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Asymmetric Four-Point Crack
Specimen

M. Y. He
Materials Engineering Department, University of
California, Santa Barbara, CA 93106

J. W. Hutchinson
Fellow ASME, Division of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138

Accurate results for the stress intensity factors for the asymme
four-point bend specimen with an edge crack are presented
basic solution for an infinitely long specimen loaded by a const
shear force and a linear moment distribution provides the ref
ence on which the finite geometry solution is based.
@S0021-8936~00!03601-1#

This note was prompted by a comparison~@1#! of existing nu-
merical solutions~@2–4#! for the crack specimen known as th
asymmetric four-point specimen shown in Fig. 1. Discrepanc
among the solutions are as large as 25 percent within the pa
eter range of interest. Moreover, in some instances the full se
nondimensional parameters specifying the geometry~there are
four! have not been reported. The specimen has distinct ad
tages for mixed mode testing, including the determination
mixed mode fatigue crack thresholds. Here a new fundame
reference solution is given for a infinitely long cracked specim
subject to a constant shear force and associated bending mo
distribution. The small corrections needed to apply this solution
the finite four-point loading geometry are included.

By static equilibrium~the configuration in Fig. 1 is statically
determinant!, the shear force,Q, between the inner loading point
and the bending moment,M, at the crack are related to the forc
P, by ~all three quantities are definedper unit thickness!:

Q5P~b22b1!/~b21b1! and M5cQ. (1)

Consider first the reference problem of an infinite specim
with crack of lengtha subject to a constant shear forceQ and
associated linearly varying bending momentM. In the absence of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Feb. 22, 1999. Associate Technical Editor: A. Needleman.
Copyright © 2Journal of Applied Mechanics
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the crack, the exact solution for the cross section has a parab
distribution of shear stress proportional toQ and a linear variation
of normal stress proportional toM ~@5#!. By superposition of these
two contributions, the solution for the intensity factors in the pre
ence of the crack can be written exactly in the form

K I
R5

6cQ

W2 ApaFI~a/W! (2a)

K II
R5

Q

W1/2

~a/W!3/2

~12a/W!1/2 F II~a/W! (2b)

where, anticipating the application, we have takenM5cQ at the
crack. The solution~2a! is the same as that for a pure moment.
has been obtained numerically to considerable accuracy. T
et al. @6# give

F IS a

WD5A2W

pa
tan

pa

2W

0.92310.199S 12sin
pa

2WD 4

cos
pa

2W

for 0<
a

W
<1 (3a)

while Murakami@7# gives

F IS a

WD51.12221.121S a

WD13.740S a

WD 2

13.873S a

WD 3

219.05S a

WD 4

122.55S a

WD 5

for
a

W
<0.7. (3b)

The second solution~2b! is not in the literature.
Finite element analyses of the reference problem have b

carried out to obtain bothF I ~as a check! andF II . Our results for
F I agree with~3b! to four significant figures over the entire rang

icsFig. 1 Geometry of the asymmetric bending and shear
specimen
000 by ASME MARCH 2000, Vol. 67 Õ 207
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of a/W indicated. Equation~3a! appears to be less accurate ov
this same range~with error less than two percent!, but it can be
used fora/W.0.7. The same finite element meshes were use
computeF II . The following polynomial representation was o
tained by fitting the numerical results:

F IIS a

WD57.26429.37S a

WD12.74S a

WD 2

11.87S a

WD 3

21.04S a

WD 4

for 0<
a

W
<1. (4)

This result is believed to be accurate to within one percent o
the entire range ofa/W. The results of Suresh et al.@4# deter-
mined for a specific choice of the other dimensional parameter
the finite geometry are in good agreement with~4!.

Without loss of generality, the solution for the asymmetrica
loaded specimen in Fig. 1 can be written as

K I5
6~c2c0!Q

W2 ApaFI~a/W! (5a)

K II5
hQ

W1/2

~a/W!3/2

~12a/W!1/2 F II~a/W! (5b)

where, in general,c0 /W andh are functions ofa/W, c/W, b1 /W,
andb2 /W. The mode I stress intensity factor is not precisely ze
whereM50, motivating the introduction ofc0 . The representa-
tion ~5! is chosen because it reduces to the reference solu
(c0 /W50,h51) when the loading points are sufficiently far fro
the crack. The finite element results presented below indicate
reference solution is accurate to within about two percent as l
as the distance of nearest loading point to the crack is greater
1.4W.

Fig. 2 Location of the crack for pure mode II at its tip „aÄ1…

Fig. 3 Correction factor for mode II intensity factor „aÄ1…
208 Õ Vol. 67, MARCH 2000
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Figure 2 displays the dependence ofc0 /W on a/W for three
values ofb1 /W and a[(b22b1)/W51. This was computed as
thec/W at whichK I50. If the moment at the crack vanishes~i.e.,
c50!, the mode I factor can be significant when the loadi
points are near the crack. For example, for the extreme, but
entirely unrealistic case, whereb1 /W50.6,a51, a/W50.2, and
c50, the mode mixity,c5tan21(KII /K I), is 65 deg instead of 90
deg.

Variations of the mode II correction factorh with a/W for
severalc/W are shown in Fig. 3 forb1 /W51.0 anda51. The
error is largest for short cracks and for cracks on the order o
distanceW from the closest loading point. Curves correspondi
to constant values of the correction factor are plotted in Fig
with c/W50.2 anda51. If the combination (b1 /W,a/W) lies
above the curve, the correction factor will be smaller than
correspondingh.

Finally, the effect of the parametera5(b22b1)/W is dis-
played in Fig. 5 by normalizing each of the respective stress
tensity factors by the reference value from~2!. These results have
been computed withb1 /W51.4 andc/W50.2. The error in the
reference values is less than roughly 2 percent whena.0.5.

The plots in Figs. 2–5 provide guidance for either:~i! ensuring
the test parameters are such that the reference solution~2! can be
used with confidence, or~ii ! estimating the corrections to the re
erence solution using~5!. As long as the distance between th
crack and the nearest loading point is greater than about 1W

Fig. 4 Error boundaries for mode II stress intensity factor of
two percent and four percent for „aÄ1… for the reference solu-
tion „2…. Combinations „aÕW,b 1 ÕW… lying above a boundary
have smaller error.

Fig. 5 Role of aÄ„b 2Àb 1…ÕW in error of the reference solution
„2… for b 1 ÕWÄ1.4 and c ÕWÄ0.2
Transactions of the ASME
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~i.e., (b12c)/W.1.4 withb2.b1! the reference solution is accu
rate to within a few percent. The errors in the reference solu
are the smallest for deep cracks, i.e.,a/W>0.5.
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Large Shearing of a Prestressed Tube
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This study is devoted to a prestressed and hyperelastic tube
resenting a vascular graft subjected to combined deformatio
The analysis is carried out for a neo-Hookean response a
mented with unidirectional reinforcing that is characterized by
single additional constitutive parameter for strength of reinforc
ment. It is shown that the stress gradients can be reduced
presence of prestress.@S0021-8936~00!00101-X#

1 Introduction
Mechanical properties are of major importance when selec

a material for the fabrication of small vascular prostheses.
operation and the handing of prostheses vessel by surgeons, o
one part, the design of such grafts, on the other, induce spe
loading and particularly boundary or initial conditions. Cons
quently, the interest in developing a theoretical model to desc
the behavior of the prostheses vessel is proved~@1#!. In this paper,
we consider a thick-walled prestressed tube, hyperelastic, tr
versely isotropic, and incompressible assimilated to a vessel g
We give an exact solution of the stress distributions when the t
is subjected to the simultaneous extension, inflation, torsion,
muthal, and telescopic shears~@2–10#!. The first theoretical re-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
24, 1998; final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carro
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sults, in the case of a silicone tube, indicate that the increas
prestress minimizes the stress gradients due to the effects o
shear.

2 Model Formulation
Consider a nonlinearly elastic opened tube defined by the a

v0 ~Fig. 1!. Let us suppose that the tube undergoes two succes
deformations; first, including the closure of the tube which
duced residual strains~@11#! and second, including inflation, ex
tension, torsion, azimuthal and telescopic shears. The mappin
described by

r 5r ~R! u5S p

v0
Dv1faZ1Q~r ! z5laZ1D~r ! (1)

where (R,v,Z) and (r ,u,z) are, respectively, the reference an
the deformed positions of a material particle in a cylindrical s
tem. f is a twist angle per unloaded length,a and l are stretch
ratios~respectively, for the first and the second deformation!, Q is
an angle which defined the azimuthal shear, andD is an axial
displacement which defined the telescopic shear.

It follows from ~1! that the physical components of the defo
mation gradientF has the following representation in a cylindric
system:

F5F ṙ ~R! 0 0

r ~R!Q̇~r ! ṙ ~R!
r ~R!

R

p

v0
rfa

Ḋ~r ! ṙ ~R! 0 al

G (2)

where the dot denotes the differentiation with respect to the a
ment.

Incompressibility then requires thatJ[detF51, which upon
integration yields

r 25r i
21

v0

pal
~R22Ri

2! (3)

whereRi andr i are, respectively, the inner surfaces of the tube
the free and in the loaded configurations~Re and r e are the outer
surfaces!.

The strain energy density per unit undeformed volume for
elastic material, which is locally and transversely isotropic ab
the t(R) direction, is given by

W5W~ I 1 ,I 2 ,I 3 ,I 4 ,I 5! (4)

where

I 15TrC, I 25
1
2@~TrC!22TrC2#, I 351,

I 45tCt , I 55tC2t (5)

are the principal invariants ofC5F̄F which is the right Cauchy-
Green deformation tensor~F̄ is the transpose ofF!.

The corresponding response equation for the Cauchy stres
for transversely isotropic incompressible is~see@12#!

s52p112@W1B2W2B211I 4W4T ^ T

1I4W5~T ^ B"T1T"B^ T!# (6)

whereB5FF̄ is the left Cauchy-Green tensor,1 the unit tensor,
and p the unknown hydrostatic pressure associated with
incompressibility constraint,Wi5(]W/]I i) ( i 51,2,4,5) and
T5(1/AI 4)Ft.

