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Abstract

The testing of mode III and mixed mode failure is every so often encountered in the dedicated
literature of mechanical characterization of brittle and quasi-brittle materials. In this work, the
application of the mixed strain displacement ε − u finite element formulation to three examples
involving skew notched beams is presented. The use of this FE technology is effective in problems
involving localization of strains in softening materials.

The objectives of the paper are: (i) to test the mixed formulation in mode III and mixed mode
failure and (ii) to present an enhancement in terms of computational time given by the kinematic
compatibility between irreducible displacement-based and the mixed strain-displacement elements.

Three tests of skew-notched beams are presented: firstly, a three point bending test of a Poly-
Methyl MethaAcrylate beam; secondly, a torsion test of a plain concrete prismatic beam with
square base; finally, a torsion test of a cylindrical beam made of plain concrete as well. To describe
the mechanical behavior of the material in the inelastic range, Rankine and Drucker-Prager failure
criteria are used in both plasticity and isotropic continuum damage formats.

The proposed mixed formulation is capable of yielding results close to the experimental ones in
terms of fracture surface, peak load and global loss of carrying capability. In addition, the symmetric
secant formulation and the compatibility condition between the standard irreducible method and
the strain-displacement one is exploited, resulting in a significant speedup of the computational
procedure.
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1 Introduction

The experimental testing of brittle and quasi-brittle materials is an exacting and challenging exercise.
Three are the failure modes that can be activated: tensile opening, in-plane shearing and out-of-
plane shearing. While experimental tests that involves only mode I or mode II are comparatively
straightforward to devise, the isolation of mode III represents a challenge. Indeed, this failure type
requires the application of a torsion-like load on the specimen but, in reality, it is often impossible
to separate mode III from the other two. There is a vast literature that deals specifically with the
details of mixed mode tests [1, 2, 3, 4, 5] and their analytical solutions [6, 7, 8, 9, 10]. Quasi brittle
materials that fail under tension have the tendency to return to mode I fracture when loaded with a
mixed mode stress state. Frequently, this transition takes place because of the curvature of the failure
surface and, for this reason, interest is drawn by the shape of the crack propagation.

From the theoretical stand-point, the strength of brittle materials can be predicted by means of
Linear Elastic Fracture Mechanics (LEFM), which provides useful quantitative assessment of stress
intensity factors and strain energy dissipation near the tip of an evolving crack due to an external load.
Nevertheless, LEFM alone is quite limited when addressing elaborated geometries or the progression
of the crack tip position. Moreover, it does not provide directly either the shape of the fracture or
the global force-displacement behavior. Therefore, the prediction of twisting fracture surfaces in 3D
specimens can be only tackled with numerical methods such as the Finite Element Method.

Softening materials exhibiting localization of strains and fracture under external loading are still
a strenuous topic in Computational Mechanics. The creation of failure surfaces in a solid body repre-
sents, from a mathematical point of view, the inception of a discontinuity in a previously continuous
displacement field. Within the FE technology, smearing the localization of strains across a finite length
(usually a single element) is an attractive way of avoiding the explicit introduction of discontinuities
in the numerical scheme. Once the localization band is smeared across the elements, the dissipation
energy becomes dependent on the mesh size and proper energy regularization is necessary for local
models to be objective [11, 12]. For that reason, a considerable effort has been focused on reintroduc-
ing the missing length scale in the problem. Non-local [13, 14], gradient-enhanced [15, 16] micropolar
continua [17, 18] and phase-field [19, 20] are some of the approaches that were proposed in the last
three decades. Classically, the problem of mesh size objectivity is overcome by considering explicitly
the resolution of the spatial discretization [12, 21]. However, such straight-forward methodology is held
back because standard displacement-based finite elements suffer sensibly from mesh bias and stress
locking. The first issue causes the solution to be strongly dependent on the orientation of the compu-
tational mesh, with the local lack of convergence affecting the results. The second one is linked to the
poor kinematics of standard finite elements, similar to the pressure locking in quasi-incompressible
situations. These facts are linked with the limitations of the irreducible formulation and, in turn,
they crucially affect energy dissipation and global softening behavior. It is clear that the basic FE
technology is not able to deal with propagation of 3D twisting cracks, typical of complex mixed load
states.

To take into account the limited capability of the irreducible formulation, several alternative tech-
nologies were suggested. Initially, local remeshing of the elements in the vicinity of the crack was used
[22, 23]. Simo [24, 25] proposed the enhanced strain elements, which take into account a local decom-
position of the strains in compatible and incompatible modes. More recently, the XFEM [26, 27] was
introduced as an enrichment of finite elements through the notion of partition of unity. Finally, the
strong discontinuity approach [28, 29] provides an element formulation that embed the displacement
jump in its interior.

Recently, the authors have shown that global and local lack of convergence of the standard
displacement-based finite element is the reason for FE spurious mesh biased results. Initially, Cervera
et al. [30, 31] proved that avoiding global pressure locking in J2 softening material (both with plasticity
and isotropic damage constitutive laws) with the introduction of a proper mixed displacement/pressure
u−p formulation leads to mesh-bias independent results for quasi-incompressible localization problems.
Then, Cervera et al. [32, 33] generalized such concept with the introduction of the strain/displacement
ε− u formulation. These formulations were capable to cope with strain softening problems involving
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isotropic damage [34], quasi-brittle tensile cracking [35], J2 [36] and pressure-dependent plasticity [37].
The mixed ε−u finite element formulation is very effective for the solution of linear and nonlinear

problems, but it comes at some expense. The simultaneous solution of the displacement and the
strain unknown requires larger computational resources. However, it is possible to take advantage of
the mathematical structure of the proposed formulation to make important savings on this extra cost.

Therefore, the objective of this work is two-fold. On the one hand, to benchmark the mixed strain-
displacement ε−u formulation in problems involving strain localization and crack propagation under
mixed mode I, II, III loading. On the other hand, to exploit the kinematic compatibility between the
mixed and irreducible FE formulations to reduce the computational time.

The paper initially presents a summary of the mixed (stabilized) strain/displacement finite ele-
ments formulation. The implementation of the method is addressed. Firstly, using a secant formulation
yields a symmetric algebraic system to be solved. Secondly, the kinematic compatibility between the
irreducible and mixed FE enables the use of the two different formulations on the same mesh in or-
der to save on computational resources. The constitutive laws of isotropic continuum damage and
associative plasticity are recalled; both Rankine and Drucker-Prager failure criteria are discussed.

