditions

, (1)

respectively. Eqs. (1.1) and (1.7) are the macro and micro equilibrium problems. σ,
σ and b denote the macro and micro stresses tensor and the body force, respectively.
Eqs. (1.2) and (1.8) prescribe the small strain tensor as a symmetric gradient of the
displacement vector on the macro and micro scale, respectively. The stress rate σ̇(x) is
related to the strain rate ε̇(x) with the effective material tangent P(x) in Eq. (1.3) [2].
Eq. (1.9) is the constitutive relation in rate form. Eq. (1.4) and Eq. (1.5) represent the
Neumann boundary condition Γ t and the Dirichlet boundary condition Γ u, respectively,
where t is the tractions imposed on Γ t and u∗ indicates the prescribed displacements on
Γ u. The properties Γ u

⋃
Γ t = Γ and Γ u

⋂
Γ t = Ø are valid. Periodic boundary condi-

tions hold on the micro-scale [3]. Eqs. (1.6), (1.10) and (1.11) prescribe initial conditions.
The scale transition is established by means of ε = 〈ε(x)〉 and σ = 〈σ(x)〉 and by the
Hill-Mandel condition [4]

〈σ̇ : ε〉 = 〈σ̇〉 : 〈ε〉 = σ̇ : ε, where 〈•〉 =
1

| Ω |

∫
Ω

•dv. (2)

2.2 Weak form for the macro-primal problem and the dual problem

To solve the macro-problem P with FEM we introduce a weak form and integrate over
the time interval I to obtain a global weak form, which is equivalent to the formulations
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for the problem P in Eq.(1):

Pw : Find u ∈ V , such that

ρ(u, δu) = F (δu)−B(u; δu) ∀δu ∈ Vδ = 0, where (3a)

F (δu) :=

∫
I

(〈
ḃ · δu

〉
Ω

)
dt+

∫
I

〈
ṫ · δu

〉
Γt

dt+
〈
u0 : δu(t0)

〉
, (3b)

B(u; δu) :=

∫
I

< ε̇(u) : PT
(u) : δε(δu) > dt+ 〈u(t0) : δu(t0)〉 . (3c)

The upper index T denotes the transpose of the respective tensor. F (·) is a linear form,
while B(·; ·) is a bilinear form. Note, that the weak form (3) considers the initial condition
Eq. (1.6). The strain rate bilinear form B

ε
(u; δu) and the stress rate bilinear form

B
σ
(u; δu) are distinguished as

B(u; δu) :

{
1. B

ε
(u; δu) :=

∫
I
< ε̇(u) : δσ(u, δu) > dt+ 〈u(t0) : δu(t0)〉 ,

2. B
σ
(u; δu) :=

∫
I
< σ̇(u) : δε(δu) > dt+ 〈u(t0) : δu(t0)〉 ,

(4)

where the hybrid-test stress tensor δσ(u, δu) is defined as δσ(u, δu) := PT
(u) : δε(δu).

A quantity of interest and its corresponding total error are written as the following general
forms

1. Q(u) :=

∫
I

Q1(u)dt+Q2(uT ) , 2. E(u,ur) := Q(u)−Q(ur) , (5)

where Q1 is a time integral part and Q2 is a part at the final time T [5]. For the exact
model (3a) to be practically solved, we need to introduce an additional surrogate model

%̃(ur; δu) = F̃ (δu) − B̃(ur; δu) = 0, ∀δu ∈ Vδ with its solution ur as an approximation
of the exact solution u. Due to discretization and model errors, generally, the functionals

F̃ (δu) and B̃(ur; δu) are approximations to the functionals F (δu) and B(u; δu) of the
exact model (3a). Taking Eq. (5) into account, the following dual problem is defined

Dw : Find z ∈ V , such that

ρz(u
r, z; δu) = DurE(u,ur; δu)−DurB̃(ur; z, δu) = 0 ∀ δu ∈ Vδ, where (6a)

DurE(u,ur; δu) = Dur

∫
Ii

Q1(u; δu)dt+ DurQ2(uT ; δuT ) , (6b)

DurB̃(ur; z, δu) = Dur

∫
Ii

B̃i(u
r; z, δu)− 〈δur(t0), z(t0)〉 . (6c)

3 Time discretization of macro primal problem and dual problem

3.1 Upwind and downwind approximations

The variational local form (3a) can be used for discretization in space and in time. A
general scheme is obtained by so-called cG(s)dG(r) methods representing a space-time
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discretization with continuous piecewiece-polynomials of degree s in space and discontinu-
ous piecewiece-polynomials of degree r in time. Similarly, cG(s)cG(r) denotes continuous
piecewiece-polynomials in space and time, see e.g. [6]. We begin with a partition of the
time interval I = (t0, T ] as t0 < t1 < ....ti < .... < tN = T and use the notations

