'.) Check for updates

Journal of
Applied

Mechanics

A Brief Note is a short paper that presents a specific solution of technical interest in mechanics but
which does not necessarily contain new general methods or results. A Brief Note should not exceed
1500 wordsor equivalent(a typical one-column figure or table is equivalent to 250 words; a one line
equation to 30 words Brief Notes will be subject to the usual review procedures prior to
publication. After approval such Notes will be published as soon as possible. The Notes should be
submitted to the Technical Editor of theurRNAL OF APPLIED MECHANICS. Discussions on the Brief
Notes should be addressed to the Editorial Department, ASME, United Engineering Center, Three
Park Avenue, New York, NY 10016-5990, or to the Technical Editor of therR3IAL OF APPLIED
MEecHANICS. Discussions on Brief Notes appearing in this issue will be accepted until two months
after publication. Readers who need more time to prepare a Discussion should request an extensio
of the deadline from the Editorial Department.

Asymmetric Four-Point Crack the crack, the exact solution for the cross section has a parabolic
. distribution of shear stress proportional@oand a linear variation
Specimen of normal stress proportional td ([5]). By superposition of these

two contributions, the solution for the intensity factors in the pres-
ence of the crack can be written exactly in the form
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Fellow ASME, Division of Engineering and Applied where, anticipating the application, we have takér-cQ at the

Sciences, Harvard University, Cambridge, MA 02138  crack. The solutiori2a) is the same as that for a pure moment. It
has been obtained numerically to considerable accuracy. Tada
et al.[6] give

Accurate results for the stress intensity factors for the asymmetric / Ta

four-point bend specimen with an edge crack are presented. A

4
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basic solution for an infinitely long specimen loaded by a constant  F | — | = \/=—tan——
shear force and a linear moment distribution provides the refer- W ma  2W ma
ence on which the finite geometry solution is based. COSW\/
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This note was prompted by a comparisdh]) of existing nu- for 0= V—vsl (3a)
merical solutions([2—4]) for the crack specimen known as the
asymmetric four-point specimen shown in Fig. 1. Discrepanciegile Murakami[7] gives
among the solutions are as large as 25 percent within the param- 2 3
eter range of interest. Moreover, in some instances the full set of £ (3 =1.122- 1.12]<i +3_74(<3 +3.87< i)
nondimensional parameters specifying the geométngre are w w W w

four) have not been reported. The specimen has distinct advan- 2 5
tages for mixed mode testing, including the determination of _19.0%3) +22_55<3) for 3§0.7_ €)
mixed mode fatigue crack thresholds. Here a new fundamental W W W
reference solution is given for a infinitely long cracked specimeﬁhe second solutiof2b) is not in the literature.
subject to a constant shear force and associated bending mome
distribution. The small corrections needed to apply this solution
the finite four-point loading geometry are included.

By static equilibrium(the configuration in Fig. 1 is statically
determinant the shear forceQ, between the inner loading points
and the bending moment), at the crack are related to the force,

Binite element analyses of the reference problem have been
Barried out to obtain botF, (as a checkandF,, . Our results for
F, agree with(3b) to four significant figures over the entire range
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P, by (all three quantities are defingxr unit thickness . P .
—b —’l’_ be— Loading
Q=P(b,—by)/(b,+b;) and M=cQ. (2) @7 L — Points
Consider first the reference problem of an infinite specimen l B jw
with crack of lengtha subject to a constant shear for@eand a“’"_f'“k

associated linearly varying bending moméhtin the absence of /_./\)___‘_’_‘i_]\) ™ Specimen

SUPPOrt fe fpy ———wla- by —=d
Points ' 2 B
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Fig. 2 Location of the crack for pure mode Il at its tip (e=1) Fig. 4 Error boundaries for mode Il stress intensity factor of
two percent and four percent for  (a=1) for the reference solu-
tion (2). Combinations (a/W,b,/W) lying above a boundary
of a/W indicated. Equatiori3a) appears to be less accurate ovehave smaller error.

this same rangéwith error less than two percentut it can be

used fora/W>0.7. The same finite element meshes were used to

computeF . The following polynomial representation was ob-

tained by fitting the numerical results:
a a a\? a\s : L
Fu(_) =7.264— 9.37( _) +2_74( _) + 1.87( _) the c/W at whichK;=0. If the moment at the crack vanish@ge.,
W W W W c=0), the mode | factor can be significant when the loading
a4 points are near the crack. For example, for the extreme, but not
- 1.04(V—V

for 0< Vivsl' (4) entirely unrealistic case, whebg /W=0.6, «=1, a/W=0.2, and
This result is believed to be accurate to within one percent ovéed.

c=0, the mode mixityg=tan (K, /K)), is 65 deg instead of 90
the entire range o&/W. The results of Suresh et §4] deter- ~ Variations of the mode Il correction factoy with a/W for
mined for a specific choice of the other dimensional parameters¥veralc/W are shown in Fig. 3 fob, /W=1.0 anda=1. The
the finite geometry are in good agreement widh error is largest for short cracks and for cracks on the order of a

Without loss of generality, the solution for the asymmetricallglistanceW from the closest loading point. Curves corresponding
loaded specimen in Fig. 1 can be written as to constant values of the correction factor are plotted in Fig. 4,
with ¢/W=0.2 anda=1. If the combination §, /W,a/W) lies

Figure 2 displays the dependence /W on a/W for three
values ofb; /W and a=(b,—b,;)/W=1. This was computed as

6(c—co)Q above the curve, the correction factor will be smaller than the
TTwWe maF(a/W) (53) correspondingy.
3 Finally, the effect of the parametet=(b,—b,)/W is dis-
Ko — nQ (a/W) F L (a/W) (5b) played in Fig. 5 by normalizing each of the respective stress in-
W72 (1 —a/w)27 ! tensity factors by the reference value fr¢®. These results have

been computed witty, /W=1.4 andc/W=0.2. The error in the

where, in generali, /W and are functions o&/W, ¢/W, b, /W, reference values is less than roughly 2 percent whei0.5.

andb, /W. The mode | stress intensity factor is not precisely zero The plots in Figs. 2—5 provide guidance for eith@:ensuring

whereM =0, motivating the introduction og,. The representa- the test parameters are such that the reference sol@iaan be

tion (5) is chosen because |t_reduc_es to the r_ef_erence SO'““QQed with confidence, dii) estimating the corrections to the ref-
(Co/W=0,7=1) when the loading points are sufficiently far from, oo so1ytion usings). As long as the distance between the

the crack. The flnlte element resul'gs presented below indicate ck and the nearest loading point is greater than abolV/ 1.4
reference solution is accurate to within about two percent as long

as the distance of nearest loading point to the crack is greater than

1.4W.
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Fig. 5 Role of a=(b,—b,)/W in error of the reference solution
(2) for by /W=1.4 and ¢/ W=0.2

Fig. 3 Caorrection factor for mode |l intensity factor (a=1)
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(i.e., (b,—c)/W>1.4 withb,>h,) the reference solution is accu-sults, in the case of a silicone tube, indicate that the increase of
rate to within a few percent. The errors in the reference solutigmestress minimizes the stress gradients due to the effects of the
are the smallest for deep cracks, i&W=0.5. shear.
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Consider a nonlinearly elastic opened tube defined by the angle
o (Fig. 1). Let us suppose that the tube undergoes two successive
eformations; first, including the closure of the tube which in-
duced residual straing11]) and second, including inflation, ex-
tension, torsion, azimuthal and telescopic shears. The mapping is
References described by
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keley. ™
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w+daZ+0(r) z=haZ+A(r) (1)
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[7] Murakami, Y., 1987,Stress Intensity Factors HandbgoRergamon Press,
New York. i’(R) 0 0
. ) r(R)y =
F=| r(R)®(r)r(R) R o roa )
o
Large Shearing of a Prestressed Tube AMi(R) 0 o
where the dot denotes the differentiation with respect to the argu-
M. Zidi ment.

Incompressibility then requires thde=detF=1, which upon

UniversiteParis 12 Val de Marne, Facultes Sciences et . 1Ppres
integration yields
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Mécanique Physique, 61, avenue dun@al De Gaulle, 2or2s 20 (ReR?) 3

94010 Creteil Cedex, France ' oman '

e-mail: zidi@univ-paris.12.fr whereR,; andr; are, respectively, the inner surfaces of the tube in
the free and in the loaded configuratidifig, andr are the outer

surfaces
This study is devoted to a prestressed and hyperelastic tube rephe strain energy density per unit undeformed volume for an
resenting a vascular graft subjected to combined deformatiorfd@stic material, which is locally and transversely isotropic about
The analysis is carried out for a neo-Hookean response auffiet(R) direction, is given by
mented with unidirectional reinforcing that is characterized by a _

. . . . . W W(Ilvl21|31|41|5) (4)
single additional constitutive parameter for strength of reinforce-
ment. It is shown that the stress gradients can be reduced \Where
presence of prestresgS0021-8936)0)00101-X |, =TrC, 1,= %[(TrC)Z—TrCZ], =1,

I,=tCt, 15=tC? (5)

. . L _are the principal invariants o = FF which is the right Cauchy-
Mechanical properties are of major importance when selectlgg;reen deformation tensdF is the transpose df)
3 .

a material for the fabrication of small vascular prostheses. T The corresponding response equation for the Cauchy stress
operation and the handing of prostheses vessel by surgeons, or}ﬁgg ransverser;y isotr%pic ipncomprgssible(kee[lz]) y

one part, the design of such grafts, on the other, induce spec

1 Introduction

loading and particularly boundary or initial conditions. Conse- o=—pl+2[W;B—W,B 1+ ,W,T&T
quently, the interest in developing a theoretical model to describe
the behavior of the prostheses vessel is praf/&. In this paper, +1Ws(T®B-T+T-BRT)] (6)

we consider a thick-walled prestressed tube, hyperelastic, trajiere B=FF is the left Cauchy-Green tensdk,the unit tensor
versely isotropic, and incompressible assimilated to a vessel gr(@d p the unknown hydrostatic pressure a,s,sociated with, the
We give an exact solution of the stress distributions when the t”%ﬁompressibility constraint, W, = (0W/al;) (i=1,2,4,5) and

is subjected to the simultaneous extension, inflation, torsion, A2 1/ T )Ft o ' T

muthal, and telescopic sheaf2—10]). The first theoretical re- From (6), the equilibrium equations in the absence of body

forces are reduced to
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(R,®,Z) (1.9,8) (1,0,z)
(a) (b) (©)

Fig. 1 Cross section of the tube in the stress-free (a), unloaded (b), and loaded configuration

(©
doy 20’r(17 . ( Rowg )2 "o =0
dr + r =0 (7b) p(r)fpi+2W1 m —2W2f(r)+ rlfds
8a)
do, oy (
dl’ + T:O (7C) Where

Suppose tha® and A satisfy the following boundary condi- o, 1 Rwod)|?
tions: (@ ®=0;, A=A, inr=r; and(b) ®=0,, A=A inr f(r)=4%r) (a)\)2+ =
=r.. Then, a simple computation by integratifigh) and (7c) ‘ ) )
gives the expression @& andA. ) Rwo\2  O(NA(N) w5 [rman)?