Then, three numerical examples are presented. The first example considers the three point bending
test of a PolyMethyl MethAcrylate (PMMA) beam with a skewed 45 degree notch located at the
midsection. This first analysis is performed with both irreducible and mixed formulations in order to
illustrate the relative benefits of the proposed finite elements technology. The second example tackles
the torsion test of a skew-notched prismatic beams with square cross section. The specimen is made
of plain concrete and has a centered 45◦ notch as well. The objective of this test is to compare the
performance of the isotropic continuum damage model or the associative plasticity one using a mode
I failure criterion such as Rankine. The third example is a skew-notched cylindrical beam made of
plain concrete under torsional load. This test is identical to the previous one except for the geometry
of the specimen. Indeed, the different shapes play a major role in the propagation of the localization
and the final crack surface. In this case the Drucker-Prager constitutive law is introduced to study the
dependence of the experimental results on shear and, consequently, to evaluate mixed mode loading.

Finally, the simultaneous use of irreducible and mixed formulations is benchmarked in terms of
computational time and memory requirements. Results shows that the proposed solution scheme is
capable of saving substantial computational resources while maintaining the same accuracy.

2 Mixed ε− u finite elements

The mixed (stabilized) strain displacement ε−u finite element method was introduced in Cervera et al.
[32] for elasticity and it was extended to isotropic damage constitutive models in Cervera et al. [33]
and [34]. The extension to plasticity has been recently presented in Cervera et al. [36] and Benedetti
et al. [37], where both incompressible and pressure-dependent plasticity models has been considered
for shear-softening materials. In the following, the formulation is briefly recalled in a secant format
that can accommodate either continuum damage and plasticity constitutive laws.

The mechanical behavior of a solid body B occupying the space domain Ω is described through
the compatibility of deformation and the equilibrium of body forces:

−ε+ ∇su = 0 (1a)

∇ · σ + f = 0 (1b)

where u is the displacement vector, ε is the strain tensor, σ represents the stress tensor, ∇s and ∇·
are the symmetric gradient and the divergence operators respectively, and f is the vector of body
forces. The constitutive equation links the strain and stress fields; in the following, a secant form of
the system is assumed

σ = Csε (2)

where Cs is the secant constitutive tensor. For the isotropic damage model, the constitutive equation
reads:

σ = (1− d)C : ε = Cs,d : ε (3)
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where d is the damage index and C is the elastic constitutive tensor. The damage secant constitutive
tensor can be defined as [36]:

Cs,d = (1− d)C (4)

In case of plasticity, the constitutive equation reads:

σ = C : (ε− εp) = Cs,p : ε (5)

where εp are the plastic strains. The plastic secant constitutive tensor is defined as:

Cs,p = C− (C : εp)⊗ (C : εp)

ε : C : εp
(6)

Note that both secant constitutive tensors, equations (4) and (6), are symmetric. The strong form
of the boundary value problem is completed by imposing proper boundary conditions on ∂Ω and
providing the evolution laws for the plastic strain tensor εp or for the damage variable d.

After symmetrizing the system of equations by pre-multiplication of the secant constitutive tensor
Cs, the strong form of the mixed problem in the unknown fields of total strains ε and displacements
u reads:

−Cs : ε+ Cs : ∇su = 0 (7a)

∇ · [Cs : ε] + f = 0 (7b)

Now, equation (7a) represents compatibility of deformation and constitutive behavior while equa-
tion (7b) represents equilibrium. The corresponding weak form is obtained by introducing the test
functions γ for strains and v for displacements, respectively, pertaining to the functional spaces
G ⊂ L2 (Ω)dim and V ⊂ H1 (Ω)dim. Hence, applying Gauss’s divergence theorem to the equilibrium
equation, the weak form of the mixed problem is:

−
∫

Ω
γ : Cs : ε+

∫
Ω
γ : Cs : ∇su = 0 ∀γ ∈ G (8a)∫

Ω
∇sv : [Cs : ε] = F (v) ∀v ∈ V (8b)

where the term F (v) represents the work done by tractions on ∂Ω and body forces in Ω.
The discrete FE version of the mixed weak form of the problem is found by substituting the

unknown fields with their finite element interpolation counterparts:

ε→ εh =

npts∑
i=1

γ
(i)
h ε

(i)
h γh ∈ Gh (9a)

u→ uh =

npts∑
i=1

v
(i)
h u

(i)
h vh ∈ Vh (9b)

where εh and uh are the nodal degrees of freedom whereas γh and vh are the discrete test functions
for the strain and the displacement fields pertaining respectively to the spaces Gh and Vh, the discrete
counterparts of G and V.

The choice of finite elements in the discretization is crucial for the necessary stability of the
employed numerical scheme, e.g. [38, 39, 40, 41]. In particular, the Inf-Sup condition proves that equal
interpolations for strains and displacements (such as P1P1) are bound to be unstable. A stabilization
procedure is then required: a modification of the discrete variational form provides the numerical
stability, while maintaining consistency. Using the Variational Multiscale Stabilization procedure
[42, 43] as presented in [36, 37], the set of equations for the stabilized problem reads:

− (1− τε)
∫

Ω
γh : Cs : (εh −∇suh)

−τu
∫

Ω
[∇ · (Cs : γh)] · [∇ · [Cs : εh] + f ] = 0 ∀γh ∈ Gh

(10a)
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∫
Ω
∇svh : Cs : εh − τε

∫
Ω
∇svh : Cs : [εh −∇suh] = F (vh) ∀vh ∈ Vh (10b)

The scalars τε and τu are the stabilization parameter computed as:

τε = cε
h

L0
τu = cu

hL0

E
(11)

where cu and cε are arbitrary positive numbers, E is the Young’s modulus, h is the representative size
of the finite element mesh and L0 is a characteristic length of the problem.