From ~6!, the equilibrium equations in the absence of bo
forces are reduced to

ds rr

dr
1

s rr 2suu

r
50 (7a)r.

ll.
MARCH 2000, Vol. 67 Õ 209
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ds ru

dr
1

2s ru

r
50 (7b)

ds rz

dr
1

s rz

r
50. (7c)

Suppose thatQ and D satisfy the following boundary condi
tions: ~a! Q5Q i , D5D i in r 5r i and ~b! Q5Qe , D5De in r
5r e . Then, a simple computation by integrating~7b! and ~7c!
gives the expression ofQ andD.

Integrating~7a!, given the boundary conditions thats rr (r i)5
2pi ands rr (r e)50, and takingt(R)5tv(R)ev1tZ(R)eZ and us-
ing ~3! yields the pressure fieldp:
, MARCH 2000 Copyright © 2
p~r !5pi12W1S Rv0

rpal D 2

22W2f ~r !1E
r i

r s rr 2suu

s
ds

(8a)

where

f ~r !5Ḋ2~r !F 1

~al!2 1S Rv0f

pl D 2G
1Q̇2~r !S Rv0

p D 2

22
Q̇~r !Ḋ~r !fv0

2

ap
1S rpal

Rv0
D 2

.

(8b)
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Fig. 2 Azimuthal stresses distribution inside the wall without fibers „stresses normalized by s r u„r e…, mÄ0.166 Mpa,
p iÄ0.0133 Mpa, t iÄ2 mm, teÄ3 mm …
000 by ASME Transactions of the ASME
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The expressions ofQ, D, andp determine all the components o
the Cauchy stress tensors.

3 Results
To illustrate the response of the proposed model, we use

extended Mooney Rivlin strain energy function which represe
the behavior of a prosthesis~@13#! constituted of a silicone matrix
and textile fibers,

W5W~ I 1 ,I 4!5
m

2
~ I 123!1

Ef

8
~ I 421!2, (9)

wherem is the shear modulus of the isotropic matrix at infinite
mal deformations andEf is the elastic modulus of the fibers.

The local tangent vector of the fibers is chosen here ast(R)
5cosg(R)ev1sing(R)eZ that represent a helical distribution o
fibers ~@1#!.

From Eqs.~7b!, ~7c! and using~3! it easily follows that the
expressions ofQ andD are

Q~r !5~Qe2Q i !

logF r

r iA11k~r 22r i
2!
G

logF r e

r iA11k~r e
22r i

2!
G 1Q i (10)

D~r !5~De2D i !
log@11k~r 22r i

2!#

log@11k~r e
22r i

2!#
1D i (11)

wherek5pal/Ri
2v0 .

As an illustrative result, we focus our attention only when t
tube is submitted to azimuthal shear strain. Figure 2 shows
distribution of circumferential stresses generated by applied ex
urnal of Applied Mechanics
f

the
nts

i-

f

e
the
ter-

nal azimuthal strain at a given pressure when taking into acco
the effects of such residual stresses. We show clearly that a
crease inv0 angle helps to distribute stresses in the loaded s
when the shear is important. This result does not change qua
tively when varying the pressurepi .

Furthermore, the particular effects of the presence of fib
have been examined with a linear distribution of fiber orientat
within the data rangeg(Ri)5240 deg andg(Re)540 deg. As
illustrated in Fig. 3, it is shown here that the effects of the a
muthal shear upon the distribution of the circumferential stres
within the wall become significant. When the tube is prestress
the stresses are also distributed. Clearly these results will be
to help the design and fabrication of a small vascular prosth
~@1#!.
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Mécanique d’une Structure Polyme´rique: Aide àla Conception de Prothe`ses
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Buckling of a Short Cylindrical
Shell Surrounded by an
Elastic Medium

S. Naili
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Laboratoire de Me´canique Physique, UPRES-A CNRS
7052, Universite´ Paris XII, Val de Marne, Faculte´
des Sciences et Technologie, 61, avenue du Ge´néral de
Gaulle, 94010 Cre´teil Cedex, France

The lateral surface of a cylindrical structure, which is compos
of a thin tube embedded in a large outer medium, is submitte
a uniform external pressure. The buckling pressure of suc
structure, corresponding to a low flexural state of the inner tu
wall, is theoretically analyzed on the basis of the asympto
method. The theoretical results are compared with experime
ones obtained from a compression test realized on an elastic
inserted in a foam. It is found that the Euler pressure and
associated buckling mode index strongly depend upon the r
logical and geometrical parameters of both the tube and the s
rounding medium.@S0021-8936~00!00201-4#

1 Formulation of the Problem and Buckling Study
A nonhomogeneous cylindrical structure composed of a t

shell inserted in a surrounding elastic medium was subjected
state of plane strain by external pressurization and zero axial
gitudinal displacement constraint. The onset of the buckling p
cess for such a structure was analyzed. The theoretical re
were compared with original experimental ones as derived fro
hoop compression test which was conducted with elastic rub
tubes embedded in foamy materials.

Thus, we consider the mechanical behavior of a cylindri
nonhomogeneous structure made of an internal shell confined
large outer medium, the whole structure being submitted to a
form pressurep on its external lateral surface. Each solid is ela
tic, cylindrical—of same axis—with a circular cross section in t
reference configuration. In this configuration, the mean radiu
the shell is denoted asr 0 . The outer radiusr ` of the medium is
assumed to be very large compared tor 0 . We will denote ase0
the thickness of the shell. The two solids have the same he
which is small in comparison withr ` . The outer lateral boundary

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
12, 1999; final revision, July 22, 1999. Associate Technical Editor: S. Kyriadide
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of the medium is subjected to a uniform pressurep. We assume
frictionless contact between the two tubes. Body forces and ine
effects are deemed to be negligibly small.

The work of Forrestal and Herrman@1# presents solutions for
both bonded and smooth conditions at the shell-medium interf
it includes a geometrically nonlinear formulation for both the sh
and the medium. Moore and Booker@2# presented the linear ap
proximation of Forrestal and Herrman’s formulation. The physi
unknowns which are involved in these theoretical formulations
the buckling pressure of the shell in the first work and the ho
compression stress inside this shell in the second one.

In the present work, we use the dimensionless buckling p
sure of the overall structure consisting of the shell and surrou
ing medium developed by Razakamiadana et al.@3# and which is
given by the relation

p̄5n2211
b̄

n221
, (1)

where the dimensionless variables are given as follows:

p̄5ap
r 0

3

D
, b̄5b

r 0
4

d
,

and whereD5E1e0
3/12(12n1

2) is the flexural rigidity modulus of
the shell,E1 andn1 being, respectively, its Young’s modulus an
its Poisson’s ratio, while the indexn characterizes the buckling
mode. The parametersa andb are defined by

a5

Fl212m2

l21m2
G S 2

e0

r 0
D

12S 122
e0

r 0
D F12

m2

m1
G1

m2

l11m1

,

b52
m2

r 0
~l21m2!F n221

n~l212m2!1m2
G ,

in which the Lame’s parameters of the shell and of the medi
are denoted byl1 ,m1 andl2 ,m2 , respectively.

In this study, we were interested in the smallest value of
buckling pressure—the Euler pressure—, while varying the ind
n associated with the buckling mode; such a mode index cha
terizes the number of axes of symmetry in the actual configu
tion. Indeed, this minimal pressure is the most frequently
served experimentally while applying incremental loading to
structure. This pressure is expressed as

pe5min
n>2

F 1

a S ~n221!
D

r 0
3 1

br 0

n221D G . (2)

b.
s.

Fig. 1 Experimental apparatus for hoop compression tests.
The tube inserted in the foam medium is in a buckled state with
index of buckling mode equal to two.
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Table 1 Experimental and theoretical results of Euler pressure normalized by E2 and index of
buckling mode n associated for various dimensionless mechanical and geometrical param-
eters

Experiment Theory
Ē E2 ~kPa! ē e0 ~mm! pe /E231022 n pe /E231022 n

14.50 100 0.078 1.00 (8.6960.80) 6 8.39 6
14.50 100 0.189 2.40 (15.3462.19) 2 13.00 2
26.07 79 0.037 0.46 (4.2160.40) 4 4.21 6
28.70 100 0.105 1.30 (11.0061.00) 4 9.80 4
28.70 100 0.136 1.75 (12.8960.92) 3 12.05 3
28.86 79 0.032 0.40 (3.9860.33) 3 4.87 6
28.86 79 0.070 0.90 (6.1360.63) 2 7.65 5
29.85 69 0.037 0.46 (4.6660.78) 4 5.24 6
33.00 69 0.032 0.40 (4.2160.21) 3 4.79 6
33.00 69 0.070 0.90 (6.1060.31) 2 7.69 5

158.46 13 0.037 0.46 (11.7663.69) 3 7.60 3
175.38 13 0.070 0.90 (17.6960.10) 2 9.61 2
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It is to be noted here that a classical case corresponds to
particular condition of an external incompressible fluid—i.e.,m2
50 andl2→`—surrounding the shell, so thata51 andb50 in
relations~1! and ~2!.

2 Experimental Procedure
Hoop compression tests were performed on a cylindrical st

ture with a circular cross section composed by a thin rubber sh
of external radiusr e513 mm which was inserted in a large foa
medium of external radiusr `5110 mm. Both tubes had a heigh
H530 mm. The thin rubber shell was slightly stressed when
serted within the foam medium in order to establish a good c
tact between the two solids.

A steady loading was applied on the external lateral wall of
surrounding foam medium by means of a tire inner tube conne
to a standard pressurization system. The plane strain of the s
ture was obtained by maintaining it between two circular a
polished PMMA transparent plates. In order to avoid signific
friction between the foam and the plates, the lower and up
faces of the foam were sprinkled with talc powder.

The applied pressure was measured by using a mer
U-manometer graded every 1 mm in height with a maximum re
ing error estimated at about 0.5 mm. When the buckling pres
is ‘‘very low,’’ the relative accuracy of the pressure measurem
was estimated at about seven percent. But, in 90 percent o
cases, the measured pressure was about 50 mm Hg and the
tive uncertainty of measurement was estimated, on average,
one percent.

With this experimental setup, several tests of compression w
conducted on the structure with given geometrical and mechan
characteristics. The tested structure was submitted to a gra
and slow loading so that, for each step, the system can be co
ered in stationary equilibrium state. The shape of the cross sec
of the shell remains circular before undergoing a change of sh
We monitored the evolution of shape with a CCD camera vid
placed on the axis of the tubes—see Fig. 1.

