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Abstract

The testing of mode Il and mixed mode failure is every so often ermuntered in the dedicated
literature of mechanical characterization of brittle and quasi-brittl e materials. In this work, the
application of the mixed strain displacement” u nite element formulation to three examples
involving skew notched beams is presented. The use of this FE tedology is e ective in problems
involving localization of strains in softening materials.

The objectives of the paper are: (i) to test the mixed formulation in mode Il and mixed mode
failure and (ii) to present an enhancement in terms of computational time given by the kinematic
compatibility between irreducible displacement-based and the rixed strain-displacement elements.

Three tests of skew-notched beams are presented: rstly, a threpoint bending test of a Poly-
Methyl MethaAcrylate beam; secondly, a torsion test of a plain concreteprismatic beam with
square base; nally, a torsion test of a cylindrical beam made of plain conete as well. To describe
the mechanical behavior of the material in the inelastic range, Rankineand Drucker-Prager failure
criteria are used in both plasticity and isotropic continuum damage formats.

The proposed mixed formulation is capable of yielding results close tthe experimental ones in
terms of fracture surface, peak load and global loss of carrying capability. i addition, the symmetric
secant formulation and the compatibility condition between the standard irreducible method and
the strain-displacement one is exploited, resulting in a signi @ant speedup of the computational
procedure.



1 Introduction

The experimental testing of brittle and quasi-brittle materials i s an exacting and challenging exercise.
Three are the failure modes that can be activated: tensile opening, iplane shearing and out-of-
plane shearing. While experimental tests that involves only mode | ormode Il are comparatively
straightforward to devise, the isolation of mode Il represents a chdknge. Indeed, this failure type
requires the application of a torsion-like load on the specimen but, inreality, it is often impossible
to separate mode Il from the other two. There is a vast literature that deals speci cally with the
details of mixed mode tests [1, 2, 3, 4, 5] and their analytical solutions [6, 73, 9, 10]. Quasi brittle
materials that fail under tension have the tendency to return to mode | fracture when loaded with a
mixed mode stress state. Frequently, this transition takes placébecause of the curvature of the failure
surface and, for this reason, interest is drawn by the shape of the cr&gpropagation.

From the theoretical stand-point, the strength of brittle materials ¢ an be predicted by means of
Linear Elastic Fracture Mechanics (LEFM), which provides useful quantitative assessment of stress
intensity factors and strain energy dissipation near the tip of an evolvihg crack due to an external load.
Nevertheless, LEFM alone is quite limited when addressing elaborate geometries or the progression
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tational mesh, with the local lack ot convergence a ecting the results The second one is linked to the
poor kinematics of standard nite elements, similar to the pressue locking in quasi-incompressible
situations. These facts are linked with the limitations of the irreducible formulation and, in turn,
they crucially a ect energy dissipation and global softening behavior. It is clear that the basic FE
technology is not able to deal with propagation of 3D twisting cracks, typical of complex mixed load
states.

To take into account the limited capability of the irreducible formu lation, several alternative tech-
nologies were suggested. Initially, local remeshing of the elemeniis the vicinity of the crack was used
[22, 23]. Simo [24, 25] proposed the enhanced strain elements, which takédraccount a local decom-
position of the strains in compatible and incompatible modes. More recatly, the XFEM [26, 27] was
introduced as an enrichment of nite elements through the notion of patition of unity. Finally, the
strong discontinuity approach [28, 29] provides an element formulation ttat embed the displacement
jump in its interior.

Recently, the authors have shown that global and local lack of convergencef the standard
displacement-based nite element is the reason for FE spurious mésbiased results. Initially, Cervera
et al. [30, 31] proved that avoiding global pressure locking in J2 softemig material (both with plasticity
and isotropic damage constitutive laws) with the introduction of a proper mixed displacement/pressure
u pformulation leads to mesh-bias independent results for quasi-incopressible localization problems.
Then, Cervera et al. [32, 33] generalized such concept with the introgction of the strain/displacement
" u formulation. These formulations were capable to cope with strain softeing problems involving
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isotropic damage [34], quasi-brittle tensile cracking [35], J2 [36] and pssure-dependent plasticity [37].
The mixed" u nite element formulation is very e ective for the solution of linear and nonlinear
problems, but it comes at some expense. The simultaneous solution of ¢hdisplacement and the
strain unknown requires larger computational resources. However, its possible to take advantage of
the mathematical structure of the proposed formulation to make important savings on this extra cost.

Therefore, the objective of this work is two-fold. On the one hand, to kenchmark the mixed strain-
displacement” u formulation in problems involving strain localization and crack propagation under
mixed mode [, Il, Il loading. On the other hand, to exploit the kinem atic compatibility between the
mixed and irreducible FE formulations to reduce the computational time.

The paper initially presents a summary of the mixed (stabilized) drain/displacement nite ele-
ments formulation. The implementation of the method is addressed. kstly, using a secant formulation
yields a symmetric algebraic system to be solved. Secondly, the hematic compatibility between the
irreducible and mixed FE enables the use of the two di erent formuations on the same mesh in or-
der to save on computational resources. The constitutive laws of isobpic continuum damage and
associative plasticity are recalled; both Rankine and Drucker-Prageffailure criteria are discussed.