The stabilized formulation is consistent with the original discrete weak form since, with converging
values of the unknowns εh and uh, the contribution of the stabilization terms (those multiplied by τε
and τu) disappears, being dependent on the residuals of the strong form of the problem, respectively
(see equations (7a) and (7b)):

rεh = Cs : εh − Cs : ∇suh ruh
= ∇ · [Cs : εh] + f (12)

When dealing with problems that do not involve incompressibility constrains, it is possible to
drop the displacement subscale and consider solely the strain one by setting τu = 0. The final set of
equations for the mechanical problem reads:

− (1− τε)
∫

Ω
γh : Cs : (εh −∇suh) = 0 ∀γh ∈ Gh (13a)

∫
Ω
∇svh : Cs : εh − τε

∫
Ω
∇svh : Cs : [εh −∇suh] = F (vh) ∀vh ∈ Vh (13b)

Furthermore, expression (13b) can be written as:∫
Ω
∇svh : Cs : εstab,h = F (vh) ∀vh ∈ Vh (14)

where the stabilized discrete strain field

εstab,h = (1− τε) εh + τε∇suh (15)

is a blending of the continuous (εh) and discontinuous (∇suh) strain fields weighted by the stabilization
parameter τε.

3 Compatibility with standard u finite elements

The mechanical problem is governed by the compatibility equation (1a), the equilibrium equation (1b)
and the constitutive equation (2), all in strong form. As described above, the variational mixed ε−u
form, in equations (8a)-(8b), takes ε and u as main variables and considers both compatibility and
equilibrium in weak form. The corresponding discrete FE form requires the interpolation of both the
strain and the displacement fields, with εh and uh as nodal degrees of freedom.

Alternatively, the more standard irreducible u form takes only the displacement as main variable
and considers only equilibrium in weak form. To this end, substituting equation (1a) into equation
(2), and this into equation (1b), yields:

∇ · [Cs : ∇suh] + f = 0 (16)

with the corresponding variational (weak) form∫
Ω
∇svh : Cs : ∇suh = F (vh) ∀vh ∈ Vh (17)
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Figure 1: FE mesh with combined standard and mixed formulations. Turquoise color represents the
ε−u elements whereas yellow represents the displacement-based ones. The strain tensor at the Gauss
points (symbolized with red crosses) is computed with the interpolation of nodal strain in the mixed
formulation or the discrete symmetric gradient of displacements in the irreducible one.

The irreducible discrete FE form requires solely the interpolation of the displacement field:

u→ uh =

npts∑
i=1

v
(i)
h u

(i)
h vh ∈ Vh (18)

with uh as the nodal degrees of freedom.
From a computational perspective, the ε− u finite element presents a larger number of variables

to be solved compared to the standard one. For each mesh node of a 3D problem, the vector of
unknowns contains 9 scalars, 3 displacements (ux, uy, uz) and 6 strains (εxx, εyy, εzz, εxy, εxz, εyz) of
the symmetric deformation tensor, in Voigt’s notation.

Note that, if the same interpolation and test functions uh are selected, the kinematics of the mixed
and the irreducible formulations are compatible, i.e. the requirement of inter-elemental continuity is
satisfied. This is necessary to prove consistency of the FE form in the classical Rayleigh-Ritz sense.
Therefore, a mesh constructed as in Figure 1, where the top part is formed by mixed ε− u elements
while the bottom part is made of standard u ones, is feasible.

Indeed, the standard finite elements are a particular case of the stable mixed formulation, see
equation (14). Setting τε = 1 in expressions (13), equation (13a) becomes an identity and (13b)
reduces to (17).

Therefore, it is possible to reduce the computational burden by considering a combined stan-
dard/mixed FE mesh. Setting the stabilization parameter τε = 1 where possible and skipping the
corresponding elemental computations leads to substantial savings in the total number of degrees of
freedom, global operations and corresponding matrix storage.

4 Algebraic implementation aspects

In previous works [35, 36, 37], the nonlinear algebraic problem in equations (13a)-(13b) was solved in
an incremental-iterative manner using the Newton-Raphson method.

Let the algebraic nonlinear problem be written in an incremental-iterative fashion as

R
(
Xi+1

n+1

)
= P

(
Xi+1

n+1

)
− F n+1 = 0 (19)
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where n and i are the increment and iteration counters, respectively; X is the solution vector, P ,F
and R are the internal, external and residual force vectors.

Writing an iterative correction as:

Xi+1
n+1 = Xi

n+1 + δXi+1 (20)

and given that a linear Taylor’s approximation of the internal forces

R
(
Xi+1

n+1

)
' R

(
Xi

n+1

)
+ J

(
Xi

n+1

)
δXi+1 = 0 (21)

where J
(
Xi

n+1

)
is the jacobian (tangent) matrix. It follows that

J
(
Xi

n+1

)
δXi+1 = −R

(
Xi

n+1

)
(22)

On the one hand, this procedure presents asymptotic quadratic convergence when consistent tangent
matrices are used; on the other hand, this results in a non-symmetric algebraic system to be solved.
The reason for the non-symmetry of the rate problem derived from equations (13) are (i) the (possible)
lack of symmetry of the consistent constitutive tangent tensor and (ii) the non-symmetric dependence
of the discrete stresses on εh and uh.

Alternatively, the nonlinear algebraic problem in equations (13) may be solved using the secant
(or Picard’s) method.

Let the internal forces be written in secant form as

P
(
Xi+1

n+1

)
= S

(
Xi+1

n+1

)
Xi+1

n+1 (23)

Given that
R
(
Xi

n+1

)
= S

(
Xi

n+1

)
Xi

n+1 − F n+1 (24)

it follows that
S
(
Xi

n+1

)
δXi+1 = −R

(
Xi

n+1

)
(25)

The secant method converges superlinearly, but the need of evaluating consistent derivatives is avoided.
Furthermore, in the case under consideration, the secant matrix S

(
Xi

n+1

)
is symmetric.

Comparing expressions (22) and (25) it is obvious that both method can be implemented similarly,
the only difference being the use of the tangent or secant matrix.

A further approximation can be used in both methods by making J
(
Xi

n+1

)
' J

(
X1

n+1

)
and

S
(
Xi

n+1

)
' S

(
X1

n+1

)
with the matrices recomputed only for the first iteration of the increments. In

this case, the convergence is linear for both methods.
For the mixed finite element formulation discussed in Section 2, Xn+1 = [εh,uh]Tn+1. Details on

the algebraic tangent system of equations (22) are given in references [37, 36]. The algebraic secant
system of equations (25) reads:[

M τ Gτ

Dτ Kτ

]i
n

[
δεh
δuh

]i+1

n+1

= −
[
R1,h

R2,h

]i
n+1

(26)

and the submatrices M τ , Gτ , Dτ and Kτ are computed as:

M τ = − (1− τε)
∫

Ω
Nε

TCsNε − τu
∫

Ω
CsBBT Cs (27)

Gτ = (1− τε)
∫

Ω
Nε

TCsB (28)

Dτ = (1− τε)
∫

Ω
BTCsNu (29)

Kτ = τε

∫
Ω
BTCsB (30)

where M is a mass-like projection matrix, G is a discrete gradient matrix, D is a discrete divergence
matrix and K is a stiffness matrix.
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Figure 2: Representation of the Rankine and Drucker-Prager failure criteria in the principal stress
space

(
σ1, σ2, σ3

)
.