The thicknesse0 of the shell, in its reference configuration, wa
inferred from the mean value of the measurements conducted
a micrometer at various locations on the wall. The variatio
around the mean value were found to be in the order of
percent. The values of Young’s modulus of the shell and of
medium were derived from traction and compression tests, res
tively applied on samples of the constitutive materials. In the d
ferent experimental setup, four types of latex foam media w
different Young’s modulus and Poisson’s ratio were combin
with tubes made of various PCP, PCV, or latex materials hav
different characteristic mechanical properties as indicated in T
1. For the deformations up to ten percent each Young’s mod
was evaluated with a maximum error of five percent. Besid
these tests have shown that the Poisson’s ratio of the shell
Copyright © 2ied Mechanics
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about 0.5—, i.e., the material is incompressible—whereas
Poisson’s ratio for the foam media were around zero.

Next, the video images were digitized and then automatica
processed using a global thresholding method so as to quantify
inner cross section area of the inserted tube and to characteriz
shape. In the extreme case corresponding to a significant varia
of this shape, the relative uncertainty of area measurement
estimated to be of the order of two percent. Indeed, when
structure is submitted to a gradual and slow loading, we retai
as Euler pressurepe , the one which corresponds to a clear chan
in the inner cross section area, as discussed later on.

For a given structure, the measurement of the buckling pres
was repeated ten times at least and the relative gap compar
the mean value varies between 1 percent and 30 percent.

3 Analysis and Discussion
We show, in columns 5 and 6 of Table 1, the experimen

results obtained on 110 tests implying 12 structures of differ
geometry and elastic properties. The results are discussed by u
the dimensionless geometrical and mechanical parameteē
5e0 /r 0 andĒ5E1 /E2 in the case of rather thin tubes and exte

Fig. 2 Top view of the test cell giving an illustrative example
of the tube inserted in the foam medium in a buckled state with
index of buckling mode equal to four. Circular windows—with a
radius in the order 30 mm—were cut on the top and bottom of
the PPMA container for a better definition of the image during
the recording.
000 by ASME MARCH 2000, Vol. 67 Õ 213
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nal foamy material softer than the rubbery one of the tube. St
ing with Eq. ~2!, we determined the variations of the Euler pre
surepe normalized byE2—denoted asp̄e—as a function ofĒ for
various values ofē. The associated buckling mode indexn then
depends onĒ. It is worth noting that the assessment of the buc
ling pressure in such an experiment was based on the variatio
a global geometrical parameter such as the area of the inte
cross section of the inserted shell—see Fig. 2. Other more se
tive parameters, related to the changes in local shape prope
could, however, be envisaged but their quantification by
image-processing system would have been more difficult
implement.

In columns 7 and 8 of Table 1, the theoretical results are co
pared with experimental ones. These results show that the E
pressures, evaluated theoretically and determined experimen
agree well accounting for the inherent scatter in experime
measurements. Moreover, the mode indexn associated withp̄e
coincides exactly for 50 percent of the cases. Nevertheless,
worth emphasizing that significant differences arised in the c
of very thin tubes for which the mode index are rather high,
large number of lobes being more sensitive to small heterog
ities in material property and geometry. Despite this, the obser
experimental results are, in general, well reproduced by our th
retical model.
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adaptivity easier. Numerical results are presented. A spec
study of interfaces in a Al-SiC composite is given.
@S0021-8936~00!00301-9#

1 Introduction
A great number of recent papers are concerned by the solu

of partial differential equations by wavelet bases~@1,2#!. Mainly,
these works deal with one-dimensional or scalar two-dimensio
problems. The solution of the elastostatics system by this kind
method is not usual~@3,4#!. Boundary problems on open bounde
sets are very difficult to treat~@5#!. Nevertheless, periodic condi
tions on elementary bounded sets are natural for the use of w
let transform. In this paper, we show how to use such a techn
and we give applications to interfaces in Al-SiC composite. In
first section we give the notations and the necessary mathema
background. In the second section we present the mecha
problem: the homogenization of periodic heterogeneous me
The third section is concerned with the algorithm: a wavel
Galerkin method using Daubechies wavelets~@6#!. The determina-
tion of the macroscopic coefficients is treated in the fourth s
tion. Applications and numerical results are described in the fi
section. Concluding remarks are given.

2 Notations and Mathematical Background
In this section, we present the notations used in the following

the paper. The sets of kinematically and statically admiss
fields are denotedH, L, andS. Let

L5~L2~Y!!3 and H5~Hp
1~Y!!2

S5$vPLloc
2 ~Y!,v~x11k1 ,x21k2!5v~x1 ,x2!a.e.,k1 ,k2PK%

(1)

Hp
1~Y!5$vPS, v ,iPL2~Y!, i 51,2%.

u,i denotes thei th partial derivative of the functionu. We de-
noteC the fourth-order elasticity tensor,e the strain tensor, ands
the stress tensor. In the followingY5]0,1@2. To construct a wave-
let basis ofH, we use the compactly supported wavelets int
duced byI. Daubechies@6# which is a basis ofL2(R). These
wavelets are periodized in order to obtain bases ofS. By tensorial
and cartesian products wavelet bases ofH are obtained~@7#!. We
denoteC l , l 51, 2, 3, andC0 the wavelets and the scale function
~six degrees-of-freedom for each point!, Nj52 j21 and L j

5@0,Nj #2.
Let Vj be the subspace of dimension 22 j 11 of H generated by

this wavelet at approximation levelj. An element ofVj max is thus
written as

u~x1 ,x2!5~u1~x1 ,x2!,u2~x1 ,x2!!

ud5 (
kPL j 0

uj 0k
d0 C j 0k

0 1(
l 51

l 53

(
j 5 j 0

j 5 j max

(
kPL j

uj k
dl C j k

l . (2)

j 0 is a given integer,d51 or 2 andk5(k1 ,k2).

3 The Mechanical Problem
We consider a multiphase isotropic elastic composite~Fig. 1!

and we intend to study the behavior of this heterogeneous me
We introduce the notion of equivalent material, i.e., we mean t
under the same loadings, this equivalent material has globally
same response. In former papers~@8,9#! bounds for the bulk and
shear moduli of a two-phase composite have been given. With
going into further detail, these bounds depend on the shear
bulk moduli of the two phases and on the volumic fraction of t
two phases in the composite. In the same way, the theory of
riodic homogenization~@10#! focuses on an idealized composi

r.
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consisting of the juxtaposition of identical heterogeneities a
classically, we need to solve an elastostatics problem on a re
sentative volumeY ~ProblemP!:

Problem. P
EPL be given, finduPH such thata(u,v)5 l (v) ;vPH

with a~u,v !5E
Y
s~u!:e~v !dy5E

Y
C~y!e~u!:e~v !dy

and l ~v !52E
Y
CE:D~v !dy

Because of the nonuniqueness of the solution of problem~P!
~defined within a translation!, problem~P! is replaced by problem
(P«) ~‘‘viscous’’ problem!:
Copyright © 2hanics
nd
pre-
Problem. P«
EPL be given, finduPH such thata«(u,v)5 l (v) ;vPH

with a«~u,v !5E
Y
s~u!:e~v !dy1«E

Y
uvdy

It can be shown that the solution of this problem converg
toward the solution of problem~P! with average equal to zero
~@4#!.
Remarks.

~i! The problem~P! is solved classically by a finite elemen
method or by fast Fourier transform~@11#!. We have chosen to
introduce wavelet methods in order to eliminate the notion
mesh and to eliminate Gibbs phenomena.

~ii ! If the discretization of problem~P! in a orthonormal wave-
by U
niversitat Politecnica C

atalunya user on 13 August 2020
Fig. 2 Wavelet element matrix „ j 0ÄJ , j maxÄJ¿4…
000 by ASME MARCH 2000, Vol. 67 Õ 215
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let basis leads to the systemKU5B, then the discretization o
problem (P«) leads to (K1«Id)U5B, where Id is the identity
matrix.

~iii ! The tensorC could be given by the image~pixels! of the
microstructure.

4 Wavelet-Galerkin Method
The variational problem (P«) is discretized by a Galerkin

method. We have introduced a wavelet basis because of
localization and adaptivity properties. The projection of the pla
elasticity operator into the wavelet basis~@7#! is given by a stiff-
ness matrixK where the ‘‘elementary matrix’’ of order 2 is

K j j 8kk8
l l 8

5FF11111F13211F31121F3322 F12211F13111F32221F3312

F12121F23221F31111F3321 F22221F23121F32211F3311
G

(3)

where

Fpqab5E
Y
CpqC j k,a

l C j 8k8,b
l 8 dx1dx2 .

We have chosen to decompose the tensorC on a wavelet basis
at levelJ notedu. In the numerical applications, Haar wavelet
used with its compact support equal to the square@ l 1/2j ,(l 1

11)/2j #3@ l 2/2j ,(l 211)/2j #. This wavelet is constant on this sup
port which is a pixel of the image representation. Thus, the wa
let coefficientu j l is equal to the value of the tensorC on this
pixel. Due to the form of the wavelets~Cartesian and tensoria
products of one dimensional wavelets! the computation of the
coefficients of the matrixK leads to the determination of eleme
tary terms which are integral of products of three one-dimensio
wavelets and their derivatives:

E
0

1

uJr

dmC js

dxm

dnC j t

dxn , m,n50,1. (4)

These terms are obtained by the determination of eigenvec
of a low-order matrix~@7,12#!. The right-hand side of the problem
corresponding to the terml (v) in problem (P«) is computed by a
similar technique~@4,5#!. Classically, the matrixK is a sparse
matrix ~Fig. 2!. Because of the form of the wavelets bases
seems natural to solve the linear system which is a discret
version of problem (P«) by multigrid techniques~@13,14#!. Nev-
ertheless, we have chosen to use a conjugate gradient metho

5 Determination of the Macroscopic Coefficients
The determination of the elastic macroscopic coefficients c

responds to the computation of the macroscopic stress tensoS:

S5E
Y
~CE1Ce~u!!dx1dx2 . (5)

The computation of these terms is in the same way as the
trix and the right-hand side@4#.