Then, three numerlcal examples are presented. The rst examplem:nS|ders the three point bending
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The mixed (stabilized) strain displacement” u nite element method was introduced in Cervera et al.
[32] for elasticity and it was extended to isotropic damage constitutive nodels in Cervera et al. [33]
and [34]. The extension to plasticity has been recently presentechi Cervera et al. [36] and Benedetti
et al. [37], where both incompressible and pressure-dependent ptasty models has been considered
for shear-softening materials. In the following, the formulation is brie y recalled in a secant format
that can accommodate either continuum damage and plasticity constitutive laws.

The mechanical behavior of a solid bodyB occupying the space domain is described through
the compatibility of deformation and the equilibrium of body forces:

"+rS%u=0 (1a)
r +f=0 (1b)

where u is the displacement vector," is the strain tensor, represents the stress tensor, ° and r
are the symmetric gradient and the divergence operators respectivgl and f is the vector of body
forces. The constitutive equation links the strain and stress elds; in the following, a secant form of
the system is assumed
= Gs" 2)

where Cg is the secant constitutive tensor. For the isotropic damage model, theconstitutive equation
reads:

=1 dC:"=Cgq:" 3
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whered is the damage index andC is the elastic constitutive tensor. The damage secant constitutive
tensor can be de ned as [36]:

Csa=(1 d)C (4)
In case of plasticity, the constitutive equation reads:
=Ci(" "p)= Csp " 5)

where ", are the plastic strains. The plastic secant constitutive tensor is @ ned as:

(C:"p) (C:"p)

"iCYy ©
Note that both secant constitutive tensors, equations (4) and (6), are symnetric. The strong form
of the boundary value problem is completed by imposing proper boundary @nditions on @ and
providing the evolution laws for the plastic strain tensor ", or for the damage variabled.

After symmetrizing the system of equations by pre-multiplication of the secant constitutive tensor
Cs, the strong form of the mixed problem in the unknown elds of total strains " and displacements
u reads:

Csp=C
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ul up= vu® v 2V, (9b)
i=1
where"}, and uy, are the nodal degrees of freedom whereas, and v, are the discrete test functions
for the strain and the displacement elds pertaining respectively to the spacesGy and Vy, the discrete
counterparts of G and V.

The choice of nite elements in the discretization is crucial for the necessary stability of the
employed numerical scheme, e.g. [38, 39, 40, 41]. In particular, thef-Sup condition proves that equal
interpolations for strains and displacements (such as P1P1) are bound tod unstable. A stabilization
procedure is then required: a modi cation of the discrete variational form provides the numerical
stability, while maintaining consistency. Using the Variational Mul tiscale Stabilization procedure
[42, 43] as presented in [36,237], the set of equations for the stabilized praph reads:

@ ) _n:iGCs:("h ot Sup)
Z (10a)
u [r (Cs: pl [r [Cs:"n]+f]=0 8 ,2Gy



Z Z
rSvh:Cs:"n » 1 Svp:Cs:["n r Sup]l= F(vh) 8vh 2 Vi (10b)

The scalars - and | are the stabilization parameter computed as:

hL

T e s (11)
wherec, and ¢ are arbitrary positive numbers, E is the Young's modulus,h is the representative size
of the nite element mesh and L is a characteristic length of the problem.

The stabilized formulation is consistent with the original discrete weak form since, with converging
values of the unknowns"}, and uy, the contribution of the stabilization terms (those multiplied by
and ) disappears, being dependent on the residuals of the strong form of ghproblem, respectively
(see equations (7a) and (7b)):

[ = Cs:uh Csr suh ruh: r [Csnh]'l'f (12)

h

When dealing with problems that do not involve incompressibility constrains, it is possible to
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3 Compatibility with standard u nite elements

The mechanical problem is governed by the compatibility equation (1a).the equilibrium equation (1b)
and the constitutive equation (2), all in strong form. As described abo, the variational mixed " u
form, in equations (8a)-(8b), takes" and u as main variables and considers both compatibility and
equilibrium in weak form. The corresponding discrete FE form requres the interpolation of both the
strain and the displacement elds, with "}, and uy, as nodal degrees of freedom.

Alternatively, the more standard irreducible u form takes only the displacement as main variable
and considers only equilibrium in weak form. To this end, substitiing equation (1a) into equation
(2), and this into equation (1b), yields:

r [Cs:r Sup]+f =0 (16)
with the corresponding variational (weak) form
z
r Svh:Cs:r %un = F(vp) 8vh 2 Vj 17)
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Note that, if the same interpolation and test functions uy are selected, the kinematics of the mixed
and the irreducible formulations are compatible, i.e. the requirengent of inter-elemental continuity is
satis ed. This is necessary to prove consistency of the FE form intte classical Rayleigh-Ritz sense.
Therefore, a mesh constructed as in Figure 1, where the top part is fored by mixed" u elements
while the bottom part is made of standard u ones, is feasible.

Indeed, the standard nite elements are a particular case of the stal# mixed formulation, see
equation (14). Setting - = 1 in expressions (13), equation (13a) becomes an identity and (13b)
reduces to (17).

