# Cache-efficient renumbering for vectorization 

Rainald Löhner*, $\dagger$<br>CFD Center, Department of Computational and Data Science, M.S. 6A2, College of Sciences, George Mason University, Fairfax, VA 22030-4444, U.S.A.


#### Abstract

SUMMARY A renumbering strategy for field solvers based on unstructured grids that avoids memory contention and minimizes cache-misses is described. Compared with usual colouring techniques, the new renumbering strategy reduces the spread in point-data access for edge-based solvers by more than an order of magnitude. The technique is particularly suited for multicore, cache-based machines that allow for vectorization or pipelining. Copyright © 2008 John Wiley \& Sons, Ltd.


Received 11 December 2007; Revised 21 June 2008; Accepted 21 June 2008
KEY WORDS: grid renumbering; unstructured grids; vector machines; multicore machines; cache

## 1. INTRODUCTION

A considerable percentage of field solvers is presently run on computers whose microchips have a cached memory and allow for vectorization (also known as pipelining). In order to enable vectorization, a point in any given edge/element/face-loop should only be accessed once. This requirement can lead to a considerable jump in memory access for points (and their associated data) when looping through edges/elements/faces, leading to an increase in cache-misses and the associated decrease in performance. Given the rise in available memory, the extensive use of shared memory and the natural urge to solve ever larger problems, these problems are expected to increase in the future. The present paper presents a renumbering technique to mitigate the increase in memory access jumps.

## 2. RENUMBERING TO AVOID CACHE-MISSES

Consider the following loop over edges that typifies the central loop of many field solvers based on unstructured grids [1-6], written in Fortran pseudo-code and shown schematically in Figure 1:
Loop 1
do 1600 iedge=1, nedge
ipoi1=lnoed(1,iedge)
ipoi2=lnoed (2,iedge)
redge=geoed ( iedge)*(unkno(ipoi2) -unkno(ipoi1))
rhspo(ipoi1) =rhspo(ipoi1) +redge
rhspo(ipoi2) =rhspo(ipoi2)-redge
1600 continue

[^0]A right-hand side (RHS), or residual, is formed at the edge-level (redge) by gathering information from a vector of point unknowns (unkno) and performing a series operations on them. This edge-RHS is then added to a global point-RHS (rhspo). The array lnoed stores the end-points of each edge. Similar loops are obtained for element- or face-based solvers, and what follows is equally applicable to them.

If cache-misses are a concern, then it is clear that the storage locations for the required point information stored in the arrays unkno and rhspo should be as close as possible in the memory when required by an edge. At the same time, as the loop progresses through the edges, the point information should be accessed as uniformly as possible. This may be achieved by first renumbering the points using a bandwidth-minimization technique (e.g. Reverse Cuthill McKee [7], wavefront [8], recursive bisection, space-filling curve, etc.), and subsequently renumbering the edges according to the minimum point number on each edge $[8,9]$. This will result in a nearoptimal access of the memory as shown in Figure 2. All of these renumbering algorithms are of complexity $O(N)$ or at most $O(N \log N)$, and are well worth the effort.


Figure 1. Basic edge-loop.


Figure 2. Point access in edge-loop.

## 3. AVOIDANCE OF MEMORY CONTENTION

Pipelining or vectorization offers the possibility of substantial performance gains on any kind of system. While previously restricted to so-called vector machines, such as those manufactured by CRAY, Convex, NEC, Fujitsu or Hitachi, the concept has migrated to current microchips, such as the Intel Xeon, Intel Itanium, AMD Opteron and IBM Power-series. In order to achieve pipelining or vectorization, memory contention must be avoided. The enforcement of pipelining or vectorization is then carried out using a compiler directive, as Loop 1, which becomes an inner loop, still offers the possibility of memory contention. In this case, we would have