5 Plasticity and damage models

In this work, both plasticity and damage models are introduced to describe strain localization and
failure. Both Rankine and Drucker-Prager failure criteria are used. Figure 2 shows a representation
of the corresponding admissible elastic domains in the Haigh-Westergaard space.

In this space of principal stresses, the Rankine criterion appears as the intersection of three mutu-
ally orthogonal planes, which are, at the same time, orthogonal to the principal axes. Therefore, it is
a triangular pyramid with the apex located on the hydrostatic axis. Contrariwise, the Drucker-Prager
criterion appears as a cone with a circular cross-section in the octahedral plane and axisymmetric to
the σ1 = σ2 = σ3 axis. Both criteria are pressure-dependent, although the Drucker-Prager criterion
reduces to the pressure-independent Von Mises one for vanishing friction angle.

In Table 1, a general overview of the implemented constitutive laws is presented. The failure
criterion is defined by the scalar function f (σ, q) which depends on the equivalent stress measure
τ (σ) and the stress-like isotropic softening function q (ξ); ξ is the strain-like softening variable which
controls the evolution of the failure surface.

In the case of the Rankine failure criterion, the equivalent stress is given by the first principal
stress value as:

τ (σ) = σ1 (31)

whereas, in the Drucker-Prager failure criterion, shear stress and pressure are linearly combined
through the tangent of the friction angle φ:

τ (σ) =
√

3J2 (σ) +
1

3
I1 (σ) tan (φ) (32)

being I1 (σ) the trace of the stress tensor and J2 (σ) the second invariant of the deviatoric part of σ.
Despite having identically failure criteria and being their evolution controlled by analogous loading-

unloading conditions (Karush-Kuhn-Tucker conditions), the global behavior of the two constitutive
models is substantially different. Inelastic flow in plasticity is directional; in particular, in the associa-
tive case, it is defined by the normal vector to the yield surface. Therefore, for Rankine-type plastic
models, the inelastic flow occurs strictly parallel to one of the principal axes. This does not occur
for the Drucker-Prager model, where plastic flow is orthogonal to the cone in Figure 2. In marked
contrast, inelastic deformation in the continuum isotropic damage model is not directional, since it
affects equally all directions of the Haigh-Westergaard space. As shown later, this has a large influence
on strain localization and failure when softening behavior is considered.
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Associative plasticity model Isotropic continuum damage model

Constitutive equation σ = C : (ε− εp) σ = (1− d)C : ε

Softening function q = q (ξ)

Inelastic criterion f (σ, q) = τ (σ)− (σy − q)

Internal variables evolution ξ̇ = λ̇, ε̇p = λ̇ ∂f∂σ ξ̇ = λ̇, d (ξ) = 1− q
ξ

Loading-unloading conditions λ̇ ≥ 0, f (σ, q) ≤ 0, λ̇f (σ, q) = 0

Table 1: Summary of associative plasticity and isotropic continuum damage models. Both Rankine
and Drucker-Prager failure criteria are considered.

In the following, exponential softening is considered for both the plastic and continuum damage
models. Additional details of the models can be found in references [37] for the Drucker-Prager
plasticity model, [35] for the Rankine plasticity model and [34, 44, 45] for the Rankine isotropic
damage model.

6 Numerical Simulations

6.1 Three point bending test on skew notched beam

The first example is a three point bending test on a beam with a slanted notch. The slot is vertical, with
an inclination of 45◦ with respect to the longitudinal midplane of the beam. The specimen geometry,
represented in Figure 3, has a total length L = 260 mm, effectively supported span Le = 240 mm, by
a thickness t = 10 mm and a total height w = 60 mm. The initial notch is a = 20 mm high (a = w/3),
with a constant section width of 2 mm and a slant angle γ = 45◦.

Figure 3: Geometry of the twisted crack 3PB test, taken from Citarella and Buchholz [46]

This test was initially introduced by Pook [1] to study the propagation of the crack front under
cyclic loading in steel specimens. More recently, the same tests were recreated by Cooke and Pollard
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[5], Buchholz et al. [9] using PolyMethyl MethAcrylate (PMMA), also known as Plexiglass, in order
to better examine the crack front evolution through its transparency. Lazarus and Leblond [6] and
Lazarus et al. [8] studied the same problem in the case of monotonic load. Finally, Citarella and
Buchholz [46] and Ferté et al. [47] studied the problem from a computational stand point using the
Boundary Elements Method and the X-FEM technology, respectively.

Figure 4: Crack path interpretation from Pook [3]

Examining the experimental results (Figure 4), the crack starts from the initial notch and, with
increasing applied load, a rotation of the failure surface is observable. Pook [3] and Yates and Mo-
hammed [4] showed that this characteristic behavior is due to the transition from Mode III to Mode
I fracture. At the beginning of the test, the stresses in the vicinity of the notch are given by the
asymmetrical bending of the specimen, resulting in a diagonal onset of cracking. Then, as the crack
progresses, Mode I becomes predominant and the failure surface aligns with the dominant longitudi-
nal normal stresses due to bending. The geometrical symmetry midplane, which coincides with the
loading symmetry plane, can be considered as an attractor of the twisting crack.

PolyMethyl MethAcrylate is an amorphous glass polymer which is characterized by homogeneous
mechanical properties and brittle failure. The literature previously cited reports a Young’s modulus
E = 2800 MPa, a Poisson’s ratio ν = 0.38, an elastic threshold uniaxial stress σy = 40 MPa and
fracture energy Gf = 500 J/m. Because of the clear role of tensile failure in this problem, it is natural
to describe the inelastic processes using constitutive models based on Rankine’s criterion.