Integrating(7a), given the boundary conditions that,(r;) = +®2(r)(—) -2 +( ) .
—p;i ando,(re) =0, and taking(R)=t,(R)e,+t(R)e, and us- \
ing (3) yields the pressure fielg: (8b)

T aT Rwq

1,4

1,2 + 0 0
—— @, =180",0,=5

—- = 180°, Q,= 30°
1t —a— @, =150°, ©, = 30°
—— @, =120°, ©, =30°
06 1

0,4 + {

02 +

Normalized azimuthal stress

-0,6 t t u t t t t t }
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Normalized radial position

Fig. 2 Azimuthal stresses distribution inside the wall without fibers (stresses normalized by o ,¢(r.), #=0.166 Mpa,
p;=0.0133 Mpa, 7,=2 mm, 7,=3 mm)
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8 4
—— ©,=180°, ©, =5
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Normalized radial position

Fig. 3 Azimuthal stresses distribution inside the wall with fibers

=10 Mpa, p;=0.0133 Mpa, 7;=2 mm, 7,=3 mm)

(stresses normalized by o ,4(r.), m=0.166 Mpa, E;

The expressions d, A, andp determine all the components ofnal azimuthal strain at a given pressure when taking into account

the Cauchy stress tensar

3 Results
To illustrate the response of the proposed model, we use

the effects of such residual stresses. We show clearly that a de-
crease inwg angle helps to distribute stresses in the loaded state
when the shear is important. This result does not change qualita-
tively when varying the pressurg .

therurthermore, the particular effects of the presence of fibers

extended Mooney Rivlin strain energy function which representfave been examined with a linear distribution of fiber orientation

the behavior of a prosthesiglL3]) constituted of a silicone matrix
and textile fibers,

E
W=W(I1,10=5(11-3)+ 5 (1= 12 ©

within the data rangey(R;)=—40deg andy(R.)=40deg. As
illustrated in Fig. 3, it is shown here that the effects of the azi-
muthal shear upon the distribution of the circumferential stresses
within the wall become significant. When the tube is prestressed,
the stresses are also distributed. Clearly these results will be able

wherey is the shear modulus of the isotropic matrix at infinitesit©® help the design and fabrication of a small vascular prosthesis

mal deformations an&; is the elastic modulus of the fibers.
The local tangent vector of the fibers is chosen her¢(BR$

=cosy(Re,+siny(R)e, that represent a helical distribution of

fibers ([1]).
From Egs.(7b), (7c) and using(3) it easily follows that the
expressions 06 andA are

r
riv1+k(r2—r?)
re
riv1+k(ra—r?)

log[ 1+k(r2—r?)]
logf 1+k(r2—r?)]

log

0(r)=(0.-9)) +0; (10)

log

A(r)=(Ac—4j) +4i (11

wherek= ma\/Reawy.

As an illustrative result, we focus our attention only when the
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Buckling of a Short Cylindrical ing medium developed by Razakamiadana efailand which is
Shell Surrounded by an given by the relation
Elastic Medium ., B

p:n -1+ n2_11 (1)
S. Naili where the dimensionless variables are given as follows:
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Pmapl, B=p
C. Oddou D’ d’

e-mail: oddou@univ-paris12.fr and whereD = E,e3/12(1— v?) is the flexural rigidity modulus of

Laboratoire de Meanique Physique, UPRES-A CNRS  the shellE, and v, being, respectively, its Young's modulus and

7052. UniversiteParis XII. Val de Marne. Faclilte its Poisson’s ratio, while the index characterizes the buckling
' b de. Th t d defined b

des Sciences et Technologie, 61, avenue dneaede mode. The parametersand 5 are defined by

Gaulle, 94010 Citeil Cedex, France Ao+ 2uy (Zeo)
Aot o )
a—= ’
i P €o M2 M2

The lateral surface of a cylindrical structure, which is composed 1- 1_2r_ 1-— |+ Nt
of a thin tube embedded in a large outer medium, is submitted to 0 K1 1T
a uniform external pressure. The buckling pressure of such a P n2—1
structure, corresponding to a low flexural state of the inner tube ,3:2—2()\2+ )| ————|,
wall, is theoretically analyzed on the basis of the asymptotic o N(\2+2u2)+ o

method. The theoretical results are compared with experimen} |
ones obtained from a compression test realized on an elastic t

inserted in a foam. It is found that the Euler pressure and the In
associated buckling mode index strongly depend upon the rh%%'ck
logical and geometrical parameters of both the tube and the SUl-5s
rounding medium[S0021-89360)00201-4

which the Lame’s parameters of the shell and of the medium

denoted bw,uq, and\,,u,, respectively.

this study, we were interested in the smallest value of the

ling pressure—the Euler pressure—, while varying the index
sociated with the buckling mode; such a mode index charac-
terizes the number of axes of symmetry in the actual configura-
tion. Indeed, this minimal pressure is the most frequently ob-

served experimentally while applying incremental loading to the

1 Formulation of the Problem and Buckling Study structure. This pressure is expressed as

A nonhomogeneous cylindrical structure composed of a thin 1 D PBro
shell inserted in a surrounding elastic medium was subjected to a Pe=min| — ( (n?-1) -+ m) . 2)
state of plane strain by external pressurization and zero axial lon- n=2 & fo

gitudinal displacement constraint. The onset of the buckling pro-

cess for such a structure was analyzed. The theoretical results
were compared with original experimental ones as derived from a
hoop compression test which was conducted with elastic rubb: Monitor Video camera
tubes embedded in foamy materials.

Thus, we consider the mechanical behavior of a cylindrica
nonhomogeneous structure made of an internal shell confined in
large outer medium, the whole structure being submitted to a un
form pressure on its external lateral surface. Each solid is elas. ¥4 recorder ay :
tic, cylindrical—of same axis—with a circular cross section in the Prossurization system :
reference configuration. In this configuration, the mean radius ¢ o o &—— LTI B—Testcen
the shell is denoted ag,. The outer radius.. of the medium is
assumed to be very large compared go We will denote ase,
the thickness of the shell. The two solids have the same heig
which is small in comparison with,, . The outer lateral boundary

=

Foam medium’ Tire inner tube
buckled shell Container
Open window

Top view of the test cell
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, FebThe tube inserted in the foam medium is in a buckled state with
12, 1999; final revision, July 22, 1999. Associate Technical Editor: S. Kyriadidesindex of buckling mode equal to two.
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Table 1 Experimental and theoretical results of Euler pressure normalized by E, and index of
buckling mode n associated for various dimensionless mechanical and geometrical param-

eters
- __ Experiment Theory
E E, (kPa e € (mm) Pe/Epx 1072 n Pe/Epx 1072 n
14.50 100 0.078 1.00 (8.69+0.80) 6 8.39 6
14.50 100 0.189 2.40 (15.34-2.19) 2 13.00 2
26.07 79 0.037 0.46 (4.21+0.40) 4 4.21 6
28.70 100 0.105 1.30 (11.00+1.00) 4 9.80 4
28.70 100 0.136 1.75 (12.89-0.92) 3 12.05 3
28.86 79 0.032 0.40 (3.98+0.33) 3 4.87 6
28.86 79 0.070 0.90 (6.13+0.63) 2 7.65 5
29.85 69 0.037 0.46 (4.66+0.78) 4 5.24 6
33.00 69 0.032 0.40 (4.21+0.21) 3 4.79 6
33.00 69 0.070 0.90 (6.10+0.31) 2 7.69 5
158.46 13 0.037 0.46 (11.76+3.69) 3 7.60 3
175.38 13 0.070 0.90 (17.69-0.10) 2 9.61 2
It is to be noted here that a classical case corresponds to #mut 0.5—, i.e., the material is incompressible—whereas the
particular condition of an external incompressible fluid—ig,, Poisson’s ratio for the foam media were around zero.
=0 and\ ,—»—surrounding the shell, so that=1 and8=0 in Next, the video images were digitized and then automatically
relations(1) and (2). processed using a global thresholding method so as to quantify the

inner cross section area of the inserted tube and to characterize its
. shape. In the extreme case corresponding to a significant variation
2 Experimental Procedure of this shape, the relative uncertainty of area measurement was
Hoop compression tests were performed on a cylindrical strugstimated to be of the order of two percent. Indeed, when the
ture with a circular cross section composed by a thin rubber sheftructure is submitted to a gradual and slow loading, we retained
of external radius =13 mm which was inserted in a large foamas Euler pressurg,, the one which corresponds to a clear change
medium of external radius.=110 mm. Both tubes had a heightin the inner cross section area, as discussed later on.
H=30mm. The thin rubber shell was slightly stressed when in- For a given structure, the measurement of the buckling pressure
serted within the foam medium in order to establish a good cowas repeated ten times at least and the relative gap compared to
tact between the two solids. the mean value varies between 1 percent and 30 percent.
A steady loading was applied on the external lateral wall of the
surrounding foam medium by means of a tire inner tube connect8d Analysis and Discussion

to a standard pressurization system. The plane strain of the struc; . .
ture was obtained by maintaining it between two circular andCWe show, in columns 5 and 6 of Table 1, the experimental

polished PMMA transparent plates. In order to avoid significarl;'taleIts obtained on 110 tests implying 12 structures of dlfferer!t
friction between the foam and the plates, the lower and up gometry and elastic properties. The results are discussed by using
faces of the foam were sprinkled with talc 'powder the dimensionless geometrical and mechanical parameders

The applied pressure was measured by using a mercu:rfo/ro andE=E, /E, in the case of rather thin tubes and exter-
U-manometer graded every 1 mm in height with a maximum read-
ing error estimated at about 0.5 mm. When the buckling pressure
is “very low,” the relative accuracy of the pressure measuremeri$s
was estimated at about seven percent. But, in 90 percent of tj
cases, the measured pressure was about 50 mm Hg and the
tive uncertainty of measurement was estimated, on average, to
one percent.

With this experimental setup, several tests of compression we|
conducted on the structure with given geometrical and mechanic
characteristics. The tested structure was submitted to a grad
and slow loading so that, for each step, the system can be con
ered in stationary equilibrium state. The shape of the cross secti
of the shell remains circular before undergoing a change of shag
We monitored the evolution of shape with a CCD camera vide
placed on the axis of the tubes—see Fig. 1.