Therefore, it is possible to reduce the computational burden by coniglering a combined stan-
dard/mixed FE mesh. Setting the stabilization parameter - = 1 where possible and skipping the
corresponding elemental computations leads to substantial savings ithe total number of degrees of
freedom, global operations and corresponding matrix storage.

4 Algebraic implementation aspects

In previous works [35, 36, 37], the nonlinear algebraic problem in equations (13g)L3b) was solved in
an incremental-iterative manner using the Newton-Raphson method.
Let the algebraic nonlinear problem be written in an incremental-iterative fashion as

R XML =p XML Fouy=0 (19)
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wheren and i are the increment and iteration counters, respectively;X is the solution vector, P ;F
and R are the internal, external and residual force vectors.
Writing an iterative correction as:

X1 = X + X (20)
and given that a linear Taylor's approximation of the internal forces
R X4 "R Xpyq +3 Xy X'™=0 (21)
whereJ X in+l is the jacobian (tangent) matrix. It follows that
J X XM= R Xpg (22)

On the one hand, this procedure presents asymptotic quadratic convgence when consistent tangent
matrices are used; on the other hand, this results in a non-symmetci algebraic system to be solved.
The reason for the non-symmetry of the rate problem derived from equatins (13) are (i) the (possible)
lack of symmetry of the consistent constitutive tangent tensor and (i) the non-symmetric dependence
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this case, the convergence Is linear for both methods.
For the mixed nite element formulation discussed in Section 2,X n+1 = ["h;unl},; . Details on

the algebraic tangent system of equations (22) are given in references [37, 3@[he algebraic secant
system of equations (25) reads:

i+1 i

| n
5L e m
n n+1 ' n+1
and the submatricesM ,G ,D andK Zare computed as:Z
M = @ +) N-TCsN+  GCsBBTCs (27)
Z
G =1 +) N-'CsB (28)
Z
D =(1 ) BTGCsNy (29)
Z
K = . BTCsB (30)

where M is a mass-like projection matrix, G is a discrete gradient matrix, D is a discrete divergence
matrix and K is a sti ness matrix.



Figure 2: Representation of the Rankine and Drucker-Prager failure ctieria in the principal stress
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In the case of the Rankine failure criterion, the equivalent stressis given by the rst principal
stress value as:

()= 1 (31)

whereas, in the Drucker-Prager failure criterion, shear stress andressure are linearly combined
through the tangent of the friction angle

()=" 3500+ h()an( ) (32

being 11 ( ) the trace of the stress tensor andJ, () the second invariant of the deviatoric part of

Despite having identically failure criteria and being their evolution controlled by analogous loading-
unloading conditions (Karush-Kuhn-Tucker conditions), the global behavior of the two constitutive
models is substantially di erent. Inelastic ow in plasticity i s directional; in particular, in the associa-
tive case, it is de ned by the normal vector to the yield surface. Therefore, for Rankine-type plastic
models, the inelastic ow occurs strictly parallel to one of the principal axes. This does not occur
for the Drucker-Prager model, where plastic ow is orthogonal to the core in Figure 2. In marked
contrast, inelastic deformation in the continuum isotropic damage modelis not directional, since it
a ects equally all directions of the Haigh-Westergaard space. As shown late this has a large in uence
on strain localization and failure when softening behavior is considexd.



Associative plasticity model Isotropic continuum damage model

Constitutive equation =C:(" "p) =1 dJcC:"
Softening function a=a()
Inelastic criterion f(;a= () (y 9

. . - - L @ - - d = 1 q
Internal variables evolution =+ T @ —= +d()
Loading-unloading conditions - 6 f(5;9 0 £(:9=0

Table 1: Summary of associative plasticity and isotropic continuum damage radels. Both Rankine
and Drucker-Prager failure criteria are considered.
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Figure 3: Geometry of the twisted crack 3PB test, taken from Citarella and Buchholz [46]

This test was initially introduced by Pook [1] to study the propagation of the crack front under
cyclic loading in steel specimens. More recently, the same testgere recreated by Cooke and Pollard



[5], Buchholz et al. [9] using PolyMethyl MethAcrylate (PMMA), also kn own as Plexiglass, in order
to better examine the crack front evolution through its transparency. Lazarus and Leblond [6] and
Lazarus et al. [8] studied the same problem in the case of monotonic load. Fingl Citarella and

Buchholz [46] and Fert et al. [47] studied the problem from a computatioral stand point using the

Boundary Elements Method and the X-FEM technology, respectively.
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E = 2800 MPa, a Poisson's ratlo =0: 38 an elastic threshold uniaxial stress y = 40 MPa and
fracture energy G; = 500 J/m. Because of the clear role of tensile failure in this problem, itis natural
to describe the inelastic processes using constitutive modebased on Rankine's criterion.

In the nite element model, the beam is supported by two rollers on the lower surface which
sustain only vertical forces (in the Y direction). The centerline on the top surface of the beam not
only imposes a vertical displacement of 2 mm, but also provides restint to the out-of-plane forces
(X direction) and horizontal sliding (Z direction). In the numeric al analysis, the PMMA beam is
subjected to monotonic loading.