1. Î = [t0, T ] = {t0} ∪ I = {t0} ∪
⋃N
i=1 Ii, 2. Ii = (ti−1, ti],

3. τi = ti − ti−1, i = 1, .., N, 4. τ = {max τi}Ni=1 .
(7)

The bilinear form in Eq. (4) becomes B
α
(u, δu) =

∑N
i=1 B

α

i (u, δu)+〈u(t0) : δu(t0)〉 with
α = ε, σ. We select the semi-discrete spaces for test and trial functions, respectively,

Vδ
r

=
{
δur : Vr

1...⊗ V
r

i...⊗ V
r

N , δu
r(t0) ∈ V̄

}
⊂ Vδ, (8a)

Vr
=Vδ

r ⊂ V , where (8b)

Vr

i =Vδ
r

i =
{
δur

i : (t0, T ]→ V̄ ; δur
i|Ii ∈ P

r(Ii, V̄ ), δur
i|/∈Ii = 0

}
. (8c)

For the semi-discrete spaces Vr

i associated to each time interval Ii, Pr(Ii, V̄ ) denotes the
space of polynomials of a degree less than or equal to r ∈ N0 taking values in V̄ . Note
that δur(t0) has to be specified separately in Eq. (8a) since t0 /∈ I1.

In the sequel, we give a brief description of the procedure to derive a discretized time
stepping scheme. More details are given in [7]. Exemplarily we consider the stress rate
bilinear form. Then, we use the discontinuous approximation u ≈ ur such that integrat-
ing by parts renders the integral over the subinterval Ii for the stress rate bilinear form

B
σ

i (ur, δur) = −
∫
Ii

〈
σ(ur) : δε̇(δur)

〉
dt+

〈
σ−i (ur) : δε(δur)−i

〉
−
〈
σ+
i−1(ur) : δε(δur)+

i−1

〉
. (9)

Next, the jump of the displacement u at each nodal point ti is defined
[
u
]
i
= u+

i − u−i
where u

+(−)
i = lims↓(↑)0 u(ti + s) [1]. A downwind approximation (d) and an upwind ap-

proximation (u) are applied on the stress tensor, the test strain tensor in Eq. (9). Then,
the right hand side of Eq.(9) is integrated by parts again, we end up with four stresses
rate bilinear form approximates. In total, there are eight different approximations for
solution of the primal problem Eq. (3) and for the dual problem Eq. (6) taking the strain
rate bilinear form into account.

To solve the primal problem with a downwind approximation, the initial value are
u−i = u+

i−1 at time t+i−1 and u+
i =: U i. Then, setting r = 0 in (8c) we choose trial and

test functions as ur
i(t) = u+

i−1 = u−i =: U i−1 = const and δur
i(t) = δur

i = δu−i =: δU i =

const, t ∈ Ii. In view of Eqs. (1.2) and (1.3) we have ε̇(ur
i) = ∇symu̇

r

i = 0, such that∫
Ii

〈
σ̇(ur

i) : δε(δur
i)
〉
dt = 0. Then, a semi-discretized local problem of Eq. (3) is obtained

as an explicit Euler forward time interaction scheme

ρi(U i; δU i) = F i(δU i)− 〈(σi(U i)− σi−1(U i−1)) : δεi(δU i)〉 = 0 , (10a)

F i(δu
r
i) ≈

〈
ḃ(ti−1) · δU i

〉
Ω
τi+ < ṫ(ti−1) · δU i >Γt

τi , ∀ δU i ∈ Vδ
r

i. (10b)

4



A. Tchomgue Simeu, R. Mahnken

In analogy to Eq. (10), an implicit Euler-backward time interaction scheme is obtained
using the upwind approximation as

ρi(U i; δU i) = F i(δU i)− 〈(σi(U i)− σi−1(U i−1)) : δεi(δU i)〉 = 0 , (11a)

F i(δu
r
i) ≈

〈
ḃ(ti) · δU i

〉
Ω
τi+ < ṫ(ti) · δU i >Γt

τi , ∀ δU i ∈ Vδ
r

i . (11b)

Here, the initial value is u−i = u−i−1 =: U i−1 at time t−i−1 and u+
i−1 =: U i and δur

i =
δu+

i−1 =: δU i compared to a downwind scheme.

3.2 Backwards-in-time and forwards-in-time methods of the dual problem

For numerical solution of the dual problem (6), we employ a temporally discretized
version as for the primal problem in Subsection 3.1. To this end, we use the discontinuous
approximations ur ≈ ur, δu ≈ δur and z ≈ zr such that Eq. (6) becomes with α = ε, σ

%z(u
r, zr; δur) = Dur

∑N
i=1

∫
Ii
Q1(ur

i; δu
r)dt+ Dur(T )Q2(ur(T ); δur(T ))

− Dur
∑N

i=1 B̃
α

i (ur
i; z

r
i, δu

r)− 〈δur(t0), zr(t0)〉 ∀δur ∈ Vδ
r
.