In the finite element model, the beam is supported by two rollers on the lower surface which
sustain only vertical forces (in the Y direction). The centerline on the top surface of the beam not
only imposes a vertical displacement of 2 mm, but also provides restraint to the out-of-plane forces
(X direction) and horizontal sliding (Z direction). In the numerical analysis, the PMMA beam is
subjected to monotonic loading.

Figure 5: Computational mesh of P1 and P1P1 tetrahedral elements used for the 3 point bending test.
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The FE mesh consists of tetrahedral elements (Figure 5 and Figure 7(a) for a detailed view),
structured in the vicinity of the slot, where the elements have a characteristic size h = 1 mm, and
unstructured elsewhere. This allows to model the part subjected to localization with a 12 × 10 base
grid and the notch is two elements wide. The grid of structure elements shows biased planes at
0◦,+45◦, 90◦ and −45◦. The final computational mesh is composed by 58,557 tetrahedral elements
(11,677 points).

(a) Experiment (b) IsoDamage (c) Plasticity

Figure 6: Experimental [10] and numerical (ε−u formulation) crack surface of the three point bending
test on PMMA.

The objective of the numerical analysis is to test the mixed ε − u formulation in comparison to
the standard displacement-based FEM. This benchmark is challenging for two reasons. Firstly, the
problem involves strain localization and crack propagation in a rather brittle material, which implies
a sudden drop in stresses after cracking. As a consequence, global stability is sharply lost. Secondly,
the discretization is rather coarse. In fact, from the notch to the midsection, the mesh presents just
4 elements; that is the available resolution to model the onset of failure propagation and its twisting
and alignment with the mid-section.

Both Rankine-like isotropic damage and plasticity models provide similar solutions to this problem:
Figure 6 compares the deformed shape of the PMMA beam with the crack front propagating from the
initial notch to the top surface, obtained with the two constitutive laws using the proposed mixed FE
method.

Nevertheless, Figure 7 shows a detail of the mesh grid used for the computations and some sub-
stantial differences among the standard and mixed FE formulations. Using the ε−u formulation, the
failure surface is very similar with the two constitutive laws (Rankine isotropic damage and directional
plasticity), with the strain softening band that initiate from two opposed notch corners and twists to
the mid-section of the beam.

The solution given by the irreducible formulation is rather different. A substantially mesh-biased
crack surface is obtained for both isotropic damage and plasticity cases: while the first one shows a
slight tendency to converge to the center of the specimen, the latter one presents multiple vertical
localization bands.

Owing to inter-element continuity of strains, mixed formulations for nonlinear analysis presents an
effective localization band that spans two elements. The kinematic enhancement of using a continuous
strain field results in a convergent and more accurate outcome than the standard finite elements, which
suffer from severe mesh bias dependence.
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(a) Detail of the
structured mesh
in the middle re-
gion

(b) u − ε with
IsoDamage

(c) u − ε with
Plasticity

(d) u with Iso-
Damage

(e) u with Plas-
ticity

Figure 7: Contour fills of major principal total strain at the front and back faces of the beam under
3 point bending test.

In order to further compare the two FE technologies, Figure 8 shows the top view of the center
line of the localization band, at a position 10 mm below the top surface. As discussed before, the
crack starts from the 45◦ slanted notch and then twists until it aligns with the mid-plane. Figure 8
depicts in yellow the initial notch profile and in turquoise the failure surface. In addition, the bottom
crack profile is signaled in blue, whereas the top one is highlighted in red.

The initial profile of the localization band coincides in all four examples: the surface develops from
the two opposite inner corners of the notch and connects (almost) symmetrically at the center of the
specimen. The mixed ε− u formulation shows the expected twist rotation, with the final position of
the crack surface close to the central symmetry plane of the beam. The slight asymmetry is due, on
the one hand, to the orientation of the structured mesh and, on the other hand, to the use of a pure
tensile failure criterion, which does not allow the crack surface to cross the compression head at the
top of the beam. Concerning the irreducible formulation, the results shows a clear mesh bias, with a
relatively small twisting rotation for the isotropic damage case and almost no twisting at all in the
case of plasticity.

Figure 9 depicts the relative position of the computed crack path with respect to the notch location
compared to the experimental results reported by Citarella and Buchholz [46]. Once again, standard
displacement based finite elements are unable to provide a satisfactory result, with the crack having a
marked tendency to follow one of the directions of the mesh, independently from the constitutive law.
Contrariwise, the mixed formulation achieves rather adequate outcomes. Both the isotropic damage
and plasticity models converge at the top of the plot to the experimental range; in fact, the first one
computes a crack path which is very close to the experiments. The only substantial differences are
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(a) u− ε with IsoDamage (b) u− ε with Plasticity

(c) u with IsoDamage (d) u with Plasticity

Figure 8: Top view of the crack twist rotation in the 3 point bending test. Light yellow color represents
the initial notch. Turquoise color represents the isosurface corresponding to the centerline of the
localization band. The bottom crack profile is identified with the blue color while the top crack profile
is highlighted in red.

attributed to the relatively coarse mesh discretization in the vicinity of the notch.
Finally, the structural softening behavior is studied plotting the support reaction versus the im-

posed vertical displacement (Figure 10). The reduction of the carrying capacity is visible in all cases.
In the elastic range, the standard and mixed finite elements show two different stiffness. For a given
degree of refinement, the enhanced kinematics of the mixed formulation, with continuous strain fields,
result in a more flexible response. Eventually, the two method will converge to the same result in the
elastic case as the mesh is refined.

The isotropic damage solution presents a well defined peak load with a sudden change of global
behavior whereas the plastic one has a smoother transition. A similar sharp change in the carrying
load was previously studied in PMMA specimens in the work of Cooke and Pollard [5]. The mixed
FE is able to reproduce a monotonic softening branch with both constitutive laws. The displacement-
based shows excessive energy dissipation in the plasticity case due to the multiple numbers of cracks
developed during the inelastic branch of the test, see Figure 7(e).
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Figure 9: Plot of the computed crack path with respect to the experimental data from Citarella and
Buchholz [46].

Figure 10: Plot of support reaction force with respect to the imposed vertical displacement.
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6.2 Prismatic skew notched concrete beam under torsion

The second example is a prismatic skew edge notched beam under torsional load. This experiment was
first performed by Jefferson et al. [48] on plain concrete specimens, but it was conducted on smaller
PMMA beams as well by Buchholz et al. [49].