6 Numerical Results
We present the example of a three-phase fiber-matrix compo

~Fig. 3!: SiC for the fiber, Al for the matrix and an interface. Th
Lamé coefficients associated to the interface arelha and mhb

wherehg is the thickness of the interface.a andb are real posi-
tive parameters andg is a given function with a sufficient regu
larity. We have shown in former papers~@15–17#! that whenh
tends to zero, i.e., the thickness and the rigidity parameters
to zero, we obtain an elastostatic limit problem with an interfa
law. This interface law keeps in memory the mechanical and g
metrical properties of the layer. The interface law is given
216 Õ Vol. 67, MARCH 2000
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Table 1 with respect to the value of the parametersa andb. a and
b determine how the thickness and the rigidity tend to zero
is necessary to quantify the limit, in other words we seek
interval in which the initial problem could be approximated b
the limit problem for which the solution is more easy to obta
On the other hand, it is very important to quantify the influen

Fig. 3 Al-SiC composite with an interfacial zone „thickness h…

Fig. 4 Jump of displacement for different values of a and b
„MÄ3…

Table 1 Interface laws

m/e→0 uN50 sT50 sN5
l̄

g
uN sT50 sn50

m/e→m̄ uN50 sT5
m̄

g
uT sN5Sm̄

g
12

l̄

g
DuN sN52

l̄

g
uN

sT5
m̄

g
uT sT5

m̄

g
uT

m/e→` u50 u50 u50
l/e→` l/e→l̄ l/e→0
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of the interface on the macroscopic coefficients, i.e., on the ela
behavior of a structure. Due to the shape and the thickness
the interface this problem is very difficult to treat by classic
techniques.

We present, in Fig. 4, a study of the convergence of the jump
displacement in the interface for the caseg51, for two values of
a and b. l and m are chosen as Aluminum coefficients. In thi
case the jump is equal to zero in the interface law. We have fou
that for values ofh smaller than 0.4 p.c. of the structure th
interface law could be considered as valid. Note that the displa
ment in the interface has the form~@16#! u(r ,u).ru(u)1u0 .
Figure 5 shows the influence of the thickness parameter on
first component of the homogenized elasticity tensor for differe
values ofa and b. For small values of the thickness~h smaller
than 0.2 p.c. of the structure! it is convenient to neglect the inter-
face. Note that for values of the thickness larger than 0.02,
coefficient depends linearly on the thickness.

7 Concluding Remarks
In this paper, we have shown a robust tool to compute t

overall response of a composite. In particular, our method is a
to compute the influence of an interface even at a very small lev
In the future, we want to investigate more complex materials su
random materials~@18#! or other kind of interfaces~@19,20#!.
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Ph.D. thesis, Universite´ Montpellier 2.

@4# Dumont, S., and Lebon, F., 1996, ‘‘Wavelet-Galerkin Method for Heterog
neous Media,’’ Comput. Struct.,61, pp. 55–65.

@5# Dumont, S., and Lebon, F., 1999, ‘‘Wavelet-Galerkin Method for Plane Ela
ticity,’’ Comp. Appl. Math.,18, pp. 127–142.

@6# Daubechies, I., 1992, ‘‘Orthonormal Bases of Compactly Supported Wa
lets,’’ Commun. Pure Appl. Math.,41, pp. 909–998.

@7# Dumont, S., and Lebon, F., 1996, ‘‘Representation of Plane Elastostatics
erators in Daubechies Wavelets,’’ Comput. Struct.,60, pp. 561–569.

@8# Hashin, Z., and Strickman, S., 1963, ‘‘A Variational Approach to the Theo
of the Elastic Behavior of Multiphase Materials,’’ J. Mech. Phys. Solids,11,
pp. 127–140.

@9# Hill, R., 1964, ‘‘Theory of Mechanical Properties of Fiber-Strenghened Mat
rials,’’ J. Mech. Phys. Solids,12, pp. 199–212.

@10# Bensoussan, A., Lions, J. L., and Papanicolaou, G., 1978,Asymptotic Analysis
for Periodic Structures, 1st Ed., North-Holland, Amsterdam.

Fig. 5 Homogenized coefficient for different values of a and b
„MÄ3…
Journal of Applied Mechanics
stic
of

al

of

s
nd

e
ce-

the
nt

the

he
ble
el.
ch

wo

elet
’’

e-

s-

ve-

Op-

ry

e-
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On the Original Publication of the
General Canonical Functional
of Linear Elasticity

C. A. Felippa
Mem. ASME, Department of Aerospace Engineering an
Center for Aerospace Structures, University of
Colorado, Boulder, CO 80309-0429

The general canonical functional of linear elastostatics is asso
ated with the names of Hu and Washizu, who published it in
pendently in 1955. This note discusses how that functional,
generalized four-field form, had been derived by B. M. Fraeijs
Veubeke in a 1951 technical report. This report presents five
the seven canonical functionals of elasticity. In addition to t
general functional, it exhibits what is likely the first derivation
the strain-displacement dual of the Hellinger-Reissner function
The tour of five variational principles takes only a relatively sm
portion of the report: 8 pages out of 56. The bulk is devoted to
use of energy methods for analysis of wing structures. The t
technology focus, and limited dissemination may account for
subsequent neglect of this original contribution to variational m
chanics.@S0021-8936~00!00401-3#

Introduction
The three-field canonical functional of linear elastostati

herein abbreviated to C3FLE, is identified as the Hu-Wash
functional in the mechanics literature. In this functional the thr
interior fields, displacements, stresses, and strains, are inde
dently varied. The attribution is supported by two independ
publications that appeared concurrently, in Mar. 1955~@1,2#!. A
four-field generalization, in which surface tractions are indep
dently varied, will be called C4FLE.

An expository article~actually a book chapter! by Fraeijs de
Veubeke@3# is often cited as one of the early classics in the fin
element literature. That article contains the first enunciation of
‘‘limitation principle,’’ which has since served as guide in th
construction of mixed elements. His exposition of variation

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
22, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: M. Ortiz.
MARCH 2000, Vol. 67 Õ 217
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methods starts from the C4FLE functional, which he calls ‘‘t
general variational principle.’’ However, it does not reference
and Washizu as its source but an earlier technical report, wri
in French~@4#!. This appears as the third reference in the 19
article.

A subsequent journal paper on variational principles,@5#, is
slightly more explicit. It begins: ‘‘There is a functional that ge
erates all the equations of linear elasticity theory in the form
variational derivatives and natural boundary conditions. Its or
nal construction @12# followed the method proposed b
Friedrichs . . . ’’ The reference number points to that report.

These references motivated the writer to investigate whethe
Veubeke had indeed constructed that functional in the 1951
port. That would confer him priority over Hu and Washizu, a
though of course these two papers were more influential in s
sequent work. The writer was able to procure an archived c
thanks to Profs. Beckers and Geradin of the University of Lie`ge,
where Fraeijs de Veubeke was a professor of aeronautical e
neering from the early 1950s until his untimely death in 1977

Construction of the C4FLE Functional
As discussed below, in the 1951 report Fraeijs de Veub

constructs not simply the canonical three-field principle, but
four-field generalization C4FLE. Consequently his priority is e
tablished unless an earlier publication can be found. The fu
tional, however, appears as an intermediate result on the
from the total potential energy~TPE! to the total complementary
energy~TCE! principle. The path also traverses a pair of two-fie
functionals, one being a generalization of the Hellinger-Reiss
~HR! functional published the previous year by Reissner@6#. The
full sequence can be sketched as

TPE→C4FLE→Strain-displacement dual of HR→HR→TCE.
(1)

The report does not call special attention to C4FLE, as well a
the strain-displacement functional that appears there for the
time. The bulk of the material is indeed devoted to the study
energy-based approximation methods for the analysis of mo
coque wing structures, rather than to the derivation of new fu
tionals. Its title, technology focus, and target audience~structural
engineers! are likely responsible for subsequent neglect. This
reinforced by its limited dissemination and the fact that the ma
rial was apparently not submitted to an archival journal.

Fraeijs de Veubeke uses the full-component notational fo
popularized by Timoshenko and others, which was then comm
in continuum mechanics. For historical accuracy this will be f
lowed below until Eq.~10!, at which point it is changed to moder
indicial notation for compactness. The equations taken from
report have been sequentially renumbered.

The report comprises three chapters. The last two, which
with the title application, are of no concern here. Chapter I beg
by summarizing the field equations of linear elastostatics fo
three-dimensional body of volumeV and surfaceS. The fields in
V are displacementsu, v, w, body forcesX̄, Ȳ, Z̄, infinitesimal
strainsex ,gxy , . . . ,ez and stressessx ,txy , . . . ,sz . The surface
S is divided intoS1 , on which tractionsp̄x , p̄y , p̄z are known,and
S2 , on which displacementsū, v̄, w̄ are prescribed. The directio
cosines of the exterior normal toS are denoted byl, m, n.

As starting point for the variational developments~Chapter I, p.
6! Fraeijs de Veubeke exhibits the TPE principle:

dF E
V
W dV1PV1PSG50. (2)

HereW is the internal energy density in terms of displacemen
whose first variation is

dW5sxd
]u

]x
1txydS ]u

]y
1

]v
]xD1¯1szd

]w

]z
(3)
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and PV and PS are potentials of the body~volume! forces and
surface tractions, respectively,

PV5E
V
~X̄u1Ȳv1Z̄w!dV (4)

PS5E
S1

~ p̄xu1 p̄yv1 p̄zw!dS. (5)

Fraeijs de Veubeke presents the well-known Euler equation
the TPE principle. Next~on p. 8! he recasts the internal energ
density in terms of strains:W5W(e) so that the variation be-
comes

dW5sxdex1txydgxy1¯1szdez . (6)

Following that he states that to free~‘‘libé rer’’ ! strains from the
strain-displacement constraints and the boundary displacem
from the prescribed displacement constraints, one must add to
expressions to be varied the volume term

E
V
FTxxS ]u8

]x
2exD1TxyS ]u8

]y
1

]v8

]x
2gxyD1¯GdV (7)

in which (Txx ,Txy , . . . ) areLagrange multipliers inV, as well as
the surface term

E
S2

@ax~ ū2u!1ay~ v̄2v !1az~w̄2w!#dS (8)

in which (ax ,ay ,az) are multipliers onS2 . The displacements in
~7! are marked by a prime to emphasize that the variations of
strains have become independent of the displacement gradie

Fraeijs de Veubeke states on p. 9 that this expanded functi
is subject to 18 independent variations: three displacements
strains, sixT multipliers, and threea multipliers. He had noted
earlier~on p. 8! that variations with respect to the strains inV give
as Euler equations

Txx5
]W

]ex
, Txy5

]W

]gxy
. . . (9)

whereas variations with respect to the displacements onS2 give as
Euler equations

ax5 lTxx1mTxy1nTxz , . . . . (10)

Hence theT multipliers form a stress system whereas thea mul-
tipliers form a system of surface tractions. Fraeijs de Veub
denotes these ass8 andp8 in later publications, such as the cite
1965 article.