Loop 2
do 1400 ipass=1, npass
nedg $0=$ edpas (ipass) +1
nedg1=edpas (ipass+1)
c\$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0, nedg1
ipoi1=lnoed(1,iedge)
ipoi2=lnoed(2,iedge)
redge=geoed ( iedge)*(unkno(ipoi2)-unkno(ipoi1))
rhspo(ipoi1) $=r h s p o(i p o i 1)+r e d g e$
rhspo(ipoi2)=rhspo(ipoi2)-redge
1600 continue
1400 continue
It is clear that in order to avoid memory contention, for each of the groups of edges (1600 loop), none of the corresponding points should be accessed more than once. Given that in order to achieve good pipelining performance on current microchips, a relatively short vector length of mvecl=16 or mvecl=32 is sufficient, one can simply start from the edge-renumbering obtained in order to minimize cache-misses, and renumber it further into groups of edges that are 16 or 32 long and avoid memory contention [8, 9]. The most straightforward renumbering or 'colouring' realization is given by the following algorithm:

```
ledge (1 : nedge) =0
lpoin(1:npoin)=0
nenew=0
npass=0
! initialize edge pass counter
nedg0=1 ! initialize start edge
1000 continue
    npass=npass+1
    M, initialize current
    do 1200 iedge=nedg0,nedge
    if(ledge(iedge).eq.0) then ! edge is unmarked
        if(lpoin(lnoed(1,iedge)).ne.npass) then ! point 1 unused
            if(lpoin(lnoed(2,iedge)).ne.npass) then ! point 2 unused
                nenew=nenew+1 ! store edge
                ledge(iedge) =nenew
                lpoin(lnoed(1,iedge))=npass ! mark points
                lpoin(lnoed(2,iedge)) =npass
                nvecl=nvecl+1 ! update vector counter
                if(nvecl.eq.mvecl) goto 1201 ! desired vector length
            endif
        endif
        endif
1200 continue
1201 continue
```

```
        edpas(npass) =nenew
        ! store pass counter
        do 1400 iedge=nedg0,nedge
        if(ledge(iedge).eq.0) goto 1401 ! edge is unmarked
1400 continue
1401 continue
    nedg0=min(iedge,nedge)
    if(nenew.ne.nedge) goto 1000 ! unrenumbered edges left
```

As before, this renumbering is of complexity $O(N)$.

## 4. AVOIDANCE OF MEMORY CONTENTION AND CACHE-MISSES

The basic edge-renumbering technique outlined above has the disadvantage of not taking into account the jumps in memory access for the second index. As the edges are numbered according to ascending point numbers, the first index will lead to a monotonic indirect access of memory with limited jumps, and hence low cache-misses. However, the second index can jump considerably. In order to see how this happens, consider the portion of the 2-D mesh shown in Figure 3.

Some edges will access near-neighbour information on the current 'line', while others will access near-neighbour information from the next 'line'. For the case shown, the first vector group accesses points along the 'line' $i, i+1$. When starting the second vector group, the only edge-connection left for point $i$ is $i, j$. However, the next edge in this group will use points $i+1, i+2$, producing a large jump in the second index. In 3-D the situation is even worse, as we have hyperplanes, i.e. a much higher jump in memory between neighbours. The aim is therefore to reduce the jumps as much as possible in the second index.

Of the many algorithms that may be devised to achieve this, the following offers a good compromise of simplicity and performance. The assumption is made that the edges have been ordered according to points, i.e. the first edge-point (first index) increases monotonically as one progresses through the edges. At the start of a new edge-group, the second point of the first edge of the group must be taken. The aim is then to find as many edges as possible that avoid memory contention, and at the same time minimize the jump in the second edge-point (second index). As the edges have been ordered according to ascending first edge-point numbers, all second edge-points for a given first edge-point can be tested immediately. The idea is then to keep the second edge-point that minimizes the jump with respect to the first second edge-point of the vector group. Interestingly, this by itself does not yield the expected reduction in jumps for the second edge-points. The reason is that in many cases the edges that lead to no memory contention have large jumps with respect to the second edge-point of the first edge in the vector group. Clearly, this depends on the topology of the mesh and the renumbering technique chosen, but experience with many cases indicates that it is quite common. The solution is to increase the search for vector-group candidates to a multiple of the desired vector length (we have used four times the desired vector length), and then select the best from these. This will lead to a larger range in the values of the first points of the vector group. However, as will be seen from the examples,