The test setup is shown in Figure 11: a prismatic beam with square base is positioned horizontally,
with steel clamps at both ends. These present appendages on both sides which allow to avoid rigid
movements and to apply the load. Three of the four steel arms are restrained in the vertical direction,
whereas the last one is subjected to a concentrated load. The clamping frame is assumed to make
perfect contact with the concrete specimen and ensure the transferring of the eccentric load to the
specimen, resulting in a torsional moment aligned with the axis of the beam. It is also designed not
to constrain warping of the end cross-sections.

(a) (b)

Figure 11: Geometry and experimental setup of the tests on prismatic beam under torsion with square
cross section, from Jefferson et al. [48].

The objective of this experiment is to test the tensile strength of plain concrete under torsion. The
highest stress is located in the vicinity of the notch, with maximum values on the lateral surface of
the beam. According to several works in the field [1, 6, 4], the fracture initiation is caused by a mode
III loading with transition to mode I brittle failure.

An unnotched specimen would be subjected to uniform (Saint-Venant’s) torsion, characterized by
a uniform warping of the cross section, unhindered by the design of the clamping frames at both ends.
Under uniform torsion, no longitudinal normal stress (σzz) would develop.

The slanted notch induces non-uniform torsion. This is shown in Figure 12(b), which overlaps con-
tour fills of the longitudinal normal stresses (σzz) and vectors of longitudinal (warping) displacement
at five different cross-sections of the beam, in the elastic regime. It is obvious that: (i) the warping
displacement is not uniform, being rather distorted by the notch and (ii) the σzz stresses are not
zero, particularly in the vicinity of the notch. Note that these non-vanishing normal stresses have null
resultant axial force and null resultant bending moments, but they have a resultant warping moment,
also known as bimoment. In comparison, Figure 12(a) depicts the case for the unnotched specimen,
where uniform displacement and null stress are observed.

Considering tensile fracture as the main cause for cracking of unreinforced concrete, this example
investigates the differences between the isotropic damage and plasticity constitutive laws, both based
on Rankine’s failure criterion with the same mechanical parameters. The material properties are (from
[48]): Young’s modulus E = 35 GPa, Poisson’s ratio ν = 0.2, tensile uniaxial strength σy = 2.3 MPa
and fracture energy Gf = 80 N/m.

The mesh is composed by 67,038 tetrahedral elements (12,729 nodes) subdivided in three regions.
The part of the beam around the notch consists of ε−u mixed finite elements with nonlinear consti-
tutive behavior; outside this, the remaining concrete volume in contact with the clamps and, finally,
the steel frame itself are elastic. In the latter two regions, the FEM formulation is the standard
displacement-based, since no cracking is expected there.

The boundary conditions, as demonstrated in [35], are crucial for the correct numerical analysis of
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Figure 12: Plot of the contour fill of longitudinal stress distribution and vectors of longitudinal dis-
placements due to uniform and non-uniform torsion on a prismatic square beam. Top figure shows
the uniform (Saint Venant’s) torsion of the unnotched specimen. Bottom figure shows the case of non
uniform torsion of notched specimen.

(a) Isodamage (b) Plasticity

Figure 13: Plot of the contour fills of the displacement field superposed on the computed beam
deformation at the end of the test. The isotropic damage solution is very similar to the plasticity one.
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(a) (b) (c)

Figure 14: Comparison of (a) the experimental outcome with the computed crack surfaces in the case
of (b) isotropic damage and (c) plasticity for the prismatic beam with square cross section.

(a) (b) (c)

Figure 15: Top views of the crack surface from (a) tests on PMMA [49], (b) Isotropic Damage and (c)
Plasticity.

(a) (b)

Figure 16: Side view of the fracture surface: (a) Isotropic Damage and (b) Plasticity.
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the test. In the present case, the model constraints are recovered from photos to be as close as possible
to the experimental setup. From Figure 11(b), details of the boundary conditions can be extracted.
Three vertical supports consist of steel posts, allowing for free rotation. Two of them (the closest and
furthest ones in the photo) restrain the horizontal motion of the beam. Finally, the free appendage is
subjected to an imposed vertical displacement.

In the numerical model, the four appendages are restrained vertically in a single point. Taking
advantage of the symmetry of the setup, the horizontal motion is limited by constraining the center
of the front and rear faces of the beam. Both the geometry and the loading conditions are skew-
symmetric, i.e. a 180◦ rotation of the problem would result in the same test setup. Given the nature
of the problem, localization of strains is expected to be skew-symmetric.

The results are presented and discussed next. The displacement solution at the end of the test, with
the corresponding deformation, is presented in Figure 13. Here, similar solution fields are captured
for the two constitutive laws: the opening of the notch allows for a substantial rotation of one beam
end from the other, meaning that localization of strain has occurred.

Figure 14 compares the experimental crack surface with the numerically computed ones, at the
end of the analysis. While both plasticity and damage constitutive laws are able to predict correctly
the global behavior, it is possible to notice that the latter one provides a more curved profile than
the first one. In the case of damage, the crack starts from the notch almost horizontally and, then,
rotates to reach the expected angle of 45◦. On the contrary, in the case of plasticity, the propagation
direction of the crack is constantly orientated at 45◦.

The two solutions can be also compared with the top view of the experimental tests on PMMA,
as depicted in Figure 15, and a side perspective in Figure 16. In all cases, a skew-symmetric crack
is obtained as expected. The top view shows that both material laws, used with the mixed strain-
displacement finite elements, are able to describe effectively the complex twisting crack pattern.

The peculiar arch-like shape, observable in the side view, proves that the highest tensile stress is
located on the external surface of the beam, as previously discussed. Contrariwise, the central part
is under compressive stresses arising from the additional bending. In the numerical analyses, as the
failure criterion only involves the major principal tensile stress, the bottom part of the beam remains
elastic.

(a) (b)

Figure 17: Plots of vertical force versus (a) orthogonal CMOD and (b) sliding CMOD

Finally, Figure 17 shows the force-displacement plots. The experimental data is compared with
the numerical solution using the ε − u formulation with isotropic damage and plasticity. There is a
major difference in the global behavior: the case involving damage shows an almost complete loss of
load carrying capacity due to strain softening whereas the plasticity one does not. Instead, the plastic
model reaches a plateau and, then, the load carrying capacity increases again.