The thicknes®, of the shell, in its reference configuration, was
inferred from the mean value of the measurements conducted wi
a micrometer at various locations on the wall. The variation
around the mean value were found to be in the order of tw
percent. The values of Young’s modulus of the shell and of th
medium were derived from traction and compression tests, respd
tively applied on samples of the constitutive materials. In the dif
ferent experimental setup, four types of latex foam media witl
different Young’'s modulus and Poisson’s ratio were combine&g

. - . -Flg. 2 Top view of the test cell giving an illustrative example
with tubes made of various PCP, PCV, or latex materials havi the tube inserted in the foam medium in a buckled state with

different characteristic mechanical properties as indicated in Tallge, of huckling mode equal to four. Circular windows—uwith a
1. For the deformations up to ten percent each Young’s moduligjius in the order 30 mm—were cut on the top and bottom of
was evaluated with a maximum error of five percent. Besidese PPMA container for a better definition of the image during
these tests have shown that the Poisson’s ratio of the shell wias recording.
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nal foamy material softer than the rubbery one of the tube. Staadaptivity easier. Numerical results are presented. A specific
ing with Eq. (2), we determined the variations of the Euler presstudy of interfaces in a Al-SiC composite is given.

surep, normalized byE,—denoted ap.—as a function o for [S0021-89360)00301-9

various values ob. The associated buckling mode indexhen

depends of. It is worth noting that the assessment of the buck-

ling pressure in SL_Jch an experiment was based on the variationlof Introduction

a global geometrical parameter such as the area of the internal )
cross section of the inserted shell—see Fig. 2. Other more sensié* great number of recent papers are concerned by the solution
tive parameters, related to the changes in local shape properé®artial differential equations by wavelet baggs,2]). Mainly,
could, however, be envisaged but their quantification by 4Rhese works deal with one-dimensional or scalar two-dimensional

image-processing system would have been more difficult Rgoblem_s. The solution of the elastostatics system by this kind of
implement. method is not usud[3,4]). Boundary problems on open bounded

In columns 7 and 8 of Table 1, the theoretical results are corfets are very difficult to treaf5]). Nevertheless, periodic condi-
pared with experimental ones. These results show that the EUIEPS on elementary bounded sets are natural for the use of wave-
pressures, evaluated theoretically and determined experimentdW,tranSfQVm- In this paper, we show how to use such a technique
agree well accounting for the inherent scatter in experiment@ld We give applications to interfaces in Al-SiC composite. In the
measurements. Moreover, the mode indeassociated withp, first section we give the notatlons_and the necessary mathemat_lcal
coincides exactly for 50 percent of the cases. Nevertheless, itt@ckground. In the second section we present the mechanical
worth emphasizing that significant differences arised in the caBioblem: the homogenization of periodic heterogeneous media.
of very thin tubes for which the mode index are rather high, thEhe third section is concerned with the algorithm: a wavelet-
large number of lobes being more sensitive to small heterogerfgdlerkin method using Daubechies wavelgd). The determina-
ities in material property and geometry. Despite this, the observi@n of the macroscopic coefficients is treated in the fourth sec-

experimental results are, in general, well reproduced by our thé{#n- Applications and numerical results are described in the fifth
retical model. section. Concluding remarks are given.

References 2 Notations and Mathematical Background

[1] Forrestal, M. J., and Herrmann, G., 1965, “Buckling of a Long Cylinder Shell In this section, we present the notations used in the following of

Surrounded by an Elastic Medium,” Int. J. Solids Strudf.pp. 297-309. h r. Th f kinematicall n icall missibl
[2] Moore, I. D., and Booker, J. R., 1985, “Simplified Theory for the Behavior oft € paper. e sets o ematically a d statica y admissible

Buried Flexible Cylinders Under the Influence of Uniform Hoop Compresl(leldS are denotetfl, L, andS. Let

sion,” Int. J. Solids Struct.21, No. 9, pp. 929-941. _ o
[3] Razakamiadana, A., Naili, S., and Oddou, C., 1997, ‘Flambement d’'une Coque L _(LZ(Y))S and H _(HrlJ(Y))Z
Mince Confine : Theorie et Expeience,” C. R. Acad. Sci., Ser. llb: Mec., P
Phys., Chim., Sci. Astron325, pp. 119-126. S={v eLjo(Y),v(xg+Kky,Xo+kp) =v(Xy,Xp)a.e.ky ke K}
1)
Hy(Y)={veS velY),i=12.
A Numerical Tool for Periodic u; denotes théth partial derivative of the function. We de-
Heterogeneous Media: Application note C the fourth-order elasticity tensag,the strain tensor, ang
. ) ) . the stress tensor. In the following=10,1[2. To construct a wave-

to Interface in Al/SIC Composnes let basis ofH, we use the compactly supported wavelets intro-

duced byl. Daubechied6] which is a basis ofL?(R). These
wavelets are periodized in order to obtain baseS. @y tensorial

D. Dl{mont ) and cartesian products wavelet basesidare obtained[7]). We
Facultede Mathenatiques et d’Informatique, 33, rue Saintdenote¥', =1, 2, 3, and¥° the wavelets and the scale functions
Leu, 80 039 Amiens, France (six degrees-of-freedom for each pointN'=2'—1 and A
e-mail: Serge.Dumont@u-picardie.fr =[ON'T2

Let V; be the subspace of dimensio® 2* of H generated by

this wavelet at approximation levglAn element ofV; is thus

F. Lebon written as i F e
Laboratoire de Meanique et Geie Civil, Universite

Montpellier 2, PI. E. Bataillon, 34 095 Montpellier Cedex U(X1 %) = (Ur(X1,%0) Ua(X1. o))

5, France 1=3 j=] max
! _ d0 43,0 dl !

e-mail: lebon@Imgc.univ-montp2.fr “d_,;;«_ ”JoK‘I'ioKJrZ:1 J;o K;_ Ui Wi - (2)

o 2

A. Ould Khaoua jo is a given integerd=1 or 2 andx=(kq,k).

Departamento de Matematicas, Universidad de los Andes, .

Calle 19 1-11, Bogota, Columbia 3 The Mechanical Problem

e-mail: ahmed@media.uniandes.edu.co We consider a multiphase isotropic elastic compogfig. 1)

and we intend to study the behavior of this heterogeneous media.
We introduce the notion of equivalent material, i.e., we mean that

under the same loadings, this equivalent material has globally the

A wavelet-Galerkin method for periodic heterogeneous mediaz% e response. In former pap€®,9)) bounds for the bulk and
presented. The advantages are to remove the mesh and to m (rgnar moduli of a two-phase composite have been given. Without

Comibuted by the Abplied Mechanics Division o A going into further detail, these bounds depend on the shear and
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; ; :
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED bulk moduli of the two phases and on the volumic fraction of the

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, MarIWO phases in the composite. In the same way, the theory of pe-
15, 1999; final revision, Sept. 15, 1999. Associate Technical Editor: M. Ortiz.  riodic homogenizatior({10]) focuses on an idealized composite
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i
Il

Elementary volume

Heterogeneous material Homogenized material

Fig. 1 An example of a composite and its representative volume

consisting of the juxtaposition of identical heterogeneities arféroblem. P,
classically, we need to solve an elastostatics problem on a reps= L be given, findue H such thata,(u,v)=I(v) Vv eH
sentative volumeY (ProblemP):

Problem. P with ag(u,v):jo(u):e(v)derefuz;dy
EeL be given, findue H such thata(u,v)=1(v) YveH Y Y

It can be shown that the solution of this problem converges
toward the solution of probleniP) with average equal to zero
([4D.

Remarks.
and KU)Z_I CE:D(v)dy (i) The problem(P) is solved classically by a finite element
v method or by fast Fourier transforhll]). We have chosen to

Because of the nonuniqueness of the solution of prollem introduce wavelet methods in order to eliminate the notion of
(defined within a translationproblem(P) is replaced by problem mesh and to eliminate Gibbs phenomena.

(P,) (“viscous” problem): (i) If the discretization of probleniP) in a orthonormal wave-

with a(u,v):J’a(u):e(v)dy:JC(y)e(u):e(v)dy
Y Y

KJ\J J+1 42 J+3 J+4 /\

00 - -~ 1 2 0
K, |3+ K K2 K
JIkk Jjkk1 Jjkk Jjkk
J+2
J+3
K10 | K” K12 KB
Ik et K Ko
20 K21 Kzz K23
R, kK] kK Kk
10 31 | 32 | 33
Kﬂkk KJJkk ij,kk Kﬂkk
L

" 2
6 2] 6(4M-3)

Fig. 2 Wavelet element matrix (jo=J, jmax=J+4)
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let basis leads to the systeklU =B, then the discretization of
problem @,) leads to K+eld)U=B, whereld is the identity
matrix.

(iii) The tensorC could be given by the imaggpixels) of the
microstructure.

4 Wavelet-Galerkin Method

The variational problem R,) is discretized by a Galerkin
method. We have introduced a wavelet basis because of their
localization and adaptivity properties. The projection of the plane
elasticity operator into the wavelet bagj3]) is given by a stiff-
ness matrixK where the “elementary matrix” of order 2 is

B [ Fii1rt Fasart Farnat Fagoe Fuooat Fisiat Fazpot Fsslj
| Fiotst Fagoot Fairt Fagor Fazoot Fosiot Faport Faa
(3) n
where

Fig. 3 AI-SiC composite with an interfacial zone (thickness %)

. | I
quaB—J Cpqq,jk,a\Pj’K’,B XmdXz.
Y Table 1 Interface laws

We have chosen to decompose the teri3on a wavelet basis
at levelJ noted 4. In the numerical applications, Haar wavelet is
used with its compact support equal to the squrg2,(l, ~/€—0 uy=007=0 on=7 U 07=0 ,=0
+1)/2TX[1,/2),(1,+1)/2]. This wavelet is constant on this sup-
port which is a pixel of the image representation. Thus, the wave- wo\ N
let coefficientd;, is equal to the value of the tens@ on this w/e—u ;+2:y Uy UNZZ;UN
pixel. Due to the form of the wavelet€artesian and tensorial
products of one dimensional wavelgthe computation of the w w

Y

U=0 oy=—ur oN=

< IE|

coefficients of the matriX leads to the determination of elemen- or=_Ur o=

tary terms which are integral of products of three one-dimensional

wavelets and their derivatives: ul e—o u=0 u=0 u=
/

Ne—oo Ne—on Ne—0
L d™p M, ‘
S g o

m,n=0,1. 4)

These terms are obtained by the determination of eigenvect 0.0 ; :

of a low-order matrix[7,12]). The right-hand side of the problem —0(1,05)
corresponding to the teriifv) in problem @,) is computed by a E—8(0.50.5)
similar technique([4,5]). Classically, the matrixK is a sparse
matrix (Fig. 2). Because of the form of the wavelets bases,
seems natural to solve the linear system which is a discretizg
version of problem P,) by multigrid techniqueg[13,14]). Nev-
ertheless, we have chosen to use a conjugate gradient metho