(12)

The stress rate formulation B
σ

i (ur
i; z

r
i, δu

r) requires a stress jump [σ] and a strain jump
[ε(z)] to obtain a temporal approximation of the dual problem. Consequently, using test
and trial functions in Eq. (8) renders the bilinear forms in Eq. (12) as

Dur

N∑
i=1

B̃
[σ],ε(z),k

i (ur
i; z

r
i, δu

r) = Dur

N∑
i=1

∫
Ii

〈
σ̇(ur

i) : ε(zr
i); δu

r
〉
dt+ Dur

N∑
i=1

〈
[σ(ur

i)]
k
j : (ε(zr

i))
−
j

〉
, (13a)

Dur

N∑
i=1

B̃
σ,[ε(z)],k

i (ur
i; z

r
i, δu

r) = Dur

N∑
i=1

∫
Ii

〈
σ̇(ur

i) : ε(zr
i); δu

r
〉
dt+ Dur

N∑
i=1

〈
(σ(ur

i))j : [ε(zr
i)]
−,k
j

〉
, (13b)

and where j = i + 1 for k = d and j = i− 1 for k = u. In [7], it is shown that
eight approximations of the dual problem are obtained when the strain rate formulation
B
ε

i (u
r
i; z

r
i, δu

r) is considered. In Eq. (13a), we consider a dependency of the jump terms
[σ] on the functions ur

i,u
r
j. Consequently, a localization for each time increment Ii of the

dual residual %z(u
r, zr; δur) in Eq. (12) is not possible, as for the primal residual ρ in Eq.

(3a).
We recall ur

i(t) = u+
i−1 =: U i = const, δur

i(t) = δur
i =: δU i = const, t ∈ Ii and,

moreover, zr
i(t) = z+

i−1 =: Zi = const. Consequently, the discretized dual problem Eq.
(12) becomes

%z(U ,Z; δU) = −
∑N

i=1 DU i
Q1(U i; δU i)τi −DUN

Q2(UN ; δUN)− 〈δU(t0),Z(t0)〉

− DU

∑N
i=1 〈(σi(U i)− σi−1(U i−1)) : εi(Zi); δU i〉 = 0 ∀ δU i, i = 0, ..., N.

(14)

Eq. (14) indicates a backwards-in-time problem, due to the terms related to the i+1st time
step. Compared to Eq. (13a), Eq. (13b) presents a dependency of jump terms [ε(z)] on
the functions zr

i, z
r
j. Exploiting the property δur

i|/∈Ii = 0 in Eq. (8c) for the test functions

δur ∈ Vδ
r
, the dual residual %z(u

r, zr; δur) in Eq. (12) can be localized, and can be solved
by a time-stepping scheme. z−i−1 denotes the initial value at time t−i−1. Then setting r = 0
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Table 1: Summary of material parameters.

E ν c Y0 H1 q b H2 m
[MPa] [−] [−] [MPa] [MPa] [−] [−] [MPa] [−]

Inclusion 400000 0.2 0.1 − − − − − −
Matrix 76500 0.3 − 200 300 111 608.5 300 1

in (8c) with regard to trial and test functions zr
i(t) = zi

− = z+
i−1 =: Zi = const, zr

i−1(t) =
z−i−1 =: Zi−1,u

r
i(t) = ur

i = u+
i−1 =: U i = const, δur

i(t) = δur
i =: δU i = const, t ∈ Ii,

ε̇(ur) = ∇symu̇ = 0, σ̇(X) = 0 such that
∫
Ii

〈
σ̇(ur

i) : ε[zr
i]
〉
dt = 0, the discretized dual

problem Eq. (12) renders

%z(U ,Z; δU) =
∑N

i=1 DU i
Q1(U i; δU i)τi + DUN

Q2(UN ; δUN)− 〈δU (t0),Z(t0)〉
− DU i

∑N
i=1 〈σi(U i) : (εi(Zi)− εi−1(Zi−1)) ; δU i〉 = 0 ∀ δU i, i = 0, ..., N.

(15)

In contrast to Eq. (14), Eq. (15) indicates a forwards-in-time problem since no terms re-
lated to the i+1st time step are involved. For an effective study of the proposed adaptive
approach, an accurate estimate of the exact global error Ej is introduced as viewed in [8],
called the actual error Êj.