Indeed, there is a fundamental difference in the definition of the plastic and damage constitutive
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(a) (b)

Figure 18: Residual principal stresses in the (a) isotropic Damage and (b) plasticity cases. Blue
vectors represents compressive stress, red vectors represents tensile stress.

laws. Plasticity is based on the definition of plastic flow, which gives a directional character to the
inelastic deformation. Moreover, associative plasticity implies that the stress reduction is proportional
to the plastic flow, but also to the elastic constitutive tensor; hence, it is affected by the Poisson’s
effect. Such orthotropic behavior does not ensure a complete stress release even in softening cases. In
fact, Poisson’s effect generate significant residual compressive stresses around the crack associated to
the localization of the opening strains, as it is shown in Figure 18(b). This stress field is restrained
by the longitudinal boundary conditions and, consequently, it increases the force required for the
progression of the localization.

In contrast, isotropic damage reduces the material stiffness isotropically, resulting in a uniform
reduction of all the principal stresses. In Figure 18(a) stresses are almost completely released. The
only remaining stresses are the compressive ones due to the non uniform torsion caused by the slanted
notch.

6.3 Cylindrical skew notched concrete beam under torsion

In this final example, the test on a skew-notched cylindrical plain concrete beam subjected to torsion
is modeled. The experimental setup is quite similar to the previous example. Figure 19(a) shows
the characteristic dimensions of the specimen and of the steel frame. The cylindrical beam has the
same length as the prismatic one and also presents a 45◦ notch located at the center of the specimen.
The clamping system is visible in Figure 19(b) and, likewise, it provides the transfer of external
vertical imposed displacement to the specimen as a torsion force and ensures proper restraint of rigid
movements. Therefore, boundary conditions are identical to the ones used in the previous example.

(a) (b)

Figure 19: Geometry and experimental setup of the tests on cylindrical beam under torsion, from
Jefferson et al. [48].
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The material properties are assumed the same as in the last example: Young’s modulus E = 35
GPa, Poisson’s ratio ν = 0.2, tensile uniaxial strength σy = 2.3 MPa and fracture energy Gf = 80
N/m. Indeed, the referenced work by Jefferson et al. [48] is followed, although the batch of concrete
for the cylindrical beams has not been tested for mechanical parameters. The numerical analysis has
been performed considering Rankine’s and Drucker-Prager’s (with 45◦ friction angle) failure criteria.
In fact, the objective of this example is to assess the influence of the shear stresses in the experimental
results and the failure mechanism.

Concrete is frequently thought to fracture in mode I and Rankine based criteria have been widely
adopted. However, when dealing with mode III and mixed mode loading, the dependence of shear
strength from pressure can play a fundamental role in the prediction of the failure mechanism. Conse-
quently, it is convenient to introduce a pressure dependent model such as Drucker-Prager. Note that,
as shown in Saloustros et al. [50], Rankine’s criterion is a limit case of a family of pressure dependent
constitutive models.

The mesh consists of 62,309 tetrahedral elements (11,892 nodes) which concentrate in the vicinity
of the notch. In order to save on computational resources, the central part of the FE mesh is modeled
using mixed ε− u finite elements whereas the two beam ends as well as the steel frame are modeled
using irreducible displacement-based elements, since, in these regions, inelastic phenomena do not
appear.

An unnotched circular beam, subjected to uniform (Coulomb’s) torsion, does not present any warp-
ing nor longitudinal stresses. Figure 20(a) shows the null field of σzz and null warping displacements
in the elastic range at five different cross sections. As in the case of the square prismatic beam, the
slanted notch causes the torsion to be non uniform, resulting in nonzero stresses σzz and longitudinal
warping displacements, with the maximum values in the vicinity of the cut (see Figure 20(b)).

Figure 21 compares the final shape of the crack surface for the four analyzed cases. No images of the
experimental crack surface are given in [48]. Plasticity and isotropic damage in the case of Rankine’s
failure criterion show a larger and more complex fracture geometry, whereas the Drucker-Prager’s ones
are sensibly closer to the notch cross section. The top views of such surfaces are presented on Figure
22 and the side perspectives are depicted in Figure 23. Rankine’s cases show a behavior similar to
the square prismatic beam, with a typical skew-symmetric curved shape; the circular shape of the
specimen causes a more curved bottom profile of the failure surface.

Similarly, the Drucker-Prager criterion shows a curved profile, although rather smaller. The less
pronounced crack surface is the direct result of a failure criterion that is based on the interdependence
of pressure and shear through the friction angle, in lieu of the major principal stress.

Finally, Figure 24 shows the plot of applied load versus orthogonal and sliding CMOD values with
the Rankine constitutive law while Figure 25 shows the same plot for the Drucker-Prager case. Here,
the experimental values from [48] are compared with the numerical analyses.

In the first place, it is observed that the stiffness of the experimental specimen differs substantially
from that of the numerical analyses. Since it is reported that a different batch was used for the cylinder
specimens, it is possible that the concrete mix might have had a higher Young’s modulus.

Notwithstanding, the numerical analyses with the Drucker-Prager failure criterion predict the
peak load satisfactorily, followed by full reduction of stresses. Contrariwise, the Rankine based models
provide different results. As in the previous example, plasticity fails to produce decrease of load-
carrying capacity while isotropic damage presents a reduction of the total load, but the peak load
value is slightly overestimated.

Hence, the numerical analysis shows that the torsional tests on circular specimens require a detailed
description of the mixed mode failure of concrete. On the one hand, the numerically computed fracture
surface shows a similar “S” shaped profile in both cases. On the other hand, the softening behavior
appears to be properly captured by the ε−u mixed finite elements when using Drucker-Prager’s model
with 45◦ friction angle whereas Rankine’s one slightly overestimates the peak load.
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Figure 20: Plot of the contour fill of longitudinal stress distribution and vectors of longitudinal displace-
ments due to uniform and non-uniform torsion on a cylindrical beam. Top figure shows the uniform
(Coulombs’s) torsion of the unnotched specimen. Bottom figure shows the case of non uniform torsion
of notched specimen.

(a) (b) (c) (d)

Figure 21: View of the crack surface at the end of the analysis from (a) Rankine Isotropic Damage, (b)
Rankine Plasticity, (c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.
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(a) (b) (c) (d)

Figure 22: Top view of the crack pattern from (a) Rankine Isotropic Damage, (b) Rankine Plasticity,
(c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.