Except for PV and PS , Fraeijs de Veubeke does not defin
global symbols to identify his integrals. For convenience we re
edy that omission by callingUe5*VW(e)dV and identifying Eqs.
~7! and ~8! by DV andDS , respectively, whereD stands for the
term ‘‘dislocation potential’’ now in vogue. We can thereby co
lect all the pieces into one compact expression:

d@Ue1DV1PV1PS1DS#50. (11)

The expression in brackets is the C4FLE functional, which
indicial notation can be compactly presented as

P~ui ,s i j ,e i j ,t i !5E
V
@W~e i j !1s i j ~u~ i , j !2e i j !2 f iui #dV

2E
S1

t̄ iuidS2E
S2

t i~ ūi2ui !dS (12)

in which u( i , j ) denotes the symmetric gradient of the displacem
field. The three-field standard form C3FLE is obtained by sett
t i5s i j nj on S2 a priori. A variant of C3FLE involving stress
derivatives, displayed for example in Gurtin@7# follows from in-
tegration by parts.
000 by ASME Transactions of the ASME
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A Strain-Displacement Functional
Continuing along the path~1!, Fraeijs de Veubeke replaces th

multipliers in ~7! and~8! by ~9! and~10!, respectively, and exhib
its on p. 9 a two-field functional in which strains and displace
ments are primary variables. His full form expression is fai
long. In indicial notation it becomes

P~ui ,e i j !5E
V
FW~e i j !1

]W

]e i j
~u~ i , j !2e i j !2 f iui GdV

2E
S1

t̄ iuidS2E
S2

]W

]e i j
nj~ ūi2ui !dS (13)

in which for linear elasticity]W/]e i j is understood to beEi jkl ekl .
Now ~13! is the stress-strain dual of Hellinger-Reissner~HR! but
has escaped a name.

In an expository article~@8#!, the writer called it ‘‘Strain-
Displacement Reissner’’ following Oden and Reddy@9# who la-
beled it a Reissner functional when constructed as a member
canonical set of elasticity functionals~@10#!. However, in a 1995
letter to the writer, Professor Reissner indicated that he had
considered that form. This functional has had little use in mech
ics until assumed-strain finite elements began appearing in
1980s.

Again, Fraeijs de Veubeke uses Eq.~13! only as an intermedi-
ate result. He applies a Friedrichs-style Legendre transforma
to it and arrives on p. 10 at a generalized form of the Helling
Reissner~HR! functional. He remarks that it had been publish
by Reissner@6# but that the rederived form is slightly more ge
eral in that it includes body forces as well as prescribed nonz
displacements.

The remainder of Chapter I~pp. 11–18! is devoted to the deri-
vation of the TCE functional from HR, and the energy theore
of Castigliano and Menabrea. Even for this better known mate
Fraeijs de Veubeke displays a mastery of variational techniq
unusual for the times. For example, several textbooks
thoughtlessly lift Castigliano’s second theoremui5]U(s)/]Fi
from trusses and frameworks to three-dimensional solids. Th
incorrect because the displacement under a concentrated lo
infinite. He carefully regularizes the singular energy integral
fore stating the theorem.

Conclusions
The 1951 report provides concrete evidence that Fraeijs

Veubeke preceded both Hu and Washizu in the publication of
C4FLE functional. Furthermore, he appears to have been the
to construct a strain-displacement dual of the HR function
Hence it seems fair to propose

1 that the canonical functional~12! be identified as the Fraeij
de Veubeke-Hu-Washizu functional.

2 that the hitherto anonymous strain displacement functio
~13! be named after Fraeijs de Veubeke. This functional was c
structed independently more than 20 years later by Oden
Reddy@10#.

Some historical questions remain, perhaps as curiosities fo
ture science historians.

Fraeijs de Veubeke was a visiting professor at MIT duri
1952, the year following publication of the report examined he
Washizu’s publication is an MIT report dated Mar. 1955. Prof
sor Pian~private communication! has indicated to the writer tha
direct or indirect influence is unlikely, since Fraeijs de Veube
was only a summer visitor.

The writer has not seen Washizu’s 1955 report. However, in
early edition of his well-known monograph~@11#! the derivation
of the C4FLE functional on pp. 31–34 closely follows Fraeijs
Veubeke’s, as readers may verify. The similarity of Hu’s a
Washizu’s paper titles is also puzzling.
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Fraeijs de Veubeke does not reference Hu or Washizu in an
the papers reprinted in the Memorial Volume@12#. He acknowl-
edges Friedrichs, Courant, Hilbert, Prager, Reissner, and Pian
the other hand, he does not explicitly claim priority for the resu
discussed here. Perhaps he felt that the derivation of new fu
tionals was not the focus of the 1951 report. And indeed it w
not. The tour of five variational principles takes 8 pages out of
In contrast, the titles of the contributions of Hu and Washi
expressly state that to be the main objective. The writer’s opin
is that Fraeijs de Veubeke’s personality would militate agai
engaging in controversy. An aristocrat by birth and gentleman
nature, he never displayed greed for priority and recognition.
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Logarithmic Stress Singularities
Resulting From Various Boundary
Conditions in Angular Corners
of Plates Under Bending
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This note considers the occurrence of pure logarithmic singula
ties in angular elastic plates under bending within the context
classical theory. By paralleling the development of requireme
for logarithmic singularities for plates in extension, requiremen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
18, 1999; final revision, Oct. 19, 1999. Associate Technical Editor: J. R. Barbe
MARCH 2000, Vol. 67 Õ 219



c
t

s
h

n

c
c

i

t

o

e

T

a

n
F

f
ion

of

s

is-
dy

ant-
ear

e
ent/
dary

y

.
er.
ns

eous

y a

For
es in

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/67/1/217/5466233/207_1.pdf by U
niversitat Politecnica C

atalunya user on 13 August 2020
for log singularities in bending are developed, both for homog
neous boundary conditions on plate edges and for inhomo
neous. Using these singularity requirements, some 50-odd
figurations with log singularities are identified, the great majori
being for inhomogeneous boundary conditions.
@S0021-8936~00!00501-8#

1 Introduction
Elastic stress singularities are not of the real world. Howev

their presence in a stress analysis can be a real fact. Then
essential that their participation be recognized if reasonable u
to be made of the analysis in the vicinity of the singularity. T
objective of this note is to assist in achieving such recognition

In particular, we are concerned with identifying configuratio
which can have pure logarithmic singularities—that is, stress
sultants and attendant stresses which behave likeO(ln r) as r
→0. These are the weakest singularities that occur in elasti
As a result, they can be the most difficult to detect with numeri
methods. Asymptotic identification is thus especially useful
avoiding having them pass undetected.

For angular elastic plates in bending treated within class
fourth-order theory, Williams@1# identifies possible power singu
larities for a variety of homogeneous boundary conditions on
plate edges. No logarithmic singularities are identified in@1#.
Logarithmic singularities can be found elsewhere in the literatu
but these occur in concert with the far stronger singularities
attend concentrated loads. Examples may be found in Na´dai @2#
Article 49, and Timoshenko and Woinowsky-Krieger@3# Article
75. Pure logarithmic singularities for plates in bending with
classical theory would not appear to be identified in the literatu
Here, therefore, we seek to identify such singularities, and to
so when either homogeneous or inhomogeneous boundary c
tions apply on plate edges.

We begin, in Section 2, with a formal statement of the class
asymptotic problems of interest. Then, in Section 3, we outline
development of requirements for pure logarithmic singulariti
We close, in Section 4, with a tabulation of all the configuratio
found to be able to have log singularities.

2 Formulation
The angular plate region of interest is shown in Fig. 1.

describe this plate, we use cylindrical polar coordinates~r,u,z!
with origin O at the vertex of its midplane andu50 along one of
its edges. The plate has indefinite extent in ther-direction, thick-
ness 2h in the z-direction, and subtends an anglef at its vertex.

The displacement of primary concern is that in thez-direction,
w. This displacement has associated moment result
Mr ,M0 ,Mr0 , as shown acting in a positive sense on an elem
in the ru-plane in Fig. 2~a!. It also has associated shear resulta
Qr ,Qu , as shown acting in a positive sense on an element in

Fig. 1 Geometry and coordinates for the angular elastic plate
220 Õ Vol. 67, MARCH 2000 Copyright © 2
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2~b!. All of these field quantities are taken to be independent oz.
Hence, we can confine our attention to the two-dimensional reg
R where

R5$~r ,u!u0,r ,`, 0,u,f%.

With these preliminaries in place, we can formulate the class
problems for asymptotic analysis as next.

We seek the out-of-plane displacementw, together with its as-
sociated moment resultantsMr ,M u ,Mru and shear resultant
Qr ,Qu , as functions ofr, u throughoutR complying with the
following requirements. The displacement is to satisfy the d
placement equation of equilibrium in the absence of both bo
forces and loading on the plate faces atz56h,

¹4w50, (1)

on R, where ¹45¹2(¹2), ¹25]2/]r 21r 21]/]r 1r 22]2/]u2.
The displacement and resultants are to satisfy the result
displacement relations for a homogeneous and isotropic, lin
elastic plate,

H Mr

M u
J 52kF H n

1J ¹2w

12n H 1

2J ]2w

]r 2 G , Mru5k
]

]r S 1

r

]w

]u D , (2)

Qr5
2k

12n

]

]r
~¹2w!, Qu5

2k

12n

1

r

]

]u
~¹2w!,

on R, wherek54mh3/3 is the flexural stiffness of the plate whil
m, n are its shear modulus, Poisson’s ratio. The displacem
resultants are to satisfy any one of the admissible sets of boun
conditions listed in Table 1 on the plate edge atu50, as well as a
further such set onu5f. Finally, the resultants are to compl
with the following regularity-singularity requirement:

M5O~1!, Q5O~ ln r !, as r→0, (3)

on R, whereM is any moment resultant,Q either shear resultant
Several comments on the foregoing formulation are in ord

First, regarding the boundary conditions in Table 1. In conditio
I–III, Mi , V, ai , andb are given constants (i 51,2). When these
constants are zero, we obtain the corresponding homogen
boundary conditions. We distinguish these with a subscripth.
Thus Ih are Kirchhoff conditions for a stress-free edge, IIh are for
a simply supported edge, and IIIh are for a built-in edge. Condi-
tions IV model a plate edge which is elastically restrained b
bar:kt is the bar’s torsional stiffness,kb its bending stiffness, and
plus signs are foru5f, minus foru50.1

Second, regarding the regularity-singularity requirement.
the usual relationships between stress resultants and stress
plate theory, this has pure log singularities int rz ,tuz while
s r ,su ,t ru are nonsingular.