Figure 5: Computational mesh of P1 and P1P1 tetrahedral elements used foihie 3 point bending test.
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The FE mesh consists of tetrahedral elements (Figure 5 and Figure 7(a)of a detailed view),
structured in the vicinity of the slot, where the elements have a characteristic sizeh = 1 mm, and
unstructured elsewhere. This allows to model the part subjeatd to localization with a 12 10 base
grid and the notch is two elements wide. The grid of structure elemats shows biased planes at
0;+45 ;90 and 45. The nal computational mesh is composed by 58,557 tetrahedral elements
(11,677 points).

g g
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S &IJ

(a) Experiment (b) IsoDamage (c) Plasticity

Figure 6: Experimental [10] and numerical (' u formulation) crack surface of the three point bending
test on PMMA.

The objective of the numerical analysis is to test the mixed" u formulation in comparison to
the standard displacement-based FEM. This benchmark is challengig for two reasons. Firstly, the
problem involves strain localization and crack propagation in a rather brittle material, which implies
a sudden drop in stresses after cracking. As a consequence, global stapiis sharply lost. Secondly,
the discretization is rather coarse. In fact, from the notch to the midsection, the mesh presents just
4 elements; that is the available resolution to model the onset of failre propagation and its twisting
and alignment with the mid-section.

Both Rankine-like isotropic damage and plasticity models provide sinilar solutions to this problem:
Figure 6 compares the deformed shape of the PMMA beam with the crack franpropagating from the
initial notch to the top surface, obtained with the two constitutive laws using the proposed mixed FE
method.

Nevertheless, Figure 7 shows a detail of the mesh grid used for the cqmtations and some sub-
stantial di erences among the standard and mixed FE formulations. Usingthe " u formulation, the
failure surface is very similar with the two constitutive laws (R ankine isotropic damage and directional
plasticity), with the strain softening band that initiate from two op posed notch corners and twists to
the mid-section of the beam.

The solution given by the irreducible formulation is rather di eren t. A substantially mesh-biased
crack surface is obtained for both isotropic damage and plasticity cases: vile the rst one shows a
slight tendency to converge to the center of the specimen, the ladr one presents multiple vertical
localization bands.

Owing to inter-element continuity of strains, mixed formulations for nonlinear analysis presents an
e ective localization band that spans two elements. The kinematic ehancement of using a continuous
strain eld results in a convergent and more accurate outcome than the satndard nite elements, which
su er from severe mesh bias dependence.
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(a) Detail of the (b) u " with (c) u " with (d) u with Iso- (e) u with Plas-
structured mesh IsoDamage Plasticity Damage ticity
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gion

Figure 7: Contour lls of major principal total strain at the front and back fac es of the beam under
3 point bending test.

In order to further compare the two FE technologies, Figure 8 shows tle top view of the center
line of the localization band, at a position 10 mm below the top surface. As tscussed before, the
crack starts from the 45 slanted notch and then twists until it aligns with the mid-plane. Fi gure 8
depicts in yellow the initial notch pro le and in turquoise the fail ure surface. In addition, the bottom
crack pro le is signaled in blue, whereas the top one is highlighted in ed.

The initial pro le of the localization band coincides in all four examples: the surface develops from
the two opposite inner corners of the notch and connects (almost) symmidcally at the center of the
specimen. The mixed" u formulation shows the expected twist rotation, with the nal position of
the crack surface close to the central symmetry plane of the beam. Thelight asymmetry is due, on
the one hand, to the orientation of the structured mesh and, on the otherhand, to the use of a pure
tensile failure criterion, which does not allow the crack surface ¢ cross the compression head at the
top of the beam. Concerning the irreducible formulation, the resuls shows a clear mesh bias, with a
relatively small twisting rotation for the isotropic damage case and almost ro twisting at all in the
case of plasticity.

Figure 9 depicts the relative position of the computed crack path withrespect to the notch location
compared to the experimental results reported by Citarella and Butholz [46]. Once again, standard
displacement based nite elements are unable to provide a satisfaary result, with the crack having a
marked tendency to follow one of the directions of the mesh, indepatently from the constitutive law.
Contrariwise, the mixed formulation achieves rather adequate outcomesBoth the isotropic damage
and plasticity models converge at the top of the plot to the experimentl range; in fact, the rst one
computes a crack path which is very close to the experiments. The dy substantial di erences are

12



(@ u " with IsoDamage (b) u " with Plasticity

(c) u with IsoDamage (d) u with Plasticity

Figure 8: Top view of the crack twist rotation in the 3 point bending test. Light yellow color represents
the initial notch. Turquoise color represents the isosurface corrgmonding to the centerline of the
localization band. The bottom crack pro le is identi ed with the blue color while the top crack pro le
is highlighted in red.

attributed to the relatively coarse mesh discretization in the vicinity of the notch.

