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Abstract. A novel approach is presented for efficiently training a neural network (NN)-based 

surrogate model when the training data set is to be generated using a computationally intensive 

high-fidelity computational model. The approach consists in using a Gaussian Process (GP), 

and more specifically, its acquisition function, to adaptively sample the parameter space of 

interest and generate the minimum amount of training data needed to achieve the desired level 

of approximation accuracy. The overall approach is explained and illustrated with numerical 

experiments associated with the prediction of the lift-over-drag ratio for a NACA airfoil in a 

large, two-dimensional parameter space of free-stream Mach number and free-stream angle of 

attack. The obtained numerical results demonstrate the superior accuracy delivered by the 

proposed training over standard trainings using uniform and random samplings. 

 

 

1 INTRODUCTION 

Classical machine learning algorithms use computational methods to “learn” information 

directly from data, without relying on a predetermined equation as a model. Originally, their 

development was mostly driven by problems for which no predetermined equation is available. 
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As such, machine learning algorithms can also be described as algorithms for building data-

driven models. For example, a neural network (NN) regression is a supervised machine learning 

algorithm that can be used to build a data-driven model. Given a sufficiently large amount of 

data, it typically partitions the data into two subsets, uses one for training, and the other for 

testing.  

Even for problems where predetermined equations are available to build parametric 

computational models – for example, high-dimensional structural dynamics (CSD) and 

computational fluid dynamics (CFD) models (HDMs) – NNs are currently in vogue for building 

alternative, low-dimensional, surrogate models, at least for a small number of scalar quantities 

of interest (QoIs), that are easier to handle and faster to process. In this case however, the data 

is not available, but needs to be generated using: the parametric HDMs; and an approach for 

sampling the parameter space of interest – for example, a design space or, for applications in 

aeronautics and astronautics, a space of flight conditions. 

Parameter sampling algorithms come in two flavors: a priori sampling; and adaptive 

sampling. A priori sampling algorithms sample points in the parameter space either randomly, 

or according to a non-adaptive, predesigned scheme. Examples include the full factorial 

sampling [1], random sampling, and Latin hypercube sampling [2] algorithms. Such algorithms 

are not optimal because they have no explicit awareness of where the regression will be 

inaccurate. For this reason, they may require a larger than necessary number of samples in order 

to deliver the expected accuracy at regression time. Consequently, they may lead to 

unaffordable training costs for NNs, particularly when the parameter space is high-dimensional. 

On the other hand, adaptive sampling schemes sample points in regions of the parameter space 

where the regression can be deemed to be inaccurate, and therefore avoid over-sampling. 

Hence, they can mitigate the curse of dimensionality, but require the availability of an error 

indicator. Unfortunately, when an NN-based surrogate model is to be built for a quantity of 

interest, finding a suitable error indicator can be challenging. This is in contrast with projection-

based model reduction approaches for building low-dimensional surrogate computational 

models [3], where residual-based error indicators are common for guiding adaptive sampling 

procedures known as “greedy procedures” [4]. 

This paper presents a new idea for addressing the above dilemma. It consists in training 

an NN-based surrogate model (or regression) using a parametric HDM of interest and a 

Gaussian Process (GP) [5]. Indeed, a GP models  distributions over functions and generates a 

stochastic model that can be utilized to construct an acquisition function for guiding an adaptive 

sampling of the parameter space of interest. However, given a parametric computational model, 

a GP and its acquisition function are typically used to construct a computationally leaner 

surrogate model in the form or a regression model. Hence, one may ask why using a GP to 

construct an NN-based surrogate model of a given parametric computational model, when the 

GP can also be used to build a low-dimensional surrogate of that same HDM? The answer lies 

in the superior approximation properties of NNs and in particular deep NNs. Using as a 

backdrop the problem of constructing for an airfoil surrogate models of aerodynamic QoIs such 

as the lift-over-drag ratio in the two-dimensional parameter space (free-stream Mach number 

𝑀∞, free-stream angle of attack 𝛼∞), it is shown in this paper that: a GP can be used to construct 

and train NN-based surrogate models; that such models outperform accuracy-wise counterparts 

directly constructed using the GP itself; and that they also outperform NN-based surrogate 

models trained using uniform grid sampling and random sampling. The surrogate models 
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constructed and trained using the proposed approach are particularly interesting for time-critical 

applications such as design optimization and uncertainty quantification. 