1See@3#, Art. 22, for a development of IV.

Fig. 2 Plate theory resultants: „a… moment resultants, „b…
shear resultants
000 by ASME Transactions of the ASME
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3 Analysis
As in the extensional case, requirements for logarithmic sin

larities under bending follow from a further development of t
corresponding classical analysis for power singularities. Acco
ingly we next summarize the asymptotic analysis of power sin
larities in plates under bending.

In Williams @1#, the appropriate choice of a separable bih
monic function for the displacementw leads to fields containing
four constants which share a common power ofr. This function
has the form

w5r l11@c1 sin~l11!u1c2 cos~l11!u1c3 sin~l21!u

1c4 cos~l21!u#, (4)

Table 1 Boundary conditions

Assigned
Roman Numeral

Physical
Description

Prescribed
Quantities

I Applied moment/shear M u5M 1r

Qu 2
]mru

]r Qu 2
]Mru

]r
5V

II Applied moment/displacement M u5M 2r
w5a1r 3

III Applied displacement/rotation w5a2r 3

]w

]u
5br3

IV Elastically restrained Mu56kt

]2

]r2 S1r ]w

]u D
Qu2

]Mru

]r
6kb

]4w

]r4 50
Journal of Applied Mechanics
u-
e
rd-
u-

r-

wherecj ( j 51 – 4) are the four constants, andl is the separation-
of-variables parameter. The stress resultants for this basic
follow from ~2!. Substituting these fields into a set of four hom
geneous boundary conditions then gives

Ac50, (5)

where the vectorc5(c1 ,c2 ,c3 ,c4), andA is a matrix whose el-
ements are in general functions ofl. A nontrivial solution to~5!
requires that the determinantD of A satisfy

D50. (6)

This requirement generates an eigenvalue equation forl. Deter-
mining l satisfying ~6! with 0,Rel,2 then characterizes th
power singularities possible in stress resultants for the partic
homogeneous boundary conditions involved.

To extend the preceding to consider logarithmic singulariti
we need stress resultants containing lnr terms. To this end, we
differentiate the basic field of~4! with respect tol: thus

Table 2 Eigenvalue equations

Boundary Conditions
on u50,f

Eigenvalue
Equation

Ih– Ih (l21)2(k2 sin2 lf2l2 sin2 f)50
IIh– IIh cos2 lf2cos2 f50

III h or IV–III h or IV sin2 lf2l2 sin2 f50
Ih– IIh (l21)(k sin 2lf1l sin 2f)50

Ih– IIIh or IV (l21)(k212k cos 2lf1124l2 sin2 f)50
IIh– IIIh or IV sin 2lf2l sin 2f50
/1/217/5466233/207_1.pdf by U
niversitat Politecnica C

atalunya user on 13 August 2020
Table 3 Configurations with QÄO„1nr … as r\0

Boundary Conditions
on u50,f

Configuration
Specifications

I–Ih f5p or 2p, M 1Þ0 or VÞ0

k56secf, M1~k12!Stan
f

2D61

Þ6V~22k!,

II–II h f5p or 2p, M2Þ6a1k

III–III h or IV f5p or 2p, a2Þ0 or bÞ0

I–II f5~2m21!
p

2
, 24a1kÞM2~k15!2~2 !mV~k11! ~m51,2!

f5mp, M1Þ(2)mM2 (m51,2)
k52sec 2f, (V sinf212a1k)(k22)ÞM 1(k12)cosf2M2(k24)

I–III f5fk , kÞk̂, (M126a2k cos 3f)(3 sin 3f2(k12)sinf)
Þ(V12bk cos 3f)(3 cos 3f1(k22)cosf)

Ih– IIIh or IV f5f̂k , k5k̂

I–IV f5p or 2p, VÞ0
f5p/2 or 3p/2, M 1Þ0

k52sec 2f, M1(k12)tanfÞV(22k)

II–III f5~2m21!
p

2
, 2M 2Þ3~32k!a1k2~2 !m~k11!bk ~m51,2!

f5mp, a1Þ(2)ma2 (m51,2)

II–IV f5p/2 or 3p/2, M2Þ6a1k

III–IV f5p/2 or 3p/2, a2Þ0
f5p or 2p, bÞ0
MARCH 2000, Vol. 67 Õ 221
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w5r l11@ ln r ~ c̄ sin~l11!u1 c̄2 cos~l11!u1 c̄3 sin~l21!u

1 c̄4 cos~l21!u!1u~ c̄1 cos~l11!u2 c̄2 sin~l11!u

1 c̄3 cos~l21!u2 c̄4 sin~l21!u!#, (7)

where the bars atop constants serve to indicate that they no lo
need be the same as their antecedents in~4!. The displacement in
~7! continues to satisfy the governing biharmonic Eq.~1!. Substi-
tuting ~7! into ~2! produces resultants containing lnr terms. Sub-
stituting ~7! and these last, together with the original basic fiel
into a set of four homogeneous boundary conditions gives

Ac̄ ln r1
dA

dl
c̄1Ac50, (8)

wheredA/dl is formed fromA by differentiating each elemen
with respect tol. General requirements for a nontrivial solutio
for c̄ in ~8! are established in Dempsey and Sinclair@4#. From
these we obtain ourrequirements for pure logarithmic singulari
ties under homogeneous boundary conditions:

l52, D50, (9a)

dnD

dln 50 for n51, . . . ,42r A , (9b)

c̄3
21 c̄4

2Þ0, (9c)

wherer A is the rank ofA whenl52. Equation~9c! ensures that
one of c̄3 or c̄4 is not zero so that the shear resultants are ind
logarithmically singular as in~3!.

Turning to the inhomogeneous boundary conditions I–III
Table 1, we obtain instead of~5!

Ac5f, (10)

for l52, wheref is a vector whose components involve one
more ofMi , V, ai , andb ( i 51,2). ForfÞ0, we have a problem
in ~10! if D50 for l52, unless the rank of the augmented matr
(A8)5(A:f ), is also reduced. If this rank reduction does not o
cur, we can overcome the difficulty by again supplementing
basic fields associated with~4! with the auxiliary ones stemming
from ~7!.2 This gives

Ac̄ ln r1
dA

dl
c̄1Ac5f, (11)

for l52. The system in~11! can be solved provided all the re
quirements in~9b! arenot met. Accordingly ourrequirements for
pure logarithmic singularities under inhomogeneous bound
conditionsare

l52, D50, r A8Þr A , (12a)

dnD

dln Þ0 for at least onen51, . . . ,42r A , (12b)

c̄3
21 c̄4

2Þ0, (12c)

wherer A8 is the rank ofA8 whenl52. As with ~9c!, ~12c! ensures
~3! is complied with whenl52.

An additional set of requirements for logarithmic singulariti
under inhomogeneous boundary conditions is given in Sinclair@7#
for the extensional case. These requirements arise from fur
auxiliary fields which result from a further differentiation wit
respect tol. However, we omit these requirements here beca
they can never be completely satisfied for the class of probl

2Essentially this is the approach adopted in Dimpsey@5# to solve extensional Levy
problems for certain critical wedge angles. An alternative approach for these p
lems is furnished in Ting@6#. The latter yields the same logarithmic fields for th
critical angles, and has the added attribute of effecting a sensible evolution of str
as the critical angles are passed through. It could be adapted to the class of pro
of concern here if one sought a corresponding evolution of responses.
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treated. Subsequently we do note, though, the one instance
log-squared singularity that attends partial compliance with the

With the requirements for logarithmic singularities at han
analysis proceeds routinely. We first derive eigenvalue equat
as in~6! for all possible combinations of homogeneous bound
conditions that can be drawn from Table 1. Then we check~9! and
~12!. When potential new configurations with log singularities a
revealed, the last requirement in either~9! or ~12! requires the
assembling of associated new fields. The algebra involved
straightforward but lengthy: details are furnished in Sinclair@8#.
Displacements with log singularities in their companion resulta
are set out ibid. All of these fields are verified directly by subs
tuting them into the governing Eqs.~1!,~2!, checking the
regularity-singularity requirement~3!, and checking the pertinen
boundary conditions. In the interests of brevity, we omit the
fields here and simply provide the configurations that engen
them.

4 Results
Eigenvalue equations are set out in Table 2. Therein

k5
31n

12n
.

Except for a factor of~l–1! when free-edge conditions, Ih , are
involved, these equations are equivalent to those derived in W
liams @1#. The equivalence of built-in conditions IIIh with elasti-
cally restrained conditions IV, as far as eigenvalue equations
concerned, follows from an adaptation of the argument in Sinc
@9# for boundary conditions which have terms with a differe
r-dependence within a single condition. This equivalence ho
for any value ofl. Just forl52, elastically restrained condition
are equivalent to symmetry conditions,]w/]u50 andQu50. We
also investigate them in this role in what follows.

Configurations which have logarithmic singularities in the
shear resultants as in~3! are listed in Table 3. In Table 3,fk is
such that

sin2 fk5
k11

4k
@26A42k#. (13)

If in addition to ~13!,

k5
2tanf

f cos 2f
,

thenk5k̂, fk5f̂k ~actual values in the physical range of 3<k
<7 are k̂53.27, f̂k574.8 deg andk̂53.02, f̂k5265.9 deg.!.
For I–II andf5f̂k , k5k̂, a log-squared singularity occurs.

There are but two geometries with logarithmic singularities u
der completely homogeneous conditions in Table 3. These o
for k5k̂, f5f̂k when the boundary conditions are Ih2III h or
IV. One of these geometries is a re-entrant corner (f̂k
5265.9 deg) and so is not surprising, but the other is for a pr
corner (f̂k574.8 deg). Here, then, the increase in the occurre
of singularities with mixed boundary conditions is making
presence felt, as it does in the extensional case.