4 NUMERICAL EXAMPLE

A compact tension (CT) specimen is investigated. Due to symmetry properties, a half
model is considered as illustrated in Fig. 1a. The initial mesh discretization is shown in
Fig. 1b. A plane strain state is assumed. The specimen is stretched by a displacement
u∗ = 0.08 mm in the vertical direction, which is uniformly distributed on the entire
boundary of the hole. The quantity of interest in Eq. (5) is defined as the following local
type quantity

Q :=

∫
I

∫
Ω

′
σ22(u)dvdt+

∫
Ω

′
σ22(uT )dv, (16)

where σ22 represents a component of the macro stress tensor σ. Ω
′

is the local green
domain in Fig. 1a, with r = 4 mm. The CT-specimen is assumed to be homogeneous
on the macro-scale. But it is inhomogeneous on the micro-scale as its microstructure is
composed of a periodic distributed composite material which consists of an inclusion and
a matrix as illustrated in Fig. 1c. For the inelastic micro constituent, the classical von
Mises plasticity is assumed. The matrix is an aluminum alloy with elasto-plastic properties
characterized by nonlinear isotropic hardening and linear kinematic hardening, while all
inclusion fibers are ceramic with linear elastic properties. The material parameters and
the volume fraction of inclusion c are shown in Tab. 1. A total number of 100 time steps
are used during each mesh adaptivity step. The model hierarchy, which provides a balance
between the accuracy and the numerical efficiency of homogenization methods, is based
on the basic mean-field model self-consistent, the mean-field interaction direct derivative
and the full-field FEM under periodic boundary condition with hierarchical order (n = 0),
(n = 1) and (n > 1), respectively. As displayed in Figs. 2a and 2b for the forwards-
in-time method, the local mesh refinements are initially concentrated within the local
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(a)

1
2 Ω

[mm]

30

10

10

u∗

13 2

Ω
0

R3

r
2

50

(b) (c) (d)

Figure 1: Geometry and boundary conditions of CT specimen under tension (a); Initial mesh of CT
specimen (b); Representative volume element (c) and its mesh (d)

(a) 2 adaptive steps (b) 14 adaptive steps (c) 2 adaptive steps (d) 14 adaptive steps

(e) 2 adaptive steps (f) 14 adaptive steps (g) 2 adaptive steps (h) 14 adaptive steps

Figure 2: CT specimen under tension: Adaptivity refined distribution; forwards-in-time method (a-b),
backwards-in-time method (c-d): Adaptivity refined model distribution; forwards-in-time method (e-f),
backwards-in-time method (g-h)

domain Ω
′

in the quantify of interest Eq. (16) before spreading to nearby areas. These
mesh refinements are also observed for the backwards-in-time method as shown in Figs.
2c and 2d. The resulting model distributions are depicted in Figs. 2e-2f and in Figs 2g-2h
with the forwards-in-time method and backwards-in-time method, respectively. Figs. 2f
and 2h show that computational expensive full-field methods are more used during model
adaptivity with backwards-in-time method compared with forwards-in-time method. Fig.
3 illustrates the quantity of interest Q

(n),(j)
h , the relative actual error Êj

rel, and the relative
error estimate Ẽj

rel over each adaptive step j. Fig. 3a presents a convergence of the

quantity of interest Q
(n),(j)
h to the reference value Qref while Fig. 3b shows that the

relative actual error Êj
rel is already reduced significantly and effectively after 14 adaptive

steps. Furthermore, with regard to Fig. 3 the results obtained with the forwards-in-time
method are quite similar to the result obtained with the backwards-in-time method.

5 CONCLUSIONS

To sum up, the proposed framework of goal-oriented adaptivity takes into account
accumulation over the time of discretization error due to the mesh and elasto-plastic
homogenization model. Therefore, forwards-in-time and backwards-in-time methods are
developed to solve the dual problem. However, the forwards-in-time method is more effec-
tive than the backwards-in-time method as it does not need additional memory capacity
to store the primary solutions computed over all time steps. In addition, the primal
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(a)

0 5 10 15 20 25

6,000

6,500

7,000

7,500

Adaptive step [−]

Q
[M

P
a]

Qref (reference)
Q (forwards-in-time)
Q (backwards-in-time)

(b)

0 5 10 15 20 25

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

Adaptive step [−]

Ê
r
el
/Ẽ

r
el

[−
]

Ẽrel (forwards-in-time)

Ẽrel (backwards-in-time)

Êrel (forwards-in-time)

Êrel (backwards-in-time)

Figure 3: CT specimen under tension: Mesh and model adaptivity : Quantities of interest (a), relative
actual error Êrel and relative error estimate Ẽrel(b)

problem is solved either with an explicit Euler forwards time interaction scheme using a
downwind approximation or with an implicit Euler backwards time interaction scheme
using an upwind approximation.
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