030

Eceme

of displ

5 Determination of the Macroscopic Coefficients 020 r

The determination of the elastic macroscopic coefficients cc
responds to the computation of the macroscopic stress t&nsor :

jump

(radial)

E=f (CE+Ce(u))dx,dx,. (5)
Y

The computation of these terms is in the same way as the n
trix and the right-hand sidp4].

i L

0.00 0.02 0.04 0.06 0.08 0.10

0.00

6 Numerical Results thickness

We present the example of a three-phase fiber-matrix compodiig- 4 Jump of displacement for different values of ~ a and B
(Fig. 3): SiC for the fiber, Al for the matrix and an interface. ThdM=3)
Lame coefficients associated to the interface arg® and u7?
where 7y is the thickness of the interfaca.and B are real posi-
tive parameters ang is a given function with a sufficient regu- Table 1 with respect to the value of the parameteesd 8. « and
larity. We have shown in former papeflsl5-17) that whens B determine how the thickness and the rigidity tend to zero. It
tends to zero, i.e., the thickness and the rigidity parameters teadnecessary to quantify the limit, in other words we seek an
to zero, we obtain an elastostatic limit problem with an interfadaterval in which the initial problem could be approximated by
law. This interface law keeps in memory the mechanical and gethre limit problem for which the solution is more easy to obtain.
metrical properties of the layer. The interface law is given i@n the other hand, it is very important to quantify the influence
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Fig. 5 Homogenized coefficient for different values of aand B
(M=3)

On the Original Publication of the

of the interface on the macroscopic coefficients, i.e., on the elasg%en_eral Canor_nc;al Functional
behavior of a structure. Due to the shape and the thickness@f Linear ElaStICIty

the interface this problem is very difficult to treat by classical
techniques.
We present, in Fig. 4, a study of the convergence of the jump &. A. Felippa

displacement in the interface for the cage 1, for two values of pem. ASME Department of Aerospace Engineering and
a and 8. X and u are chosen as Aluminum coefficients. In this ) '

case the jump is equal to zero in the interface law. We have fouﬁ:oenter for Aerospace Structures, University of
that for values ofy smaller than 0.4 p.c. of the structure thecolorado, Boulder, CO 80309-0429

interface law could be considered as valid. Note that the displace-

ment in the interface has the forp16]) u(r,8)=ru(6)+ug.

Figure 5 shows the influence of the thickness parameter on tige general canonical functional of linear elastostatics is associ-
first component of the homogenized elasticity tensor for differegkeq with the names of Hu and Washizu, who published it inde-
values ofa and 8. For small values of the thicknesy smaller pendently in 1955. This note discusses how that functional, in a
than 0.2 p.c. of the structuré is convenient to neglect the inter- yeneralized four-field form, had been derived by B. M. Fraeijs de
face. Note that for values of the thickness larger than 0.02, tRubeke in a 1951 technical report. This report presents five of

coefficient depends linearly on the thickness. the seven canonical functionals of elasticity. In addition to the
general functional, it exhibits what is likely the first derivation of
7 Concluding Remarks the strain-displacement dual of the Hellinger-Reissner functional.

. The tour of five variational principles takes only a relatively small

In this paper, we have shown a robust tool to compute thé1 . i .

overall response of a composite. In particular, our method is atijgrion of the report: 8 pages out OT 56. The bulk is devoted to _the
E§e of energy methods for analysis of wing structures. The title,

to compute the influence of an interface even at a very small lever hnol : d limited di inati t for th
In the future, we want to investigate more complex materials su fchnology focus, and limited dissemination may account for the

: : . subsequent neglect of this original contribution to variational me-
random material$[18]) or other kind of interface§19,20). chanics [S0021-893(0)00401-3
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methods starts from the C4FLE functional, which he calls “thand P,, and Pg are potentials of the bodwolume forces and
general variational principle.” However, it does not reference Hsurface tractions, respectively,
and Washizu as its source but an earlier technical report, written
in French([4]). This appears as the third reference in the 1965 PV:f (Xu+Yv+2Zw)dV 4)
article. v

A subsequent journal paper on variational principls, is
slightly more explicit. It begins: “There is a functional that gen-
erates all the equations of linear elasticity theory in the form of
variational derivatives and natural boundary conditions. Its origi-
nal construction [12] followed the method proposed by Fraeijs de Veubeke presents the well-known Euler equations of
Friedricts . . . ” The reference number points to that report.  the TPE principle. Nexton p. § he recasts the internal energy

These references motivated the writer to investigate whether @@nsity in terms of strains?V=W(e) so that the variation be-
Veubeke had indeed constructed that functional in the 1951 &mes

ort. That would confer him priority over Hu and Washizu, al- _
Fhough of course these two p%persywere more influential in sub- OW= 06yt TaydYsy o+ 7206, (6)
sequent work. The writer was able to procure an archived copyFollowing that he states that to frédibe rer”) strains from the
thanks to Profs. Beckers and Geradin of the University ofjeje strain-displacement constraints and the boundary displacements
where Fraeijs de Veubeke was a professor of aeronautical erfgim the prescribed displacement constraints, one must add to the
neering from the early 1950s until his untimely death in 1977. expressions to be varied the volume term

&u’+8v’
gy ox T

Ps= L (Pxu+pyv +p,w)dsS. (5)

1

+T o

Construction of the C4FLE Functional fv T”(a_x_ N v

As discussed below, in the 1951 report Fraeijs de Veubeke .. (T, T
. . - S Xx1 Ixys *
constructs not simply the canonical three-field principle, but t fie surface termy
four-field generalization C4FLE. Consequently his priority is es-
tablished unless an earlier publication can be found. The func- _ _ _
tional, however, appears as an intermediate result on the road f [ax(U—u)+ay(v—v)+a(W—w)]dS ®)
from the total potential energyT PE) to the total complementary S
energy(TCE) principle. The path also traverses a pair of two-fieléh which («, ,«, ,«,) are multipliers ors,. The displacements in
functionals, one being a generalization of the Hellinger-Reissn@h are marked by a prime to emphasize that the variations of the
(HR) functional published the previous year by Reisditdr The strains have become independent of the displacement gradients.
full sequence can be sketched as Fraeijs de Veubeke states on p. 9 that this expanded functional
- is subject to 18 independent variations: three displacements, six
TPE—CAFLE~Strain-displacement dual of HRHR_’TCEi strains, sixT multipliers, and threevr multipliers. He had noted
@ earlier(on p. 8 that variations with respect to the strainsirgive
The report does not call special attention to C4FLE, as well as &g Euler equations
the strain-displacement functional that appears there for the first
time. The bulk of the material is indeed devoted to the study of T :ﬂv T :ﬂ 9)
energy-based approximation methods for the analysis of mono- de Yy
coque wing structures, rather than to the derivation of new fun\(/:v-hereas variations with respect to the displacemens,aive as
tionals. Its title, technology focus, and target audiefsteuctural | i P p a
engineers are likely responsible for subsequent neglect. This Eu er equations
reinforced by its limited dissemination and the fact that the mate- a =Ty +mTy+nT,,, ... . (10)
rial was apparently not submitted to an archival journal. -

Fraeijs de Veubeke uses the full-component notational forpience thel multipliers form a stress system whereas thenul-
popularized by Timoshenko and others, which was then commbpliers form a system of_ surface tra_cno_ns. Fraeijs de Veqbeke
in continuum mechanics. For historical accuracy this will be foldénotes these as’ andp’ in later publications, such as the cited
lowed below until Eq(10), at which point it is changed to modern1965 article. . _
indicial notation for compactness. The equations taken from theExcept for Py and Ps, Fraeijs de Veubeke does not define
report have been sequentially renumbered. global sympol; to |dent|fy his integrals. For convenience we rem-

The report comprises three chapters. The last two, which dé4}y that omission by calling .= J,W(€)dV and identifying Egs.
with the title application, are of no concern here. Chapter | begité) and(8) by Dy andDs, respectively, wher® stands for the
by summarizing the field equations of linear elastostatics for {grm “dislocation potential” now in vogue. We can thereby col-
three-dimensional body of volumé and surfaces The fields in lect all the pieces into one compact expression:

V are displacements, v, w, body forcesX, Y, Z, infinitesimal S[U . +Dy+Py+Pst+Dg]=0. (11)

strainse, , yyy, - - - ,€;, and stresses,, 7y, . . . ,0,. The surface L . . C
Sis diviéegxi)ﬁtosl on which tractioxnsTxy Do\ D, are knownand  The expression in brackets is the C4FLE functional, which in
’ x» My» Mz Il

S,, on which displacements, v, w are prescribed. The direction Indicial notation can be compactly presented as

cosines of the exterior normal ®are denoted by, m, n.
As starting point for the variational developmet@hapter I, p. Iy, o , € ,ti)=J [W(eij) + (U j)— ;) — fju]dV
6) Fraeijs de Veubeke exhibits the TPE principle: v

.. ) areLagrange multipliers i/, as well as

0| JW dV+Py+Pg|=0. 2) —f t_iuidS—J' ti(uj—u;)ds 12)
\ S1 S

Here W is the internal energy density in terms of displacementi) whichug ;) denotes the symmetric gradient of the displacement

whose first variation is field. The three-field standard form C3FLE is obtained by setting
ti=oy;n; on S, a priori. A variant of C3FLE involving stress

®) derivatives, displayed for example in Gurfii] follows from in-
tegration by parts.

au v ow
+—|+to,6—
9z

ay  ax

au
OW= Uxﬁa + TxyO
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A Strain-Displacement Functional Fraeijs de Veubeke does not reference Hu or Washizu in any of

Continuing along the patfl), Fraeijs de Veubeke replaces thethe papers reprinted in the Memorial Volurfie2]. He acknowl-

T . . edges Friedrichs, Courant, Hilbert, Prager, Reissner, and Pian. On
irpsuglr?“srsgIr;(t?m?fri]edl((jg)fubrilcii%nzrlldiél\?\;hir:r? psfrca::\r:gl)gn%ngg;mgé_the other hand, he does not explicitly claim priority for the results
ments are primary variables. His full form expression is fairldlscussed here. Perhaps he felt that the derivation of new func-

Lo P A Yionals was not the focus of the 1951 report. And indeed it was

long. In indicial notation it becomes not. The tour of five variational principles takes 8 pages out of 56.
I (uj vfij):f

v is that Fraeijs de Veubeke’s personality would militate against

engaging in controversy. An aristocrat by birth and gentleman by

In contrast, the titles of the contributions of Hu and Washizu
_ ow . 2 o
— | tjudS— a—nj(ui—ui)ds (13) nature, he never displayed greed for priority and recognition.
s, s, 9 €ij

JW
W(ej) + E(u(i,j)_fij)_fiui

av expressly state that to be the main objective. The writer’s opinion

in which for linear elasticityyW/ de;; is understood to b €, . Acknowledgments
Now (13) is the stress-strain dual of Hellinger-ReissfigR) but
has escaped a name.