Finally, the structural softening behavior is studied plotting t he support reaction versus the im-
posed vertical displacement (Figure 10). The reduction of the carryirg capacity is visible in all cases.
In the elastic range, the standard and mixed nite elements show twodi erent sti ness. For a given
degree of re nement, the enhanced kinematics of the mixed formulatin, with continuous strain elds,
result in a more exible response. Eventually, the two method wil converge to the same result in the
elastic case as the mesh is re ned.

The isotropic damage solution presents a well de ned peak load with a sudken change of global
behavior whereas the plastic one has a smoother transition. A similartgarp change in the carrying
load was previously studied in PMMA specimens in the work of Cooke and Bllard [5]. The mixed
FE is able to reproduce a monotonic softening branch with both constititive laws. The displacement-
based shows excessive energy dissipation in the plasticity casealto the multiple numbers of cracks
developed during the inelastic branch of the test, see Figure 7(e).

13



Figure 9: Plot of the computed crack path with respect to the experimetal data from Citarella and
Buchholz [46].

Figure 10: Plot of support reaction force with respect to the imposed vetical displacement.
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6.2 Prismatic skew notched concrete beam under torsion

The second example is a prismatic skew edge notched beam under torsaoad. This experiment was

rst performed by Je erson et al. [48] on plain concrete specimens, buit was conducted on smaller
PMMA beams as well by Buchholz et al. [49].

The test setup is shown in Figure 11: a prismatic beam with square basis positioned horizontally,
with steel clamps at both ends. These present appendages on both sidedich allow to avoid rigid
movements and to apply the load. Three of the four steel arms are restraied in the vertical direction,
whereas the last one is subjected to a concentrated load. The clampinfjame is assumed to make
perfect contact with the concrete specimen and ensure the transfang of the eccentric load to the
specimen, resulting in a torsional moment aligned with the axis of thebeam. It is also designed not
to constrain warping of the end cross-sections.

(@) (b)

Figure 11: Geometry and experimental setup of the tests on prismatic bem under torsion with square
cross section, from Je erson et al. [48].

The objective of this experiment is to test the tensile strengthof plain concrete under torsion. The
highest stress is located in the vicinity of the notch, with maximum values on the lateral surface of
the beam. According to several works in the eld [1, 6, 4], the fracture hitiation is caused by a mode
Il loading with transition to mode 1 brittle failure.

An unnotched specimen would be subjected to uniform (Saint-Venaris) torsion, characterized by
a uniform warping of the cross section, unhindered by the design of th clamping frames at both ends.
Under uniform torsion, no longitudinal normal stress ( ;) would develop.

The slanted notch induces non-uniform torsion. This is shown in Figue 12(b), which overlaps con-
tour lls of the longitudinal normal stresses ( ;) and vectors of longitudinal (warping) displacement
at ve di erent cross-sections of the beam, in the elastic regime. Itis obvious that: (i) the warping
displacement is not uniform, being rather distorted by the notch and (ii) the ., stresses are not
zero, particularly in the vicinity of the notch. Note that these non-vanishing normal stresses have null
resultant axial force and null resultant bending moments, but they have a resultant warping moment,
also known as bimoment. In comparison, Figure 12(a) depicts the case for ¢hunnotched specimen,
where uniform displacement and null stress are observed.

Considering tensile fracture as the main cause for cracking of unreforced concrete, this example
investigates the di erences between the isotropic damage and plastity constitutive laws, both based
on Rankine's failure criterion with the same mechanical parameters. Tie material properties are (from
[48]): Young's modulusE = 35 GPa, Poisson's ratio = 0:2, tensile uniaxial strength , =2:3 MPa
and fracture energy Gs = 80 N/m.

The mesh is composed by 67,038 tetrahedral elements (12,729 nodes) subdeéd in three regions.
The part of the beam around the notch consists of' u mixed nite elements with nonlinear consti-
tutive behavior; outside this, the remaining concrete volume in ©ntact with the clamps and, nally,
the steel frame itself are elastic. In the latter two regions, the FBM formulation is the standard
displacement-based, since no cracking is expected there.

The boundary conditions, as demonstrated in [35], are crucial for the corret numerical analysis of

15



Figure 12: Plot of the contour Il of longitudinal stress distribution and v ectors of longitudinal dis-

placements due to uniform and non-uniform torsion on a prismatic squarebeam. Top gure shows

the uniform (Saint Venant's) torsion of the unnotched specimen. Bottom gure shows the case of non
uniform torsion of notched specimen.

(a) Isodamage (b) Plasticity

Figure 13: Plot of the contour lls of the displacement eld superposed onthe computed beam
deformation at the end of the test. The isotropic damage solution is very snilar to the plasticity one.
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@) (b) (c)

Figure 14: Comparison of (a) the experimental outcome with the computed cack surfaces in the case
of (b) isotropic damage and (c) plasticity for the prismatic beam with square cross section.

(@) (b) (©

Figure 15: Top views of the crack surface from (a) tests on PMMA [49], (b) Isotopic Damage and (c)
Plasticity.

(@) (b)

Figure 16: Side view of the fracture surface: (a) Isotropic Damage and (b) Risticity.
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the test. In the present case, the model constraints are recovedefrom photos to be as close as possible
to the experimental setup. From Figure 11(b), details of the boundary ©nditions can be extracted.
Three vertical supports consist of steel posts, allowing for free rattion. Two of them (the closest and
furthest ones in the photo) restrain the horizontal motion of the beam. Finally, the free appendage is
subjected to an imposed vertical displacement.