Figure 3. Edge-groups.
this increase is modest, and the reduction obtained for the second edge-point range more than compensates for this increase. Although lengthier, we include the new renumbering algorithm here for completeness.

```
ledge (1: nedge)=0
lpoin(1:npoin)=0
nenew=0
npass=0
nedg0=1
1000 continue
npass=npass+1
nvecl=0
nedgl=0
ipoi1=lnoed(1,nedg0)
ipoi2=1noed(2,nedg0)
nenew=nenew+1
nvecl=nvecl+1
ledge (nedg0) =nenew
lpoin(ipoi1)=npass
lpoin(ipoi2)=npass
if(nedg0.eq.nedge) goto 1201 ! renumbering complete
kpoi1=ipoi1
kvecl= 0
do 1200 iedge=nedg0+1,nedge
if(ledge(iedge).eq.0) then !edge is unmarked
    ip1=lnoed(1,iedge)
    ip2=lnoed(2,iedge)
    if(lpoin(ip1).ne.npass) then !point 1 unused
    if(lpoin(ip2).ne.npass) then ! point 2 unused
                if(ip1.gt.kpoi1) then ! new 1st index
            if(kvecl.eq.0) then ! new point
                kpoi1=ip1 ! update new 1st index
                    kvecl= 1 ! initialize counter
                    ijum1=abs(ipoi1-ip1) ! initialize jumps
                    ijum2=abs(ipoi2-ip2)
                    iminl=iedge ! initializemin(jump) edge
                    ijmi1=ijum1
                    ijmi2=ijum2
                    ipmil=ip1
                    ipmi2=ip2
                else
                    nedgl=nedgl+1 ! already compared
                    ledgl(nedgl)=iminl ! transcribe best
                    lqual(nedgl)=ijmi2 ! transcribed quality
                    lpoin(ipmi1)=npass ! mark points
                    lpoin(ipmi2)=npass
                    kvecl=0 ! reset vector length
            endif
        else
                kvecl=kvecl+1 ! point is known
                ijum1=abs(ipoi1-ip1) ! compare
                ijum2=abs(ipoi2-ip2)
                if(ijum2.lt.ijmi2) then
                    iminl=iedge ! keep as better
```

```
    ijmi1=ijum1
    ijmi2=ijum2
    ipmi1=ip1
    ipmi2=ip2
endif
                    endif
            endif
        endif
    endif
    if(nedgl.ge.mxedl) goto 1201 ! group is big enough
1200 continue
1201 continue
    if(nedgl.eq.0) goto 1301 ! no edges in group
    nvecl=min(mvecl,nedgl)
    call iordv(nedgl,nvecl,lqual,leorl) ! get nvecl best
    nene0=nenew reset start edge for new search
    do 1300 iedgl=1,nvecl ! add the nvecl best
    iedge=ledgl(leorl(iedgl))
    nenew=nenew+1
    ledge(iedge) =nenew
1300 continue
1301 continue
    edpas(npass)=nenew ! store pass counter
    do 1400 iedge=nedg0,nedge
    if(ledge(iedge).eq.0) goto 1401 ! edge is unmarked
1400 continue
1401 continue
    nedg0=min(iedge, nedge)
    if(nenew.ne.nedge) goto 1000 ! unrenumbered edges left
```

As the local vector length is assumed small, the local ordering of edges (call iordv (. . .) ) may be carried out by either using a simple $O$ (nedgl*nvecl) exhaustive search, or any faster ordering technique. For the examples shown below a heap-sort technique was used.

## 5. EXAMPLES

The renumbering strategies described were coded into FEFLO, an adaptive, edge-based finite element code for the solution of compressible and incompressible flows [10].

### 5.1. NACA0012

The first example considered is the classic NACA0012 wing at $\alpha=5^{\circ}$ angle of attack. This is a steady, inviscid (Euler) case. A projection-type incompressible solver with upwind edge limiting for the advective terms and 4th-order damping for the divergence constraint [9] is used. Figure 4(a) and (b) shows the surface mesh employed, as well as the surface pressures obtained. Although the mesh is rather coarse ( $\mathrm{nelem}=370,514$, npoin $=68,664$, nedge $=451,187$ ), it still allows for a meaningful comparison of the different renumbering schemes.

Table I summarizes the average maximum jumps for the first and second points jump1, jump2 and total average jump between first and second points jmp12 in each vector group, as well as the average edge-to-edge jumps for the first and second points jum1a, jum2a in each vector group. As expected, the jumps increase with vector group size. As compared with the simple renumbering technique, the new technique leads to a moderate increase in jumps for the first point (which is low in any case) and a drastic decrease in jumps for the second point. This case was repeated with a finer mesh (nelem=1,450,793, npoin=259,711, nedge $=1,739,575$ ), and the


Figure 4. (a,b) NACA 0012: surface mesh and pressure.