For inhomogeneous boundary conditions, there are a numbe
quite innocent looking configurations with log singularities
Table 3. For example, I–Ih for f5p when M u5M1r : Here the
moment resultant actually varies continuously along the bound
though its derivative does not.
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Stress and Displacement Fields for
Propagating the Crack Along
the Interface of Dissimilar Orthotropic
Materials Under Dynamic Mode I
and II Load

K. H. Lee
Department of Automotive Engineering, Sangju Nationa
University, Sangju City, Kyungbuk 742-711, Korea

General stress and displacement fields are derived as a c
steadily propagates along the interface of dissimilar orthotrop
materials under a dynamic mode I and II load. They are obtain
from the complex function formulation of steady plane mot
problems for an orthotropic material and the complex eigen
pansion function. After the relationship between stress inten
factors and stress components for a propagating crack is defin
the stress, displacement components, and energy release rate
stress intensity factors are derived. The results are useful for b
dissimilar isotropic and orthotropic and isotropic-orthotropic b
materials, and homogeneous isotropic and orthotropic mater
under subsonic crack propagation velocity.
@S0021-8936~00!00601-2#

1 Introduction
Yang et al.@1# and Deng@2# provided the asymptotic fields o

the singular terms of steady-state elastodynamic bimaterial cr
tip fields and Liu et al.@3# obtained the asymptotic series repr
sentation of stress fields near the tip of a running interfacial cr
in a bimaterial under steady or unsteady state conditions. H
ever, the stress and displacement components for the interf
propagating crack in dissimilar orthotropic media, where the e
tic principal axis direction with the crack direction is orthogon
or parallel, is not clearly represented.

Therefore, the general stress and displacement fields are
rived when a finite crack is steadily propagated along the interf
in dissimilar orthotropic media under dynamic mode I and II loa
ing in the paper. Lee et al.@4# derived the steady plane motio
formulations for orthotropic material from the partial differenti
equation for an elastodynamic plane. The general stress and
placement fields are obtained from the formulation of steady pl
motion which is added to the complex eigenexpansion functi
and the boundary conditions. The relationship between stres
tensity factors and stress components for propagating an int

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: W. J. Druga
Journal of Applied Mechanics
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cial crack is defined and the confusion of the definition for t
stress intensity factors of the interface crack is clarified.

2 General Stress and Displacement Fields
When characteristic rootsml and ms of orthotropic material

have imaginary numbersip, iq, the complex stress for orthotropi
plane motion can be represented as Eq.~1! @4#,

sx52 Re$~Mb2p2!f8~zl !1~Mb2q2!c8~zs!%

sy52 Re$~11Ma!@f8~zl !1c8~zs!#% (1)

txy52 Im@a lf8~zl !1asc8~zs!#%

where

p5AB122
AB12

2
2K66, q5AB121

AB12

2
2K66

B125
1

2
@2a121a661rc2~a12

2 2a11a662a11a22!#/a11

K665$a221rc2@a12
2 2a22a662a11a22

1rc2a66~a11a222a12
2 !#%/a11

a l5p1a22

rc2

p
2prc2a112

~rc2!2

p
~a11a222a12

2 !

as5q1a22

rc2

q
2qrc2a112

~rc2!2

q
~a11a222a12

2 !

Ma5rc2~a122a11!, Mb5rc2~a122a22!.

ai j ( i , j 51,2,3, . . . ,6) aredisplacement constants, which are th
ai35aj 350 for plane stress and are transformed into thebi j
5ai j 2ai3aj 3 /a33 for plane strain@5#. The r and c are, respec-
tively, density and crack propagation velocity. And the charac
istic rootsml , ms of orthotropic materials, which depend on th
physical properties and the crack propagation, are either im
nary when AK66,B12; K66.0 or complex when AK66

.uB12u; K66.0 @4#. Most orthotropic materials have imaginar
number roots. The complex displacement for orthotropic pla
motion can be represented as Eq.~2! @4#,

ux52 Re@plf~zl !1psc~zs!# (2)

uy52 Im@qlf~zl !1qsc~zs!#

where

pl5a11~Mb2p2!1a12~Ma11!

ps5a11~Mb2q2!1a12~Ma11!

ql5@a12~Mb2p2!1a22~Ma11!#/p

qs5@a12~Mb2q2!1a22~Ma11!#/q.

Analytical complex functionsf8(zl) and c8(zs) can be repre-
sented as such a power series in

f8~zl !5azl
ln1bzl

ln
¯

, c8~zs!5czs
ln1dzs

ln
¯

(3)e
n.
MARCH 2000, Vol. 67 Õ 223
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wherea, b, c, and d are complex constants andln is an eigen-
value. They are to be determined from boundary conditions. F
the traction-free crack (u56p) and the traction and displace
ment continuous condition across interface~u50!, the following
equations can be obtained:

ei2pln@S#1Fa1

c1
G5@T#1Fb1̄

d1
G (4)

e2 i2pln@S#2Fa2

c2
G5@T#2Fb2̄

d2
G (5)

@S#1Fa1

c1
G2@T#1Fb1̄

d1
G5@S#2Fa2

c2
G2@T#2Fb2̄

d2
G (6)

@U#1Fa1

c1
G2@V#1Fb1̄

d1
G5@U#2Fa2

c2
G2@V#2Fb2̄

d2
G (7)

where

Sk5F ~11Ma! ~11Ma!

a l as
G , Tk5F2~11Ma! 2~11Ma!

a l as
G

Uk5F2pl 2ps

ql qs
G , Vk5Fpl ps

ql qs
G .

MatricesLk , Lk* , Hk , andHk* input as follows:

Lk5UkSk
21, Lk* 5VkTk

21

(8)

H5L12L2* , H* 5L1* 2L2 .

Substituting Eq.~8! into Eqs.~4!–~7!, the characteristic equatio
can be derived for eigenvalueln ,

Fl2 0

0 l1
G~ei2pln!22Fl11l2 0

0 l11l2
G~ei2pln!1Fl1 0

0 l2
G50

(9)

where

l15h111Ah12h21, l25h112Ah12h21

h115~ l 11!12~ l 11!2 , h125~ l 12!11~ l 12!2

h215~ l 21!11~ l 21!2

~ l 11!k5H psa l2plas

D
J

k

5H qs2ql

as2a l
J

k

~ l 12!k5H ~11Ma!~pl2ps!

D
J

k

, ~ l 21!k5H asql2a lqs

D
J

k

Dk5@~11Ma!~as2a l !#k .

When Dk50, the crack propagation velocityc becomes the
Rayleigh speed. From Eq.~9!, eigenvalueln can be determined a
Eq. ~10!.
224 Õ Vol. 67, MARCH 2000 Copyright © 2
om
- ln5H n ~50,1,2,3, . . . !

2n21

2
6 i« ~n50,1,2,3, . . . !

(10)

«5
1

2p
ln

12b

11b
, b5

h11

Ah12h21

Therefore the two cases, oscillatory and nonoscillatory fie
must be considered.

2.1 Oscillatory Stress and Displacement Fields. Theln is
a complex eigenvalue in this case. Therefore, in substituting
complex eigenvalueln5(2n21)/21 i« in Eq. ~10! into Eqs.
~4!–~7!, complex constantsak , bk , ck , anddk may be obtained
as

ak5Fas2~11Ma!h

D
G

k

ep«~21!k11
z

bk5Fas1~11Ma!h

D
G

k

ep«~21!k
z̄

ck5F2a l1~11Ma!h

D
G

k

ep«~21!k11
z

(11)

dk52Fa l1~11Ma!h

D
G

k

ep«~21!k
z̄

where h5(h21/h12)
1/2 and z is a complex constant related t

stress intensity factors. Substituting Eq.~11! into Eq. ~3!, fn18 (zl)
andcn18 (zs) for material 1 are written as

fn18 ~zl !5
zl

~2n21!/2

D1

$@as2~11Ma!h#e«pznzl
i«

1@as1~11Ma!h#e2«pz n̄zs
2 i«%

(12)

cn18 ~zs!5
zs

~2n21!/2

D1

$@2a l1~11Ma!h#e«pznzl
i«

2@as1~11Ma!h#e2«pz n̄zs
2 i«%.

Stress intensity factors can be defined as Eq.~13! when the crack
is propagated along the interface in dissimilar media.

K I1 iK II5 lim
r→0

A2prr 2 i«S sy1 i
1

h
txyD

u50

. (13)

In substituting Eq.~12! into Eq.~1! and substituting Eq.~1! into
Eq. ~13!, the complex constants related to stress intensity fac
are obtained as Eq.~14!,

Kn
052A2p~e«p1e2«p!zn

0

(14)

Kn* 52A2p~e«p1e2«p!zn* ,

wherezn
0 andzn* are real parts of complex constantzn . Whenn

50 in Eq.~14!, Kn
0 andKn* are stress intensity factorsK I andK II .

In substituting Eq.~14! into Eq.~12! and substituting Eq.~12! into
Eq. ~1!, stress fields for propagating the crack along the interf
in dissimilar orthotropic material can be obtained. Oscillato
stress fields with odd power series (n51,3,5, . . . ) for material 1
~the material above the interface! can be represented as
000 by ASME Transactions of the ASME
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sxn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
F ~Mb2p2!H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D1e2«~p2u l !A cosS « ln r l2

n22

2
u1D J r l

~n22!/2

2~Mb2q2!H e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
F2~Mb2p2!H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D1e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1~Mb2q2!H e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G (15)

syn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
F ~11Ma!H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D1e2«~p2u l !A cosS « ln r l2

n22

2
u l D J r l

~n22!/2

2~11Ma!H e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
F2~11Ma!H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D1e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1~11Ma!H e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G (16)

txyn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
Fa l H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D2e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1asH 2e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
Fa l H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D2e2«~p2u l !A cosS « ln r l2

n22

2
u l D J r l

~n22!/2

1asH 2e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G (17)

where

A5as1~11Ma!h, Ā5as2~11Ma!h, B5a l1~11Ma!h, B̄5a l2~11Ma!h.