In an expository article([8]), the writer called it “Strain-
Displacement Reissner” following Oden and Red& who la-
beled it a Reissner functional when constructed as a member
canonical set of elasticity functionalgl0]). However, in a 1995
letter to the writer, Professor Reissner indicated that he had meferences
_ConS|dF_"red that form. -I'_hIS.fl,_InCtlonal has had little use 'n_mthan[l] Hu, H.-C., 1955, “On Some Variational Methods on the Theory of Elasticity
ics until assumed-strain finite elements began appearing in the and the Theory of Plasticity,” Sci. Sin4, pp. 33-54.
1980s. [2] Washizu, K., 1955, “On the Variational Principles of Elasticity and Plastic-

Again, Fraeijs de Veubeke uses Efj3) only as an intermedi- ity,” Aeroelastic and Structures Research Laboratory, Technical Report 25-18,

! " R A . MIT, Cambridge, MA.
ate result. He applies a F”ed”Chs'StY_le Legendre transfor_matlor[b] Fraeijs de Veubeke, B. M., 1965, “Displacement and Equilibrium Models,”
to it and arrives on p. 10 at a generalized form of the Hellinger- ~ Stress AnalysjsO. C. Zienkiewicz and G. Hollister, eds., Wiley, London, pp.
Reissner(HR) functional. He remarks that it had been published = 145-197. o ]
by Reissnef6] but that the rederived form is slightly more gen- [4] Fraeijs de Veubeke, B. M., 1951, “Diffusion des Inconnues Hyperstatiques

. h . dans les Voilures  alLongeron Coupls,” Bull. Serv. Technique de
eral in that it includes body forces as well as prescribed nonzero | agronautique No. 24imprimerie Marcel Hayez, Bruxelles, 56 pp.

The writer is indebted to Profs. M. Geradin and P. Beckers of
the University of Lige for locating and providing a copy of the
1951 report, and to Profs. T. H. H. Pian and J. N. Reddy for
Oqlgrifying historical points.

displacements. [5] Fraeijs de Veubeke, B. M., 1974, “Variational Principles and the Patch Test,”
The remainder of Chapter(pp. 11-18 is devoted to the deri- Int. J. Numer. Methods Engs, pp. 783-801. B
vation of the TCE functional from HR. and the energy theorems[s] Reissner, E., 1950, “On a Variational Theorem in Elasticity,” J. Math. Phys.,
! 29, pp. 90-95.

of CE}_Stigliano and Menabrea. Even for this bett_er.known mat_eriab] Gurtin, M. E., 1983, “The Linear Theory of Elasticity,Mechanics of Solids
Fraeijs de Veubeke displays a mastery of variational techniques vol II, C. Truesdell, ed., Springer-Verlag, Berlin, pp. 1-296.

unusual for the times. For example, several textbooks stilll8] Felippa, C. A., 1994, “A Survey of Parametrized Variational Principles and
thoughtlessly lift Castigliano’s second theoram=dU(o)/dF; éﬂg"cf‘f? r;::sptolcgj—nl]g;tamnal Miechanics,” Comput. Hetods Appl Mech
_from trusses and framev_vorks to three-dimensional solids. This iﬁg] Ode.r'1, J. T, énd Redd)./, J. N., 1982zariational Methods in Theoretical Me-
incorrect because the displacement under a concentrated load is chanics Springer-Verlag, Berlin.

infinite. He carefully regularizes the singular energy integral bef10] Oden, J. T., and Reddy, J. N., 1974, “On Dual Complementary Variational
fore stating the theorem Principles in Mathematical Physics,” Int. J. Eng. Sdi2, pp. 1-29.
’ [11] Washizu, K., 1968Yariational Methods in Elasticity and PlasticitPergamon
Press, New York.
[12] Geradin, M., ed., 1980B. M. Fraeijs de Veubeke Memorial Volume of Se-
Conclusions lected PapersSitthoff & Noordhoff, Alphen aan den Rijn, The Netherlands.

The 1951 report provides concrete evidence that Fraeijs de
Veubeke preceded both Hu and Washizu in the publication of the
CA4FLE functional. Furthermore, he appears to have been the first ] ] ! ..
to construct a strain-displacement dual of the HR functionaLogarlthmIC Stress Slngularltles

Hence it seems fair to propose Resulting From Various Boundary
1 that the canonical function&l2) be identified as the Fraeijs Conditions in Angular corners

de Veubeke-Hu-Washizu functional.
2 that the hitherto anonymous strain displacement functiongf Plates Under Bending

(13) be named after Fraeijs de Veubeke. This functional was con-

structed independently more than 20 years later by Oden and

Reddy[10]. G. B. Sinclair
Some historical questions remain, perhaps as curiosities for faepartment of Mechanical Engineering, Carnegie Mellon
ture science historians. University, Pittsburgh, PA 15213-3890

Fraeijs de Veubeke was a visiting professor at MIT during
1952, the year following publication of the report examined here.

g\cla?slgilazx(srﬁ/i?gcgctnlrz%ﬁn?ga{\iﬂc:;hfsp?nr(tji((j:zttz(tjj ?girhésj\iistéfiﬁ;?sfhis note considers the occurrence of pure logarithmic singulari-
P ties in angular elastic plates under bending within the context of

direct or indirect influence is unlikely, since Fraeijs de VeUbekaassical theorv. By paralleling the develobment of requirements
was only a summer visitor. y.- By p 9 p q

The writer has not seen Washizu’s 1955 report. However, in (;%r logarithmic singularities for plates in extension, requirements

early edition of his well-known monograpl11]) the derivation Comibuted by the Abplied Mechanics Division ofE A .
; _ i ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF
of the C4FLE functional on pp. 31-34 closely follows Fraeijs dS:ECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED

VeUbe.keYS, as readerS. may Verify-_ The similarity of HU'S anfiechanics Manuscript received by the ASME Applied Mechanics Division, May
Washizu's paper titles is also puzzling. 18, 1999; final revision, Oct. 19, 1999. Associate Technical Editor: J. R. Barber.
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for log singularities in bending are developed, both for homogew,,
neous boundary conditions on plate edges and for inhomogt V\ /
neous. Using these singularity requirements, some 50-odd co /

Me

e
figurations with log singularities are identified, the great majority
being for inhomogeneous boundary conditions.

[S0021-893@0)00501-9

Mr
\ / M,
1 Introduction / M \

T

Elastic stress singularities are not of the real world. Howevel M
their presence in a stress analysis can be a real fact. Then it
essential that their participation be recognized if reasonable use ._ (a)
to be made of the analysis in the vicinity of the singularity. The,
objective of this note is to assist in achieving such recognition.Fig- 2 Plate theory resultants: (&) moment resultants, (b)

In particular, we are concerned with identifying configuration§hear resultants
which can have pure logarithmic singularities—that is, stress re-
sultants and attendant stresses which behave @iker) asr
—0. These are the weakest singularities that occur in elasticity. i . .

As a result, they can be the most difficult to detect with numericgl(b)- All of these field quantities are taken to be independent of
methods. Asymptotic identification is thus especially useful ifl€nce, we can confine our attention to the two-dimensional region
avoiding having them pass undetected. R where

For angular elastic .p.lates in ben@ing trea.ted within c!assical R={(r,0)|0<r<w, 0<0<g}.
fourth-order theory, William$1] identifies possible power singu-
larities for a variety of homogeneous boundary conditions on thith these preliminaries in place, we can formulate the class of
plate edges. No logarithmic singularities are identified[1}. problems for asymptotic analysis as next.

Logarithmic singularities can be found elsewhere in the literature, We seek the out-of-plane displacementtogether with its as-
but these occur in concert with the far stronger singularities tha®@ciated moment resultantdl, ,M,,M., and shear resultants
attend concentrated loads. Examples may be found waN2] Q;.Q,, as functions ofr, ¢ throughout?®t complying with the
Article 49, and Timoshenko and Woinowsky-Kried@] Article  following requirements. The displacement is to satisfy the dis-
75. Pure logarithmic singularities for plates in bending withiplacement equation of equilibrium in the absence of both body
classical theory would not appear to be identified in the literaturforces and loading on the plate faceszat+h,
Here, therefore, we seek to identify such singularities, and to do VA=

; ! i w=0, (1)
so when either homogeneous or inhomogeneous boundary condi-
tions apply on plate edges. on R, where V*=V?(V?), V2=g%/ar?+r Yalar +r 26/ 96°.

We begin, in Section 2, with a formal statement of the class ahe displacement and resultants are to satisfy the resultant-
asymptotic problems of interest. Then, in Section 3, we outline tlisplacement relations for a homogeneous and isotropic, linear
development of requirements for pure logarithmic singularitieglastic plate,

We close, in Section 4, with a tabulation of all the configurations

found to be able to have log singularities. {Mr -k [V] VZW[JF]ﬂ M =ki Ea_w )
M, 1—v|—) or? | "o\t 96
2 Formulation _ ko o, _ k19 o,
Q=17 VW, Q=7 775(VW,

The angular plate region of interest is shown in Fig. 1. To

describe this plate, we use cylindrical polar coordinate8.2)  on g, wherek=4uh%3 is the flexural stifiness of the plate while
with origin O at the vertex of its midplane ani=0 along one of |, ", are its shear modulus, Poisson’s ratio. The displacement/
its edges. The plate has indefinite extent in trrection, thick-  yesyltants are to satisfy any one of the admissible sets of boundary
ness A in the zdirection, and subtends an angjeat its vertex. conditions listed in Table 1 on the plate edgedat0, as well as a
The displacement of primary concern is that in ghairection, f,rther such set org= ¢. Finally, the resultants are to comply

w. This displacement has associated moment resultagjih the following regularity-singularity requirement:
M, ,Mq,M,q, as shown acting in a positive sense on an element

in ther -plane in Fig. 2a). It also has associated shear resultants M=0(1), Q=0O(Inr), asr—0, ()

Qr.Qy, as shown acting in a positive sense on an element in F@n R, whereM is any moment resultan@ either shear resultant.
Several comments on the foregoing formulation are in order.
First, regarding the boundary conditions in Table 1. In conditions
I-1l, M;, V, a;, andb are given constants € 1,2). When these
constants are zero, we obtain the corresponding homogeneous
boundary conditions. We distinguish these with a subsdript
Thus |, are Kirchhoff conditions for a stress-free edge,dte for
a simply supported edge, and,llare for a built-in edge. Condi-
tions IV model a plate edge which is elastically restrained by a
bar:k; is the bar’s torsional stiffnesg, its bending stiffness, and
plus signs are fop= ¢, minus for9=0.1