In the numerical model, the four appendages are restrained verticafl in a single point. Taking
advantage of the symmetry of the setup, the horizontal motion is limited by constraining the center
of the front and rear faces of the beam. Both the geometry and the loading contlons are skew-
symmetric, i.e. a 180 rotation of the problem would result in the same test setup. Given thenature
of the problem, localization of strains is expected to be skew-symntic.

The results are presented and discussed next. The displacemeswlution at the end of the test, with
the corresponding deformation, is presented in Figure 13. Here, sindt solution elds are captured
for the two constitutive laws: the opening of the notch allows for a suibstantial rotation of one beam
end from the other, meaning that localization of strain has occurred.

Figure 14 compares the experimental crack surface with the numericBl computed ones, at the
end of the analysis. While both plasticity and damage constitutive lawsare able to predict correctly
the global behavior, it is possible to notice that the latter one provides a more curved pro le than
the rst one. In the case of damage, the crack starts from the notch almost hazontally and, then,
rotates to reach the expected angle of 45 On the contrary, in the case of plasticity, the propagation
direction of the crack is constantly orientated at 45 .

The two solutions can be also compared with the top view of the experimatal tests on PMMA,
as depicted in Figure 15, and a side perspective in Figure 16. In all casea skew-symmetric crack
is obtained as expected. The top view shows that both material laws, wsd with the mixed strain-
displacement nite elements, are able to describe e ectively he complex twisting crack pattern.

The peculiar arch-like shape, observable in the side view, provethat the highest tensile stress is
located on the external surface of the beam, as previously discusse@ontrariwise, the central part
is under compressive stresses arising from the additional bendingn the numerical analyses, as the
failure criterion only involves the major principal tensile stress, the bottom part of the beam remains
elastic.

() (b)

Figure 17: Plots of vertical force versus (a) orthogonal CMOD and (b) slidingCMOD

Finally, Figure 17 shows the force-displacement plots. The expemental data is compared with
the numerical solution using the" u formulation with isotropic damage and plasticity. There is a
major di erence in the global behavior: the case involving damage showan almost complete loss of
load carrying capacity due to strain softening whereas the plasticityone does not. Instead, the plastic
model reaches a plateau and, then, the load carrying capacity increasegain.

Indeed, there is a fundamental di erence in the de nition of the plastic and damage constitutive
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@) (b)

Figure 18: Residual principal stresses in the (a) isotropic Damage and (bplasticity cases. Blue
vectors represents compressive stress, red vectors represeensile stress.

laws. Plasticity is based on the de nition of plastic ow, which give s a directional character to the
inelastic deformation. Moreover, associative plasticity implies hat the stress reduction is proportional
to the plastic ow, but also to the elastic constitutive tensor; hence, it is a ected by the Poisson's
e ect. Such orthotropic behavior does not ensure a complete stresielease even in softening cases. In
fact, Poisson's e ect generate signi cant residual compressive strgses around the crack associated to
the localization of the opening strains, as it is shown in Figure 18(b). his stress eld is restrained
by the longitudinal boundary conditions and, consequently, it increags the force required for the
progression of the localization.

In contrast, isotropic damage reduces the material sti ness isotropicdl, resulting in a uniform
reduction of all the principal stresses. In Figure 18(a) stresses are mlost completely released. The
only remaining stresses are the compressive ones due to the non wnih torsion caused by the slanted
notch.

6.3 Cylindrical skew notched concrete beam under torsion

In this nal example, the test on a skew-notched cylindrical plain concrete beam subjected to torsion
is modeled. The experimental setup is quite similar to the preious example. Figure 19(a) shows
the characteristic dimensions of the specimen and of the steel frameThe cylindrical beam has the
same length as the prismatic one and also presents a 4Botch located at the center of the specimen.
The clamping system is visible in Figure 19(b) and, likewise, it povides the transfer of external
vertical imposed displacement to the specimen as a torsion force andsures proper restraint of rigid
movements. Therefore, boundary conditions are identical to the onesised in the previous example.

(@) (b)

Figure 19: Geometry and experimental setup of the tests on cylindricabeam under torsion, from
Je erson et al. [48].
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The material properties are assumed the same as in the last example: Yogls modulusE = 35
GPa, Poisson's ratio = 0:2, tensile uniaxial strength y = 2:3 MPa and fracture energy Gs = 80
N/m. Indeed, the referenced work by Je erson et al. [48] is followed, ahough the batch of concrete
for the cylindrical beams has not been tested for mechanical parametersThe numerical analysis has
been performed considering Rankine's and Drucker-Prager's (withl5 friction angle) failure criteria.
In fact, the objective of this example is to assess the in uence of th shear stresses in the experimental
results and the failure mechanism.