(a) (b)

(c) (d)

Figure 23: Side view of the crack pattern from (a) Rankine Isotropic Damage, (b) Rankine Plasticity,
(c) Drucker-Prager isotropic damage and (d) Drucker-Prager plasticity solutions.
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(a) (b)

Figure 24: Plots of vertical force versus (a) orthogonal CMOD and (b) sliding CMOD using Rankine
failure criterion

(a) (b)

Figure 25: Plots of vertical force versus (a) orthogonal CMOD and (b) sliding CMOD using Drucker-
Prager failure criterion with 45◦ friction angle
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7 Computational pay-off of kinematic compatibility and iterative
procedure

The computational time and memory requirements for the last two examples are presented in the fol-
lowing tables. Three different finite element technologies are considered: full mixed ε− u, combined
kinematically compatible mixed and irreducible FE and full displacement-based standard u formula-
tions. In the first one, the whole mesh consists of mixed elements and, for this reason, it is the most
demanding from the computational point of view. The second one combines compatible elements in
the same mesh; its performance pay-off will be benchmarked. Finally, the third one, with the standard
irreducible only, is the less demanding.

These numerical analysis are run on a desktop computer with 8 GB of RAM and a dual core CPU
clocking at 2.83 GHz.

The prismatic skew notched concrete beam under torsion is calculated with a mesh of 67,038
elements. When the combined formulation is used, the computational grid is composed of 9,783
irreducible and 57,255 mixed finite elements. Table 2 shows a substantial reduction in computational
time for the proposed methodology. Similarly, the RAM usage is slightly reduced. The irreducible
formulation is added for reference, as the corresponding results are generally deficient.

Formulation Solver tfact (s) niter titer (s) tstep (s) RAM (MB)

Full mixed ε− u formulation Newton-Raphson 71 3 71 213 5660
(67,038 elements) Secant scheme 55 10 2 75 2833

Mixed ε− u and irreducible u Newton-Raphson 61 3 61 183 4129
(57,255 + 9,783 elements) Secant scheme 51 10 2 71 2065

Irreducible u Newton-Raphson 7 3 7 21 683
(67,038 elements) Secant scheme 6 10 2 26 369

Table 2: CPU time and RAM memory requirements in the prismatic skew notched concrete beam
under torsion. The proposed method is compared with the full mixed and full irreducible formulations.
Likewise, the Newton-Raphson and Secant schemes are compared per first iteration factorization time,
number of iterations and step average time.

The cylindrical skew notched concrete beam under torsion is modeled with 62,309 elements. In
the case of combination of kinematically compatible FE, the mesh is subdivided in 53,876 mixed and
8,433 irreducible elements. CPU time gains are similar to the ones observed for the prismatic beam
case.

Note that using the irreducible formulation in only 14 % of the total number of elements translats
directly in a 14 % pay-off of CPU time per step in the Newton-Raphson, and 5.6 % in the Secant
method. In analyses where the ratio of irreducible to mixed elements can be greater, the gain increases
correspondingly.

Formulation Solver tfact (s) niter titer (s) tstep (s) RAM (MB)

Full mixed ε− u formulation Newton-Raphson 65 3 65 195 4459
(62,309 elements) Secant scheme 50 8 2 66 2232

Mixed ε− u and Irreducible u Newton-Raphson 54 3 54 162 3334
(53,876 + 8,433 elements) Secant scheme 45 8 2 61 1668

Irreducible u Newton-Raphson 6 3 6 18 546
(62,309 elements) Secant scheme 6 8 2 22 299

Table 3: CPU time and RAM memory requirements in the skew-notched cylindrical beam under
torsion. The proposed method is compared with the full mixed and full irreducible formulations.
Likewise, the Newton-Raphson and Secant schemes are compared per first iteration factorization
time, number of iterations and step average time.

Moreover, for each case, the performance of the Newton-Raphson solver is compared with the
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Secant scheme. The first one requires a lower number of iterations per step thanks to the quadratic
convergence given by the consistently linearized global matrix. Nevertheless, each iteration requires
the solution of the full updated algebraic system which, as in this case, can not be symmetric.

Contrariwise, the modified Secant scheme updates the global matrix only at the beginning of
each step and then it iterates using the already factorized system. Although the rate of convergence
is linear and more iterations are needed, it results in a faster procedure. In both of the proposed
examples, the computational time for the secant solver is less than half of the Newton-Raphson for
the same convergence tolerance, which is set to 10−3 with respect to the residual forces. Moreover,
the symmetry of the matrix reduces the required memory to almost half.

8 Conclusion

The mixed strain displacement ε − u finite element method is applied to problems involving mode
III and mixed mode failure in quasi-brittle materials. First, the formulation is presented for isotropic
continuum damage and plasticity constitutive models. The compatibility between the proposed for-
mulation and the standard irreducible one is established, as a mean to provide a speedup of the
computational time. The proposed mixed finite element technology is able to describe effectively
failure processes that involve complex crack surfaces.

The three point bending test of a skew notched beam is studied using Rankine’s failure criterion.
The mixed strain-displacement ε − u formulation outperforms the standard irreducible one, which
shows mesh biased localization and lack of accuracy. The characteristic failure surface twisting rotation
is recovered and the numerically computed crack profile is satisfactorily close to the experimental one.

Then, the torsion test of a skew-notched prismatic beam with square cross section is studied.
Firstly, using the isotropic damage and the associative plasticity with Rankine’s failure criterion, it is
possible to properly reproduce the propagation of fracture surface found experimentally. Secondly, the
two constitutive laws are compared with the plots of the vertical force versus orthogonal and sliding
CMOD. It is determined that, in the mode I failure, the orthotropic nature of plasticity results in a
different global behavior than the isotropic damage. The latter one provides good results, with similar
values to the experiments.

Using an identical test setup, a skew-notched cylindrical beam under torsion is studied as well.
Here, using a Drucker-Prager constitutive model, the influence of shear strength in the experiment
is highlighted. By introducing a Drucker-Prager law with friction angle of 45◦, the global behavior
found in experiments is accurately predicted. This shows that the mode I failure criterion has to be
combined with a shear-pressure dependent one, in a mixed mode fracture fashion, to properly compute
the cracking of the specimen.

Finally, the kinematic compatibility between the mixed and the standard finite elements is exploited
to provide considerable gains in terms of computational time. Moreover, a symmetric scheme, such
as the secant one, is demonstrated as a feasible and advantageous alternative to the Newton-Raphson
method.
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