AN
RN

“Elastic :
/ Elast|9\plate\.\<

yd ) \\ N Second, regarding the regularity-singularity requirement. For
o ) | YR the usual relationships between stress resultants and stresses in
L fr] \ plate theory, this has pure log singularities #,,7,, while
e | \ o, ,04,Try are nonsingular.
Fig. 1 Geometry and coordinates for the angular elastic plate 1See[3], Art. 22, for a development of IV.
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Table 1 Boundary conditions Table 2 Eigenvalue equations

Assigned Physical Prescribed Boundary Conditions Eigenvalue
Roman Numeral Description Quantities on 0=0,¢ Equation
| Applied t/sh My,=M . )
pplied momentshear T l=ly (A~ 1)(k? S A= N?siI? )=0
Qo— —ar Q5 = h=1l, cog N ¢p—cos ¢$=0
Iy, or IV=Ill, or IV Sir® A\¢p—N? sir? ¢p=0
Il Applied moment/displacement M y=Mr =11y (N—=1)(k sin 2v¢+\ sin 2¢)=0
o _ w=a,r I—1ll, or IV (A—1)(k?+ 2k cOS Ad+1—AN2Sin $)=0
1 Applied displacement/rotation w=a,r? =1l or IV sin 2\—\ sin 2¢=0
aw_b 5
{9_9_ r
I s (1 aw)
v Elastically restrained ==kgz (v 56 wherec; (j=1-4) are the four constants, ands the separation-
of-variables parameter. The stress resultants for this basic field
Q- Mg iNzo follow from (2). Substituting these fields into a set of four homo-
A geneous boundary conditions then gives
Ac=0, (5)
3 Analysis where the vectoc=(c;,C,,C3,C4), andA is a matrix whose el-

As in the extensional case, requirements for logarithmic singgments are in general functions Yf A nontrivial solution to(5)
larities under bending follow from a further development of théequires that the determinabtof A satisfy
corresponding classical analysis for power singularities. Accord-
ingly we next summarize the asymptotic analysis of power singu- D=0. (6)
larities in plates under bending.

In Williams [1], the appropriate choice of a separable biharrhis requirement generates an eigenvalue equation. f@eter-
monic function for the displacement leads to fields containing mining \ satisfying (6) with 0<Re\<2 then characterizes the
four constants which share a common power oThis function  power singularities possible in stress resultants for the particular

has the form homogeneous boundary conditions involved.
w=r"1[c; sinA+1)6+c, oS\ +1) 9+ cs SiNA—1)0 To extend the preceding to consider logarithmic singularities,
we need stress resultants containing kerms. To this end, we
+c,codN—1)46], (4) differentiate the basic field d4) with respect ta\x: thus

Table 3 Configurations with  Q=0(1nr) as r—0

Boundary Conditions Configuration
on 6=0,¢ Specifications
I—Iy ¢=a or 2, M1 #0 o+rl\/¢0
k=+secd, My(x+2)tan CEV(2— k),
=1y, ¢= or 2m, M, #6a,k
=, or IV ¢=m or 2w, a,#0 orb#0

-1l ¢=(2m—1)g, 24a,k#=M,(k+5)—(—)"V(k+1) (m=1,2
¢=mm, M1 #(—)"M, (m=1,2)
k=—sec 2, (Vsinp—12a,K)(k—2)#M,(xk+2)coS¢p—My(k—4)

1=l b=, , k# k, (M;—6ak cos 3p)(3 sin Ip—(k+2)sin¢)
#(V+2bk cos 35)(3 cos 3p+(k—2)cos¢)

Ip=Illy, or IV d=d., k=K
-1V ¢=m or 2w, V#0
¢=ml2 or 3w/2, M #0
k= —sec 2, My(k+2)tanp#V(2— k)

=1l ¢:(2m—1)7—27, 2M,#3(3— k)ask—(—)"(k+1)bk (M=1,2)

d=mm, a;#(—)"a, (M=1,2)
=1V ¢=ml2 or 3m/2, M ,+# 6a;k

=1V b= ml2 or 3ml2, 2,0
¢=m or 27, b#0
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w=r*"Inr(csin(A+1)0+¢C, cogA+1)0+Czsin(A—1)0 treated. Subsequently we do note, though, the one instance of a
o o . log-squared singularity that attends partial compliance with them.
+C4c0gN—1)0)+ 6(Cy cOgA+1)0—CoSiN(A+1)6 With the requirements for logarithmic singularities at hand,
— — . analysis proceeds routinely. We first derive eigenvalue equations
+Cacodh—1)0—CysinA—1)0)], M as in(6) for all possible combinations of homogeneous boundary
where the bars atop constants serve to indicate that they no longenditions that can be drawn from Table 1. Then we clérknd
need be the same as their antecedenfd)inThe displacement in (12). When potential new configurations with log singularities are
(7) continues to satisfy the governing biharmonic Ef). Substi- revealed, the last requirement in eith® or (12) requires the
tuting (7) into (2) produces resultants containingriterms. Sub- assembling of associated new fields. The algebra involved is
stituting (7) and these last, together with the original basic fieldstraightforward but lengthy: details are furnished in Sinc8it
into a set of four homogeneous boundary conditions gives Displacements with log singularities in their companion resultants
are set out ibid. All of these fields are verified directly by substi-
®) tuting them into the governing Egs(1),(2), checking the
regularity-singularity requiremerg8), and checking the pertinent

dA
. . _ boundary conditions. In the interests of brevity, we omit these
W_heredA/d)\ is formed fromA _by differentiating ea_ch eleme_nt fields here and simply provide the configurations that engender
with respect to. General requirements for a nontrivial solutiory, -,

for c'in (8) are established in Dempsey and Sinclat. From
these we obtain ourequirements for pure logarithmic singulari-

dA__
Aclnr+ —c+Ac=0,

ties under homogeneous boundary conditions 4 Results
A=2, D=0, (%) Eigenvalue equations are set out in Table 2. Therein
3+v
d"D K= .
d)\n=0 for n=1,...,4-r4, (9b) 1-v
Except for a factor ofA—1) when free-edge conditions, | are
C3+C3#0, (%) involved, these equations are equivalent to those derived in Wil-

liams[1]. The equivalence of built-in conditions }Iwith elasti-
cally restrained conditions |V, as far as eigenvalue equations are
€Bncerned, follows from an adaptation of the argument in Sinclair
Tuming to the inh bound diti 1l | for boundary_ cpnditio_ns which _h_ave terms wi;h a different

urning to the nhomogeneous boundary conditions 0 -dependence within a single condition. This equivalence holds
Table 1, we obtain instead ¢5) for any value ofx. Just fork = 2, elastically restrained conditions

Ac=f, (10) are equivalent to symmetry conditionsy/d6=0 andQ,=0. We
) ) also investigate them in this role in what follows.

for A=2, wheref is a vector whose components involve one or Configurations which have logarithmic singularities in their
more ofM;, V, a;, andb (i=1,2). Forf#0, we have a problem shear resultants as i) are listed in Table 3. In Table 35, is
in (10) if D=0 for A =2, unless the rank of the augmented matrixsych that
(A")=(A:f), is also reduced. If this rank reduction does not oc- 1
cur, we can overcome the difficulty by again supplementing the : _ kT4 '
basic fields associated witd) with the auxiliary ones stemming SI? = i [22 V4= x]. (13)
from (7).2 This gives

wherer , is the rank ofA when\ =2. Equation(9c) ensures that
one ofc; or ¢, is not zero so that the shear resultants are inde
logarithmically singular as ir3).

If in addition to (13),

dA
ACInT+ =c+Ac=f, (11) K:ﬂ
¢ cos 2¢’
for A\=2. The system ir(11) can be solved provided all the re-,, . _ - &=, (actual values in the physical range ok&

quirements in(9b) arenot met. Accordingly ourequirements for L — . A
pure logarithmic singularities under inhomogeneous boundary / &€ k=3.27, ¢, =74.8deg andk=3.02, ¢, =265.9 deg.

conditionsare or I-1l and = &SK, k=K, a log-squared singularity occurs.
There are but two geometries with logarithmic singularities un-
AN=2, D=0, rp#ra, (12a) der completelx homogeneous conditions in Table 3. These occur
N for k=&, ¢=¢, when the boundary conditions arg-lll}, or
—+0 for at least onen=1,...,4-1,, (120) IV. One of these _geometries_ _is a re-entrant _corneer (
dx =265.9 deg) and so is not surprising, but the other is for a proud
Cﬁﬁcﬁﬁoy (120) corner (¢,=74.8deg). Here, then, the increase in the occurrence

of singularities with mixed boundary conditions is making its

wherer | is the rank ofA’ when\ = 2. As with (9¢), (12c) ensures Presence felt, as it does in the extensional case.

(3) is complied with when\ = 2. I_:or _mhomogeneops bounc_iary c_ondltlorjs, there area n_u_mber of
An additional set of requirements for logarithmic singularitie§Uite innocent looking conflgur_atlons with |_09 singularities in

under inhomogeneous boundary conditions is given in Sinicfir | able 3. For example, Iglfor ¢=m whenM,=M,r: Here the

for the extensional case. These requirements arise from furtfagpment resultant actually varies continuously along the boundary,

auxiliary fields which result from a further differentiation withthough its derivative does not.

respect ton. However, we omit these requirements here because

they can never be completely satisfied for the class of problerReferences
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oy=2Re(1+Ma)[ ' (z) + ¢’ (29 ]} )

Stress and Displacement Fields for Txy=2 Imlay ¢’ () + s’ (z9)1}
Propagating the Crack Along where
the Interface of Dissimilar Orthotropic o Jex N

. . = — — ; = + _
Materials Under Dynamic Mode | P= VP VBB A7 VBT VB Bes
and Il Load 1 -

Bio= 5 [2a1+aget pC(aT,— A11865— A11820) J/A11

K. H. Lee 2 42
Department of Automotive Engineering, Sangju National Kes= {8221 pC7[ 12~ 822866~ 1122
University, Sangju City, Kyungbuk 742-711, Korea + pCags(ayia—as,) |Vag;
General stress and displacement fields are derived as a crack pc? 5 (pc?)? 5
steadily propagates along the interface of dissimilar orthotropic @ =pFaxp———ppcian- (a118320— a7,
materials under a dynamic mode | and Il load. They are obtained P
from the complex function formulation of steady plane motion
problems for an orthotropic material and the complex eigenex- pc? pc?)?

pansion function. After the relationship between stress intensity as=q+axp——(pc?ay— —— (ay8z— a5,
factors and stress components for a propagating crack is defined, q q

the stress, displacement components, and energy release rate with ) )

stress intensity factors are derived. The results are useful for both Ma=pci(ap—ay), Mp=pci(a;—az).