Table I. NACA0012 wing: Coarse mesh.

| Method | mvec1 | jump1 | jump2 | jum1a | jum2a | jum12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Original | 16 | 23 | 2465 | 1.57 | 597 | 2500 |
| Improved | 16 | 79 | 282 | 5.27 | 63 | 1505 |
| Original | 32 | 55 | 2498 | 1.77 | 572 | 2534 |
| Improved | 32 | 183 | 412 | 5.91 | 70 | 1625 |
| Original | 64 | 123 | 2516 | 1.95 | 562 | 2585 |
| Improved | 64 | 410 | 630 | 6.52 | 83 | 1840 |

Table II. NACA0012 wing: Fine mesh.

| Method | mvec1 | jump1 | jump2 | jum1a | jum2a | jum12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Original | 16 | 23 | 5708 | 1.56 | 1382 | 5757 |
| Improved | 16 | 79 | 516 | 5.25 | 115 | 3351 |
| Original | 32 | 54 | 5760 | 1.75 | 1331 | 5796 |
| Improved | 32 | 180 | 758 | 5.81 | 133 | 3535 |
| Original | 64 | 121 | 5780 | 1.94 | 1332 | 5848 |
| Improved | 64 | 398 | 1063 | 6.32 | 147 | 3793 |

results are summarized in Table II. Note that the differences between the old and new renumbering remain almost unchanged.

### 5.2. Dam-break with column

This case considers a column of water collapsing close to a square column. As before, a projectiontype incompressible solver with upwind edge limiting for the advective terms and fourth-order damping for the divergence constraint [9] is used. The free surface is captured using a volume of fluid approach [11]. A closeup of the surface mesh, as well as a typical solution are shown in Figure 5(a) and (b).

This was a larger mesh (nelem $=4,902,314$, npoin $=857,901$, nedge $=5,814,629$ ). Table III summarizes the average jumps for the first and second points in the vector groups of length mvecl=16,32,64.

As before, the jumps increase with vector group size, and as compared with the simple renumbering technique, the new technique leads to a moderate increase in jumps for the first point and a drastic decrease in jumps for the second point.


Figure 5. (a,b) Dam-break with column: surface mesh and free surface.

Table III. Dam-break with column.

| Method | mvec1 | jump1 | jump2 | jum1a | jum2a | jum12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Original | 16 | 24 | 6249 | 1.59 | 1552 | 6296 |
| Improved | 16 | 79 | 521 | 5.30 | 116 | 3617 |
| Original | 32 | 56 | 6285 | 1.80 | 1498 | 6323 |
| Improved | 32 | 180 | 748 | 5.81 | 130 | 3790 |
| Original | 64 | 125 | 6304 | 1.99 | 1483 | 6375 |
| Improved | 64 | 394 | 1057 | 6.26 | 144 | 4057 |

Regarding the run-times, the new renumbering technique leads to a modest run-time reduction of $10 \%$ as compared with the old renumbering technique. The machine on which the problem was run had Intel Xeon quadcore processors with 2 Mbyte cache per core. It is expected that for larger problem sizes these differences will increase.

## 6. CONCLUSIONS

A renumbering scheme has been developed that allows vectorization while reducing significantly the jumps in memory access for edge-based solvers. The reduction should lead to a considerable decrease in cache-misses for large problems, thereby improving CPU performance.

## ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the input and encouragement of Dr J. D. Baum from SAIC, whose push for the one-billion element flow case on shared memory machines spurred this effort.

## REFERENCES

1. Barth T. A 3-D upwind Euler solver for unstructured meshes. AIAA-91-1548-CP, 1991.
2. Mavriplis D. Three-dimensional unstructured multigrid for the Euler equations. AIAA-91-1549-CP, 1991.
3. Jameson A. The AIRPLANE Code. Private communication, January, 1992.
4. Peraire J, Peiro J, Morgan K. A three-dimensional finite element multi-grid solver for the Euler equations. AIAA-92-0449, 1992.
5. Luo H, Baum JD, Löhner R, Cabello J. Adaptive edge-based finite element schemes for the Euler and Navier-Stokes equations. AIAA-93-0336, 1993.
6. Weatherill NP, Hassan O, Marcum DL. Calculation of steady compressible flowfields with the finite element method. AIAA-93-0341, 1993.
7. Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices. Proceedings of the ACM National Conference, New York, 1969; 157-172.
8. Löhner R. Some useful renumbering strategies for unstructured grids. International Journal for Numerical Methods in Engineering 1993; 36:3259-3270.
9. Lohner R. Applied CFD Techniques (2nd edn). Wiley: New York, 2008.
10. Löhner R. FEFLO theoretical manual. GMU-CSI-CFD Lab. Report, 2003.
11. Löhner R, Yang C, Oñate E. On the simulation of flows with violent free surface motion. Computer Methods in Applied Mechanics and Engineering 2006; 195:5597-5620.

[^0]:    *Correspondence to: Rainald Löhner, CFD Center, Department of Computational and Data Science, M.S. 6A2, College of Sciences, George Mason University, Fairfax, VA 22030-4444, U.S.A.
    ${ }^{\dagger}$ E-mail: rlohner@gmu.edu