By substituting Eq.~11! into Eq. ~3! integrated withz and substituting Eq.~3! into Eq. ~2!, oscillatory displacement fields can b
obtained. Oscillatory displacement fields with odd power series (n51,3,5, . . . ) for material 1 can be represented as

uxn5 (
n5odd

`
Kn

0

A2p~n214«2!D cosh«p
H e«~p2u l !plĀFn cosS « ln r l1

n

2
u l D12« sinS « ln r l1

n

2
u l D G r l

n/2

1e2«~p2u l !plAFn cosS « ln r l2
n

2
u l D12« sinS « ln r l2

n

2
u l D G r l

n/22e«~p2us!psB̄Fn cosS « ln r s1
n

2
usD

12« sinS « ln r s1
n

2
usD G r s

n/22e2«~p2us!psBFn cosS « ln r s2
n

2
usD12« sinS « ln r s2

n

2
usD G r s

n/2J
1 (

n5odd

`
Kn*

A2p~n214«2!D cosh«p
H 2e«~p2u l !plĀFn sinS « ln r l1

n

2
u l D22« cosS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !plAFn sinS « ln r l2
n

2
u l D22« cosS « ln r l2

n

2
u l D G r l

n/21e«~p2us!psB̄Fn sinS « ln r s1
n

2
usD

22« cosS « ln r s1
n

2
usD G r s

n/21e2«~p2us!psBFn sinS « ln r s2
n

2
usD22« cosS « ln r s2

n

2
usD G r s

n/2J (18)
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n5odd

`
Kn

0

A2p~n214«2!D cosh«p
H e«~p2u l !qlĀFn sinS « ln r l1

n

2
u l D22« cosS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !qlAFn sinS « ln r l2
n

2
u l D22« cosS « ln r l2

n

2
u l D G r l

n/22e«~p2us!qsB̄Fn sinS « ln r s1
n

2
usD

22« cosS « ln r s1
n

2
usD G r s

n/21e2«~p2us!qsBFn sinS « ln r s2
n

2
usD22« cosS « ln r s2

n

2
usD G r s

n/2J
1 (

n5odd

`
Kn*

A2p~n214«2!D cosh«p
H e«~p2u l !qlĀFn cosS « ln r l1

n

2
u l D12« sinS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !qlAFn cosS « ln r l2
n

2
u l D12« sinS « ln r l2

n

2
u l D G r l

n/22e«~p2us!qsB̄Fn cosS « ln r s1
n

2
usD

12« sinS « ln r s1
n

2
usD G r s

n/21e2«~p2us!qsBFn cosS « ln r s2
n

2
usD12« sinS « ln r s2

n

2
usD G r s

n/2J (19)
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wheren.0. For material 2, which is the material below the i
terface, parameters«p and2«p in oscillatory stress and displace
ment fields are changed to2«p, «p. Whenn is 1, Eqs.~15!–~19!
are stress and displacement fields around the propagating int
cial crack tip. Thus,K1

0 andK1* are stress intensity factorsK I and
K II .

2.2 Nonoscillatory Stress and Displacement Fields.The
ln is a positive integer eigenvalue in this case. Nonoscillat
stress fields with the even power series (n52,4,6, . . . ) for mate-
rial 1 can be presented as

sxn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!

D
H ~Mb2q2!r s

~n22!/2

3cos
n22

2
us2~Mb2p2!r l

~n22!/2 cos
n22

2
u l J

1 (
n5even

`
Kn*

A2p

1

11wl

1

D H a l~Mb2q2!r s
~n22!/2

3sin
n22

2
us2as~Mb2p2!r l

~n22!/2 sin
n22

2
u l J (20)

syn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!2

D
H r s

~n22!/2 cos
n22

2
us

2r l
~n22!/2 cos

n22

2
u l J 1 (

n5even

`
Kn*

A2p

1

11wl

~11Ma!

D

3H a l r s
~n22!/2 sin

n22

2
us2asr l

~n22!/2 sin
n22

2
u l J (21)

txyn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!

D
H asr s

~n22!/2 sin
n22

2
us

2a l r l
~n22!/2 sin

n22

2
u l J 1 (

n5even

`
Kn*

A2p

1

11wl

a las

D

3H 2r s
~n22!/2 cos

n22

2
us1r l

~n22!/2 cos
n22

2
u l J (22)

wheren.0, ws5( l 12)1 /( l 12)2 , andwl5( l 21)1 /( l 21)2 .
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Nonoscillatory displacement fields with even power seriesn
52,4,6, . . . ) for material 1 can be represented as

uxn5 (
n5even

`
Kn

0

A2p

2

11ws

~11Ma!

Dn
H psr s

n/2 cos
n

2
us

2plr l
n/2 cos

n

2
u l J

1 (
n5even

`
Kn*

A2p

2

11wl

1

Dn H a l psr s
n/2 sin

n

2
us

2asplr l
n/2 sin

n

2
u l J (23)
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`
Kn

0

A2p

2

11ws

~11Ma!

Dn

3H qsr s
n/2 sin

n

2
us2qlr l

n/2 sin
n

2
u l J 1 (

n5even

`
Kn*

A2p

2

11wl

1

Dn

3H 2a lqsr s
n/2 cos

n

2
us1asqlr l

n/2 cos
n

2
u l J . (24)

For material 2, which is the material below the interface, p
rametersws and wl are changed tows

21 and wl
21. Therefore,

general stress and displacement fields for propagating the in
face crack can be represented as

sn~r ,u!5(
n51

`

@sxn syn txyn#
T

(25)

un~r ,u!5(
n51

`

@uxn uyn#
T.

2.3 Stress and Displacement Fields at the Interfacial
Propagating Crack Tip. When n is 1, the general fields be
come the propagating crack-tip fields. Stress and displacem
componentssx , ux at the interfacial propagating crack tip fo
material 1 are expressed as
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where

r l5rAcos2 u1p2 sin2 u, r s5rAcos2 u1q2 sin2 u

f l~u!5@cos2 u1p2 sin2 u#2~1/4!,

f s~u!5@cos2 u1q2 sin2 u#2~1/4!

u j5tan21(Zj tan u), j 5 l ,s, Zl5p, Zs5q.

The displacements between the crack surfaces are given by

d~r !5d21 ihd15A2r

p

H21~K I1 iK II !r
i«

~112i«!cosh~«p!
(28)

and the energy release rate is given by

G5
~K I

21K II
2 !H21

4 cosh2~«p!
. (29)

As the stresssx is taken to be discontinuous and strain«x to be
continuous across the liney50, the relation between (sx)1 and
(sx)2 is the same as

~sx!25
~a11!1~sx!11@~a12!12~a12!2#sy

~a11!2

. (30)

From Eq. ~13!, the stress intensity factors for propagating t
crack along the interface in the infinite plate are obtained as

K I1 iK II5Apa~112i«!~2a!2 i«S sy
`1 i

1

h
txy

` D (31)

where sy
` and txy

` are the applied normal and shear stresses
infinity. Since Eq.~31! contains the term (2a)2 i«, the ambiguity
of the dependence on the measuring unit of the crack length
the value of the stress intensity factor occurs. If (r )2 i« is replaced
Journal of Applied Mechanics
e

at

for

with (r / l )2 i« in Eq. ~13!, wherel 52a ~crack length!, the stress
intensity factors become the following equation, which does
contain the ambiguity of the dependence on the measuring un
the crack length:

K I1 iK II5Apa~112i«!S sy
`1 i

1

h
txy

` D . (32)

When stress intensity factors are the same as in Eq.~32!, the term
« ln r k (k5 l ,s) in Eqs. ~15!–~19! and ~26!–~27! is replaced by
« ln(r k/2a).

3 Conclusions
General stress, displacement fields, and energy release rat

explicitly presented for the interfacial propagating crack in d
similar orthotropic materials.

When the orthotropic materials have characteristic rootsml' i
andms' i in the stationary crack state, the fields are the same
the Deng@2# results for the propagating interfacial crack in is
tropic bimaterials. When the mechanical properties of dissim
orthotropic materials are the same, the stress, displacement fi
and energy release rate are the same as those of homoge
orthotropic material@4#. When the interface crack propagatio
velocity is zero, the fields of the interfacial propagating crack
identical to those of the interfacial stationary crack. The resu
are useful for both dissimilar isotropic-isotropic and isotrop
orthotropic and orthotropic-orthotropic bimaterials under subso
crack propagation velocity lower than the two Rayleigh wave
locities and homogeneous isotropic and orthotropic materials
der subsonic crack propagation velocity.
MARCH 2000, Vol. 67 Õ 227
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Appendix

• Properties of isotropic-isotropic bimaterial:

Cs2 /Cs152, n150.3, n250.2, r15r2 , r 50.01.

• Properties of orthotropic-orthotropic bimaterial:

Cs2 /Cs152, nLT150.3, nLT250.2, r15r2 , r 50.01

EL1 :ET1 :GLT152.6000001:2.6:1,Csk5~AGLT /r!k

Table 1 The comparison of dissimilar isotropic and orthotro-
pic stress component sxAK I under plane stress „c ÕCs1Ä0.5…

u ~deg! Iso-Iso.Mat Ort-Ort.Mat u ~deg! Iso-Iso.Mat Ort-Ort.Mat

01 .634439 .6344413 02 1.503408 1.503400
10 .7468052 .7468115 210 1.302192 1.302208
20 .8190195 .8190226 220 1.064251 1.064264
30 .8481339 .8481356 230 .8146014 .8146035
40 .8359575 .8359596 240 .5795064 .5794959
50 .7908002 .7907966 250 .382161 .3821618
60 .7287843 .7287816 260 .2386282 .2386150
70 .6730161 .6730131 270 .1543843 .1543860
80 .6487839 .6487848 280 .1229814 .1229963
90 .6748663 .6748638 290 .1271673 .1271672

100 .7547211 .7547229 2100 .1428393 .1428359
110 .8735087 .8735143 2110 .1447629 .1447555
120 1.00348 1.003481 2120 .1124064 .1124141
130 1.114235 1.114237 2130 .0342066 .0341946
140 1.181642 1.181642 2140 2.0908023 2.0908047
150 1.191849 1.191844 2150 2.2536999 2.2537051
160 1.14096 1.140951 2160 2.4382891 2.4383058
170 1.032682 1.032665 2170 2.6245366 2.6245342
180 .8758961 .8758781 2180 2.7919333 2.7919445
228 Õ Vol. 67, MARCH 2000
EL2 :ET2 :GLT259.600001:9.6:4,K̄ I5K I /A2pr

a15a2590 deg.

EL , ET , GLT , andnLT(2«T /«L) are elastic constants and Poi
son’s ratio,L and T are, respectively, the fiber direction and th
transverse direction to the fiber, whilea is the angle of the fiber
direction with respect to the crack direction. The above orthot
pic materials are almost like the isotropic ones (ml' i and ms
' i in c/Cs150). As shown in Table 1, when the orthotrop
materials have isotropic characteristics, the fields derived in
study are the same as the Deng’s~@2#! results of the interfacial
propagating crack in isotropic bimaterials.
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