dissimilar isotropic and orthotropic and isotropic-orthotropic bi- a;j(i,j=123...,6) aredisplacement constants, which are the
materials, and homogeneous isotropic and orthotropic mater'a§i3=aj3:0 for plane stress and are transformed into the
under subsonic crack propagation velocity. =a;;—a;3a;3/as3 for plane strain(5]. The p andc are, respec-
[S0021-893600)00601-2 tively, density and crack propagation velocity. And the character-
istic rootsm;, mg of orthotropic materials, which depend on the
. physical properties and the crack propagation, are either imagi-
1 Introduction nary when Kg<Bi,; Kg>0 or complex when yKgg
Yang et al[1] and Deng 2] provided the asymptotic fields of >|B,|; Kg>0 [4]. Most orthotropic materials have imaginary
the singular terms of steady-state elastodynamic bimaterial crackimber roots. The complex displacement for orthotropic plane
tip fields and Liu et al[3] obtained the asymptotic series repremotion can be represented as Ezj. [4],
sentation of stress fields near the tip of a running interfacial crack
in a bimaterial under steady or unsteady state conditions. How- u,=2 RE P p(2)) + Psit(zs) ]
ever, the stress and displacement components for the interfacial (2
propagating crack in dissimilar orthotropic media, where the elas- _
tic principal axis direction with the crack direction is orthogonal uy=2Im{d) $(2)) +qsh(Z5)]
or parallel, is not clearly represented. where
Therefore, the general stress and displacement fields are de-
rived when a finite crack is steadily propagated along the interface pi=ap(My—p?)+a;(M,+1)
in dissimilar orthotropic media under dynamic mode | and Il load-
ing in the paper. Lee et al4] derived the steady plane motion
formulations for orthotropic material from the partial differential
equation for an elastodynamic plane. The general stress and dis-

ps=a(Mp—0?)+a(Ma+1)

placement fields are obtained from the formulation of steady plane q=[a1dMp—p?) +az(M,+1)1/p
motion which is added to the complex eigenexpansion functions
and the boundary conditions. The relationship between stress in- ds=[a1aMp—0?) +ax(M,+1)]/q.

tensity factors and stress components for propagating an interfa-
y P propagating Analytical complex functionsg’(z) and ¢'(zs) can be repre-

sented as such a power series in

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June ’ A Nn , _ n Nn
23, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: W. J. Drugan. ¢ (Zl) - aZ| + bZ| ' lﬁ (ZS) - ng + dZS (3)
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wherea, b, ¢, andd are complex constants ang, is an eigen- n(=0123...)
value. They are to be determined from boundary conditions. From N.—{2n—1
the traction-free crack= + 7) and the traction and displace- n +ie (n=0,1,2,3...)

ment continuous condition across interfgee=0), the following (10)
equations can be obtained:

1 1-8 hiy
a b e= Eln —1+ ,8’ IB:
e2m[s]y| =mlq @) Vhiahay
! dy Therefore the two cases, oscillatory and nonoscillatory fields,
must be considered.
e 12mn[ S a =[T] & (5) 2.1 Oscillatory Stress and Displacement Fields. The\, is
?c, 2 d, a complex eigenvalue in this case. Therefore, in substituting the
complex eigenvalue\,,=(2n—1)/2+ie in Eq. (10) into Egs.
N (4)—(7), complex constants,, by, ¢, andd, may be obtained
a, b, a, b, as
[Sly| .| ~[T]a| = | =[Sl o | ~[Tle| = (6)
1 dl_ 2 d,
as—(1+Ma) 7y me(—1)k+1
N x=—— | € 4
a by a; b, P k
[Ulx cy —[VL1 d_ =[U], c, —[V], d_ (7
H 2 _ ast(1+My)n me(—1)K;
where k- D € ¢
k
B (1+Mp (1+My) B —(1+My —(1+My — o+ (1+M,) 7y ot
- ) s ' - Q) Qg “= D ¢ £
“ (11)
—p —ps} [m ps} a+(1+My) 7 —
U= . V= . N e B S-S A P STE L
X [ o ds “la a. e 5 e e

k

H * * .
MatricesLy, Lic, Hi, andHj input as follows: where 5= (h/h;,)¥2 and ¢ is a complex constant related to

stress intensity factors. Substituting Efjl) into Eq.(3), ¢,,(z)

L=UiSh LE=V, T * ®) and ¢, (zs) for material 1 are written as
(2n—-1)12
H=L,—L}, H*=L}-L,. , 2 sy e
! 2 ! 2 ¢n1(zl):D—{[asf(1+Ma)7l]e gnzi
Substituting Eq(8) in_to Eqgs.(4)—(7), the characteristic equation 1
can be derived for eigenvalue,, +lagt (1+My) ple *7Lozs e} 12)
N, O (@272 N+, 0 (@27 + Ao O 0 , 2212 .
0 N 0 N+A, 0 X\, wnl(zs)=D—{[—au+(1+l\/la)n]es”£n2|‘
©) !
where —[as+(1+Mg)ple”*"nzs ).
Stress intensity factors can be defined as(E@) when the crack
Ni=hg+Vhho,  Npy=hg—+hishy is propagated along the interface in dissimilar media.
_ _ _ ) 1
h11=(l)1= (12, he=(l)1+ (1122 K +iK,=limy2arr ' O'y+i;rxy (13)
r—0 6=0
ha1= 201+ (1202 In substituting Eq(12) into Eq.(1) and substituting EqJ1) into
Eq. (13), the complex constants related to stress intensity factors
sty — Py s ds— 0 are obtained as Eq14),
(1= 5 o
K sT Ay Ko=2\2m(e*"+e *™) {0 (14)
(g EEMIBR] _‘asq.—mqs] Ki=2\2m(e*™+e >k,
k=) - [ 20k— )~
D ‘ D ‘ where? and £* are real parts of complex constaft. Whenn

=0in Eq.(14), K andK* are stress intensity factoks andK, .
Di=[(1+Ma)(as—a)]x. In substituting Eq(14) into Eq.(12) and substituting Eq12) into
Eq. (1), stress fields for propagating the crack along the interface
When D=0, the crack propagation velocity becomes the in dissimilar orthotropic material can be obtained. Oscillatory
Rayleigh speed. From E), eigenvalue\ , can be determined as stress fields with odd power series=£1,3,5 .. .) for material 1
Eq. (10). (the material above the interfgcean be represented as
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©

— n—-2
e (™A cos(a Inr+ Ta,) +e (T cos( elnr— Tel) ] r{n-2"2

sy K
n=odd 227D coshem)

(Mp—p?)

Oxn

— n—2 n—2
(Mqu){e“”gs)B cm(a Inret —63) +e s(m0)p cos(a Inrg— — 05)]@”2)’2}

%

K*

2
— n—-2 n—-2
)(es(”BI)A sin(s Inr+ —0|) +e s(moA sin(e Inr— —0,)}%”2)’2

n
+ ——(Mp—p?
n:EOdd 227D coshem) (My=p 2 2
— n—2 n-2
+(Mb_q2)[es<ﬁos)5 sin(s Inre+ TGS +e s 09p sin(s Inrg— TGS)]r(Sn—zwz} (15)

~ KO n—-2

(1+M,) ea(”’f")xco%e Inr+——6

n-—2
+e em o 005(8 Inr— —0,)]rf”2)/z

o= 2 .. n
Y SSud 227D coshe ) 2

—(1+ Ma)[eg(”‘75>gcos<s Inro+ —— 06

n-2
+e (™ 0)B cos(s Inrg— Tas)]rg“”?}

0

K7 — - n—2
+ —————— —(1+ My e®(™ WA sin(s Inr+——6,|+e 2" WA sin(s Inr ——0)}r<“2)’2
n;dd 227D coshem) ( ) o2 o2
(- 09R i —2 —e(m09R o n-2 (n—2)12
+(1+M,)je s'B sin 8|nfs+703 +e s'B sin| ¢ In rszb?s [ (16)

%

KO
Txyn™ 2 .

n=odd 227D coshem)

— n—-2
m{es(”‘”l)A sin(s Inr+ Téﬁ) —e #(m A sin(e Inr— Ta,)]rfnz)’z

— n n—2
+as[ —ef(m 0B sin(e Inrg+ —03) +e~¢(m=0B sin(s Inre— —05)]@“2)’2}

2 2
- K} — n—2 n-2
TR — — Y cos(a Inr+ —0|> —e e(mA co%s Inr— —ﬂ)]rf”z)’z
n=odd 227D coshem) 2 2
e(m—0)R — —e(m— 0 n-2 (n-2)/2
+ag —€° B cog ¢ In rerTé’s +e ? B cog ¢ In rs—Tas re a7)

where

A=ast(1+ My n, A=as—(1+My)n, B=a+(1+My)n, B=a—(1+My7.

By substituting Eq.(11) into Eq. (3) integrated withz and substituting Eq(3) into Eq. (2), oscillatory displacement fields can be
obtained. Oscillatory displacement fields with odd power semes1(,3,5 . ..) for material 1 can be represented as

%

s PR eode e Gav2e s e |
= e(m—0) _ ; _ n/i2
u e Ancogelnri+=6|+2esinelnr+=6,||r
xn nzc;dd 2m(n’+4¢%)D coshem P 2 2

n
}r{"z— es(”‘as)psg{n cos(s Inre+ 565)

,E i 72 n/2
ncogelinrg 205 +2¢ sin g Inrg 203 re

n
2

n
+e *(m%pAn cos(s Inr—>6|+2e sin(s Inr—=86

n
+2¢ sin(s Inrg+ EGS”rQ’zeE‘"@pSB

%

K { <[ n n
+ —e?(m=0) Ansin(slnr+—0)—28 005(elnr+—0) rn2
n;dd V2m(n?+4¢%)D coshem i 2 2

. n n
n sm(s In r|—§0|)—28 cos<s In n—ze,)

_efg(ﬂ"el)plA

n
ri2+ es(”"s)psg[n sin(s Inrg+ 505)

I'2I2+ e,s(,,, Hs)psB

n
—2¢ cos(a Inrg+ 503)

. n n n/2
n sinl £ In rs= 5 0s —2g cog e In re=50s) |1 (18)
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%

Kg [ 4{ ( : ) E( : ”
— e(m—6)) H _ _ _ n/2
u e Ansinelnr+-6 2ecoselnr+-6,||r
m n;dd V27 (n?+4¢?)D cosher a 2 2]

7efa(‘n'70|)qlA

; n n N2_ ne(m—0g) i n
nsmslnrfze, —2¢ co slnr,fza, r'c—e s)gsB| n sin| & In rs+§03

i _0ha - _n ni2
nsinelnrg 205 2e¢ cogelinrg 205 rg

H n n/2
+2¢ sin e Inr+ §0| r

5 r2/2+ efs(w* ﬁs)qSB

n
—2¢ cos(s Inrg+ —05)