Concrete is frequently thought to fracture in mode | and Rankine baséd criteria have been widely
adopted. However, when dealing with mode Il and mixed mode loading, lte dependence of shear
strength from pressure can play a fundamental role in the predictionof the failure mechanism. Conse-
guently, it is convenient to introduce a pressure dependent rodel such as Drucker-Prager. Note that,
as shown in Saloustros et al. [50], Rankine's criterion is a limit case of tamily of pressure dependent
constitutive models.

The mesh consists of 62,309 tetrahedral elements (11,892 nodes) which centrate in the vicinity
of the notch. In order to save on computational resources, the central parof the FE mesh is modeled
using mixed" u nite elements whereas the two beam ends as well as the steel frameeamodeled
using irreducible displacement-based elements, since, in ése regions, inelastic phenomena do not
appear.

An unnotched circular beam, subjected to uniform (Coulomb's) torsion, does not present any warp-
ing nor longitudinal stresses. Figure 20(a) shows the null eld of ,, and null warping displacements
in the elastic range at ve di erent cross sections. As in the case of thesquare prismatic beam, the
slanted notch causes the torsion to be non uniform, resulting in nonze stresses ,, and longitudinal
warping displacements, with the maximum values in the vicinity of the cut (see Figure 20(b)).

Figure 21 compares the nal shape of the crack surface for the four analyzedses. No images of the
experimental crack surface are given in [48]. Plasticity and isotropic dmage in the case of Rankine's
failure criterion show a larger and more complex fracture geometry, whieeas the Drucker-Prager's ones
are sensibly closer to the notch cross section. The top views of suclirfaces are presented on Figure
22 and the side perspectives are depicted in Figure 23. Rankine's casshow a behavior similar to
the square prismatic beam, with a typical skew-symmetric curvedshape; the circular shape of the
specimen causes a more curved bottom pro le of the failure surface.

Similarly, the Drucker-Prager criterion shows a curved pro le, although rather smaller. The less
pronounced crack surface is the direct result of a failure criteriorthat is based on the interdependence
of pressure and shear through the friction angle, in lieu of the major pmcipal stress.

Finally, Figure 24 shows the plot of applied load versus orthogonal and sligdig CMOD values with
the Rankine constitutive law while Figure 25 shows the same plot for he Drucker-Prager case. Here,
the experimental values from [48] are compared with the numerical analyss.

In the rst place, it is observed that the sti ness of the experimental specimen di ers substantially
from that of the numerical analyses. Since it is reported that a di erent batch was used for the cylinder
specimens, it is possible that the concrete mix might have had a higér Young's modulus.

Notwithstanding, the numerical analyses with the Drucker-Prager failure criterion predict the
peak load satisfactorily, followed by full reduction of stresses. Comfariwise, the Rankine based models
provide dierent results. As in the previous example, plasticity fails to produce decrease of load-
carrying capacity while isotropic damage presents a reduction of the tadl load, but the peak load
value is slightly overestimated.

Hence, the numerical analysis shows that the torsional tests on circal specimens require a detailed
description of the mixed mode failure of concrete. On the one hand, th numerically computed fracture
surface shows a similar \S" shaped pro le in both cases. On the other hath, the softening behavior
appears to be properly captured by the" u mixed nite elements when using Drucker-Prager's model
with 45 friction angle whereas Rankine's one slightly overestimates the peaload.
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Figure 20: Plot of the contour |l of longitudinal stress distribution and v ectors of longitudinal displace-
ments due to uniform and non-uniform torsion on a cylindrical beam. Top gure shows the uniform
(Coulombs's) torsion of the unnotched specimen. Bottom gure shows tle case of non uniform torsion

of notched specimen.

@ (b) (© (d)

Figure 21: View of the crack surface at the end of the analysis from (a) Rankinésotropic Damage, (b)
Rankine Plasticity, (c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.
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Figure 22: Top view of the crack pattern from (a) Rankine Isotropic Damage, (b) Rankine Plasticity,
(c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.

@) (b)

(© (d)

Figure 23: Side view of the crack pattern from (a) Rankine Isotropic Damage, i) Rankine Plasticity,
(c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.

22



(@) (b)

Figure 24: Plots of vertical force versus (a) orthogonal CMOD and (b) slidingCMOD using Rankine
failure criterion

(@) (b)

Figure 25: Plots of vertical force versus (a) orthogonal CMOD and (b) slidingCMOD using Drucker-
Prager failure criterion with 45 friction angle
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7 Computational pay-o of kinematic compatibility and iterative
procedure

The computational time and memory requirements for the last two exampeks are presented in the fol-
lowing tables. Three di erent nite element technologies are consdered: full mixed " u, combined
kinematically compatible mixed and irreducible FE and full displacement-based standardu formula-
tions. In the rst one, the whole mesh consists of mixed elements andfor this reason, it is the most
demanding from the computational point of view. The second one combinesampatible elements in
the same mesh; its performance pay-o will be benchmarked. Finallythe third one, with the standard
irreducible only, is the less demanding.

These numerical analysis are run on a desktop computer with 8 GB of RAM anda dual core CPU
clocking at 2.83 GHz.

The prismatic skew notched concrete beam under torsion is calculatedvith a mesh of 67,038
elements. When the combined formulation is used, the computational gd is composed of 9,783
irreducible and 57,255 mixed nite elements. Table 2 shows a substdial reduction in computational
time for the proposed methodology. Similarly, the RAM usage is slightly educed. The irreducible
formulation is added for reference, as the corresponding results are gerally de cient.

Formulation Solver tract (S) | Niter | titer (S) | tstep (S) | RAM (MB)
Full mixed " u formulation Newton-Raphson 71 3 71 213 5660
(67,038 elements) Secant scheme 55 10 2 75 2833
Mixed " u and irreducible u | Newton-Raphson 61 3 61 183 4129
(57,255 + 9,783 elements) Secant scheme 51 10 2 71 2065
Irreducible u Newton-Raphson 7 3 7 21 683
(67,038 elements) Secant scheme 6 10 2 26 369

Table 2: CPU time and RAM memory requirements in the prismatic skew rotched concrete beam
under torsion. The proposed method is compared with the full mixed ad full irreducible formulations.
Likewise, the Newton-Raphson and Secant schemes are compared per rsefation factorization time,
number of iterations and step average time.

The cylindrical skew notched concrete beam under torsion is modetewith 62,309 elements. In
the case of combination of kinematically compatible FE, the mesh is subigided in 53,876 mixed and
8,433 irreducible elements. CPU time gains are similar to the ones obsed for the prismatic beam
case.

Note that using the irreducible formulation in only 14 % of the total number of elements translats
directly in a 14 % pay-o of CPU time per step in the Newton-Raphson, and 5.6 % in the Secant
method. In analyses where the ratio of irreducible to mixed elemets can be greater, the gain increases
correspondingly.

Formulation Solver tract (S) | Niter | titer (S) | tstep (S) | RAM (MB)
Full mixed " u formulation Newton-Raphson 65 3 65 195 4459
(62,309 elements) Secant scheme 50 8 2 66 2232
Mixed " u and Irreducible u | Newton-Raphson 54 3 54 162 3334
(53,876 + 8,433 elements) Secant scheme 45 8 2 61 1668
Irreducible u Newton-Raphson 6 3 6 18 546
(62,309 elements) Secant scheme 6 8 2 22 299

Table 3: CPU time and RAM memory requirements in the skew-notched ciindrical beam under
torsion. The proposed method is compared with the full mixed and fullirreducible formulations.
Likewise, the Newton-Raphson and Secant schemes are compared per rsteration factorization
time, number of iterations and step average time.

Moreover, for each case, the performance of the Newton-Raphson solver ismapared with the
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Secant scheme. The rst one requires a lower number of iterations gr step thanks to the quadratic
convergence given by the consistently linearized global matrix. Neveheless, each iteration requires
the solution of the full updated algebraic system which, as in this casecan not be symmetric.

Contrariwise, the modi ed Secant scheme updates the global matrix on} at the beginning of
each step and then it iterates using the already factorized system. Ahough the rate of convergence
is linear and more iterations are needed, it results in a faster proaure. In both of the proposed
examples, the computational time for the secant solver is less than halbéf the Newton-Raphson for
the same convergence tolerance, which is set to 18 with respect to the residual forces. Moreover,
the symmetry of the matrix reduces the required memory to almost hal.

8 Conclusion

The mixed strain displacement” u nite element method is applied to problems involving mode
Il and mixed mode failure in quasi-brittle materials. First, the formulation is presented for isotropic
continuum damage and plasticity constitutive models. The compatibility between the proposed for-
mulation and the standard irreducible one is established, as a mean torpvide a speedup of the
computational time. The proposed mixed nite element technology is abk to describe e ectively
failure processes that involve complex crack surfaces.

The three point bending test of a skew notched beam is studied usign Rankine's failure criterion.
The mixed strain-displacement” u formulation outperforms the standard irreducible one, which
shows mesh biased localization and lack of accuracy. The characteristiailure surface twisting rotation
is recovered and the numerically computed crack pro le is satisfaabrily close to the experimental one.

Then, the torsion test of a skew-notched prismatic beam with square @ss section is studied.
Firstly, using the isotropic damage and the associative plasticity wth Rankine's failure criterion, it is
possible to properly reproduce the propagation of fracture surface fouhexperimentally. Secondly, the
two constitutive laws are compared with the plots of the vertical force versus orthogonal and sliding
CMOD. It is determined that, in the mode | failure, the orthotropic nature of plasticity results in a
di erent global behavior than the isotropic damage. The latter one provides good results, with similar
values to the experiments.

Using an identical test setup, a skew-notched cylindrical beam undr torsion is studied as well.
Here, using a Drucker-Prager constitutive model, the in uence ofshear strength in the experiment
is highlighted. By introducing a Drucker-Prager law with fricti on angle of 45, the global behavior
found in experiments is accurately predicted. This shows that tle mode | failure criterion has to be
combined with a shear-pressure dependent one, in a mixed modeafrture fashion, to properly compute
the cracking of the specimen.

Finally, the kinematic compatibility between the mixed and the standard nite elements is exploited
to provide considerable gains in terms of computational time. Moreovera symmetric scheme, such
as the secant one, is demonstrated as a feasible and advantageous alternatteethe Newton-Raphson
method.
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