0

Ky [ «{ n
+ es(m=0) Ancos<slnr+—0
nzZodd V2m(n?+4£?)D coshe a 2

_E : _E n2__ ~e(m—6) E
ncogelinr, 20, +2esin e lInr, 20, r'c—e sgsB|n co 8Inr3+2¢9s

_efs(‘n'70|)qlA

5 24 e e(m=09q B 5 (19)

n
+2¢ sin(s Inre— —HSHr’S"Z

n n
+2¢ sin(s Inrg+ —05) n cos(s Inrg— 505

wheren>0. For material 2, which is the material below the in- Nonoscillatory displacement fields with even power series (
terface, parameteesT and —em in oscillatory stress and displace-=2,4,6 . . . ) for material 1 can be represented as

ment fields are changed tes, e7. Whennis 1, Eqs.(15)—(19)

are stress and displacement fields around the propagating interfa-
cial crack tip. ThusKtl) andK7 are stress intensity factok§ and

©

p (72 cost g
s's S

K 2 (1+Ma){

Uxn=
Ki - n=even\27 1+wg Dn 2
2.2 Nonoscillatory Stress and Displacement Fields.The n
\, is a positive integer eigenvalue in this case. Nonoscillatory 7p|r|“’2 COS- 0,]
stress fields with the even power series=2,4,6 . . .) for mate- 2
rial 1 can be presented as . % Kf 2 1 ( N ,
— ——— — qPlq SNz
o 0 n=even 2 1+Ww, Dn IPsls 27
Kn 1 (1+Myp) 2 (-2)02
Oxn= \/2—1 D (Mp—=qg)rg L
n=even V27 1+Wg —agprising 0, (23)
n— n—2
X cos—— 03—(Mb—p2)r,(”_2)/2cosT 0,]
S K2 (1+my
o0 * u =
n Ka 1 i[ a|(|\/|b—q2)r(s"_2)/2 I Sven 2 1+wg Dn
n=even\ 27 1+w, D *
n n—2 x{q (2 int g —q,r,”’zsinﬂﬂ + > o _2 1
- - s's S
X sin—— 0~ as(Mb—pz)rf”*Z)’zsinT 0|] (20) 2 2 nZeven V27 1+w; DN
n/2 n n/2 n
X{ —aQelg cosz Os+ aqr) cosz 0. (24)
© 0 )
B Ky 1 (1+Myp (n—2)12 n—20
Oyn= 2 2n it 5 re cos——0s
n=even Vo7 1+ Ws For material 2, which is the material below the interface, pa-
-1 -1
n—2 KY 1 (1+M rametersws and w, are changed tav = and w, ~. Therefore,
—rfn’z)’zcos— o1+ 2 n ( 2 general stress and displacement fields for propagating the inter-
2 n=even V27 1+W, D face crack can be represented as
n—-2 n—2
X a,r(s”*z)’zsinT 65— asrfnfz)’zsinT 6|] (21) »
O'n(l',e):zl [Oxn Oyn 7'xyn]T
= o "~ (25)
Tyyn= K ! (1+Ma)[a r(nfz)lzsingﬂ
on n=even\ 27 1+ Wjq D s 2 s ” T
" . Un(fle):zl [Uxn uyn] .
n-—2 K 1 o« n=
—ayr{" 2 gin—— gt + A
2 n=eveny27 1+w, D
) 5 2.3 Stress and Displacement Fields at the Interfacial
_ n-— - n— Propagating Crack Tip. Whenn is 1, the general fields be-
_(n—-2)12 (n—2)12 pagating p ) 9
X1 Ts cos— Ostri Cos— 0'] (22) come the propagating crack-tip fields. Stress and displacement
componentso,, U, at the interfacial propagating crack tip for
wheren>0, wg=(l12)1/(l12)2, andw;=(157)1/(l21)>. material 1 are expressed as
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K

— (M= p) (6
2\27rD coshe (Ms=pH1(6)

(e

—(Mp—g*)f4(6)

— 6
e?(77 0B 00$< elnrg— ES

— 0
e* (" A co{a In r,fEI

0
+e ¢(m 0B co{ elnrg+ ES

6,
+e #(mlA cos{ elnr+ 5

|

KII P P Hl B Ly ) 0I
1= (Mp—pAf ()] ™ DAsin e Inri——=|+e " WA & Inr+—
227D coshew 2 >
2 s(71- 09 gj Os —e(m-O9R «i Os
+(My—0g9)fy(0)| e B sin| ¢ In I’S—E +e B sinl & In rs+; (26)

K| 2r B 0| . 9|
Uy= — e*™%pAlcog e Inr+—|+2¢ sinelnr+—
2D(1+4&?%)coshem ¥ 7 2 2

1

f1(0)

_ _ 9| . 0I 1 _ ‘95 . 65 1
+e ?(m=WpAlcog e Inrj——|+2¢e sinl e Inrj— —| |———e*""%pB| cog & Inrg+ —| +2¢ sinl & In rg+ —
2 2/ |%,(0) 2 2/ |t40)
6 6
—e ¢ %p B cos(e Inrg— —|+2¢ sin & Inrg— —s)
2 2/ |t0)
K 2r ) _ o, o\] 1
+ —{ —e?™ WpAlsineInr+—|—-2scod elnr+—||—
2D(1+4&%coshem ¥ 7 2 2/ 1,00
o . 0, o1 B _ 0 6\ | 1
—e ™ WpAlsinelnr——|—2ecodelnr——||—(8)+e ™ %pB|sin elnrs+—|—2ecodelnrgt—
2 2/ 1f 2 2)1f4(6)
) O 0
+e (" ¥%pB|sinl & Inre——|—2s cog & Inrg— — (27)
2 2/ |t0)

where
r=r\coZ 6+ p2Si? 6, re=r\cod o+ 2sim o
f,(6)=[co 6+ p?sir? 6]~ 14,

fy(6)=[cos 6+ sin? 6]~
6,=tan %(z;tand), j=l.s, Z=p, Zs=q.
The displacements between the crack surfaces are given by

2r Hoy(K,+iK,)rie
5(r):62+i7;61: = 21( | II)

: (28)
T (1+2ieg)coshem)
and the energy release rate is given by
(KF+KiDHa
=—. (29)
4 cost(e )

As the stresgr, is taken to be discontinuous and strainto be
continuous across the ling=0, the relation betweenof), and
(oy), is the same as

(a1)1(00) 1+ [(a12)1— (a12)2]oy
(a11)2 .

(30)

(%)=

with (r/1)~'¢ in Eq. (13), wherel =2a (crack length, the stress
intensity factors become the following equation, which does not
contain the ambiguity of the dependence on the measuring unit of
the crack length:

K, +iK,=Jma(1l+2ie) (32)

o0 -l o]
O'y+|;7'xy .

When stress intensity factors are the same as in&j, the term
e Inr, (k=1,s) in Egs.(15—-(19) and (26)—(27) is replaced by
e In(r/2a).

3 Conclusions

General stress, displacement fields, and energy release rate are
explicitly presented for the interfacial propagating crack in dis-
similar orthotropic materials.

When the orthotropic materials have characteristic roqts i
andmg=~i in the stationary crack state, the fields are the same as
the Deng[2] results for the propagating interfacial crack in iso-
tropic bimaterials. When the mechanical properties of dissimilar

From Eq.(13), the stress intensity factors for propagating th@rthotropic materials are the same, the stress, displacement fields,

crack along the interface in the infinite plate are obtained as and energy release rate are the same as those of homogeneous

K+iK,=Jma(1+2ie)(2a) ' (31)

O'y+|777'xy

orthotropic materiall4]. When the interface crack propagation

velocity is zero, the fields of the interfacial propagating crack are
identical to those of the interfacial stationary crack. The results
are useful for both dissimilar isotropic-isotropic and isotropic-

where oy and 7, are the applied normal and shear stresses @ithotropic and orthotropic-orthotropic bimaterials under subsonic
infinity. Since Eq.(31) contains the term (&) '*, the ambiguity crack propagation velocity lower than the two Rayleigh wave ve-
of the dependence on the measuring unit of the crack length fotities and homogeneous isotropic and orthotropic materials un-
the value of the stress intensity factor occursr ) (° is replaced der subsonic crack propagation velocity.
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Table 1 The comparison of dissimilar isotropic and orthotro-
o,/K, under plane stress (c¢/Cg;=0.5)

pic stress component

0 (deg Iso-Iso.Mat Ort-Ort.Mat 6 (deg Iso-Iso.Mat Ort-Ort.Mat
0* .634439 .6344413 0 1.503408 1.503400
10 7468052 7468115 -10 1.302192 1.302208
20 .8190195 .8190226 —-20 1.064251 1.064264
30 .8481339 .8481356 —30 .8146014 .8146035
40 .8359575 .8359596 —40 5795064 5794959
50 .7908002 .7907966 —50 .382161 .3821618
60 7287843 7287816 —60 2386282 .2386150
70 6730161 6730131 -70 .1543843 .1543860
80 .6487839 .6487848 —80 1229814 .1229963
90 .6748663 .6748638 —90 1271673 1271672
100 7547211 7547229 —100 1428393 1428359
110 .8735087 .8735143 —110 1447629 1447555
120 1.00348 1.003481 -120 1124064 1124141
130 1.114235 1.114237 —-130 0342066 0341946

140 1.181642
150 1.191849
160 1.14096
170 1.032682
180 .8758961

1.181642 —140
1.191844 -150
1.140951 -160
1.032665 —170

.8758781 —180

—.0908023 —.0908047
—.2536999 —.2537051
—.4382891 —.4383058
—.6245366 —.6245342
—.7919333 —.7919445

Appendix

 Properties of isotropic-isotropic bimaterial:
Cs/Cs1=2, v1=0.3, v,=0.2, p;=p,, r=0.01.
 Properties of orthotropic-orthotropic bimaterial:
Csr/Cs1=2, v 11=0.3, v 1,=0.2, p1=p,, r=0.01

ELl . ETl . GLT1: 2.6000001:2.6: 1!CS|(:( \ GLT/p)k
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ELZ : ETZ:GLT2: 9600001964,E: K| / \ 2mr
A= U= 90 deg

E., Er, G.1, andy {(—&7/e.) are elastic constants and Pois-
son’s ratio,L and T are, respectively, the fiber direction and the
transverse direction to the fiber, whiteis the angle of the fiber
direction with respect to the crack direction. The above orthotro-
pic materials are almost like the isotropic ones i and mg

~i in ¢/C4=0). As shown in Table 1, when the orthotropic
materials have isotropic characteristics, the fields derived in this
study are the same as the Dend'g]) results of the interfacial
propagating crack in isotropic bimaterials.
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