 
 

2 BASICS OF GAUSSIAN PROCESS REGRESSION 

Formally,  a GP is a stochastic process – that is,  a collection of random variables 𝑌(𝑥), indexed 

by an 𝑛-dimensional vector 𝑥 that often represents  a time or parameter space such that every 

finite collection of the random variables has a multivariate normal distribution. GPs have 

recently found their place in machine learning (ML) as a popular tool for classification. They 

have also been used for regression for quite some time under the term “krieging”. As a 

collection of normal random variables, a GP can be characterized by its mean value function, 

𝑚(𝑥)  =  𝐸[𝑌(𝑥)], where 𝐸 is the mathematical expectancy, and its covariance function 

𝑘(𝑥, 𝑥′)  =  𝑐𝑜𝑣(𝑥, 𝑥′)  =  𝐸[(𝑌(𝑥) − 𝑚(𝑥))(𝑌(𝑥) − 𝑚(𝑥))]                    (1) 

that is often also called the kernel. 

A choice of the kernel can be tuned to a particular data set to represent varying degrees 

of smoothness or other prior properties known or assumed about the data. Matérn, exponential 

rational quadratic, and piecewise polynomial are examples of such kernels [5]. However, the 

most well-known is the squared exponential kernel (also known as the radial basis function 

(RBF) kernel) 

k(𝑥, 𝑥′) = σ2 𝑒𝑥𝑝
−|𝑥−𝑥′|

2

2λ2                                                   (2) 

where the hyperparameter σ controls the variance and λ is known as the length scale. 

For regression purposes, the training data – either directly available or generated using 

a parametric computational model that is possibly an HDM – is used as a prior and Bayesian 

posterior predictions can be shown again to form a Gaussian process whose mean and 

covariance function can be easily computed [5]. The resulting Gaussian process model is often 

called nonparametric because it depends only on the training data, the choice of the kernel, and 

its hyperparameters. To estimate the values of the hyperparameters, cross-validation or 

maximizing the marginal (log) likelihood [5] are the most popular techniques. 

 

3 BASICS OF NEURAL NETWORKS 

Artificial NNs are another popular ML tool. Modelled after biological neurons and their 

synaptic connections, the nodes of such a network attach to each other by passing information 

through links among them [6]. Various architectures can be formed, of which a feed-forward 

network is one of the most common. Its nodes are divided into layers (see Figure 1): an input 

layer; single or multiple hidden layers; and an output layer. A node in a layer takes input from 

nodes in the previous layer, processes it, and passes it to the nodes in the next layer. The 

propagation function for one such node can be written as  
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𝚽(∑ 𝒘𝒌𝒌   𝒂𝒌 + 𝒃)                                                               (3) 

where  𝒂𝒌 are the inputs a node  receives from counterparts of  the previous layer, 𝒘𝒌 and 𝒃  are 

the weights and the bias of the affine function that is applied to the inputs, respectively, and 𝚽 

is typically a nonlinear function known as the activation function. 

An NN is usually trained iteratively by optimizing its hyperparameters – which are the 

weights and biases of each of its nodes – so that a cost (loss) function of interest is minimized. 

In a supervised learning framework, the training data comes in the form of input-output pairs 

and the loss function measures the discrepancy between the output of the NN given an input in 

the training set, and the corresponding output in the training set. Classical, gradient-based, 

optimization algorithms have been adapted and tuned for performance to NN applications using 

a technique called back-propagation that makes it possible to efficiently compute the gradient 

of the cost function with respect to the parameters of the network. 

 

 

 
Figure 1: Typical architecture of an artificial NN. 

 

When using an NN as a data fitting tool, mathematical results such as the universal 

approximation theorem [7] provide confidence that any input-output relationship can be 

approximated. For example, a single hidden layer network with a large enough number of nodes 

can approximate any continuous function. However, such results are neither unique to NNs, nor 

necessarily constructive: they do not give guidance on how many nodes, or layers need to be 

used to achieve the desired results. 

 

4 ACTIVE LEARNING USING A GAUSSIAN PROCESS REGRESSION 

Unlike in a typical application of ML where vast amounts of paid-for data are often available, 

data in engineering sciences can be scarce, expensive to measure experimentally, or time-

consuming to compute using HDMs such as those arising in CSD and CFD applications. In this 

context, it is desirable to be able to train an ML algorithm with as little data as possible and by 

inference, use the most useful (in some sense) data points.  
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Given a parametric computational model, Gaussian process regression (GPR) already 

provides, as stated in Section 1, a surrogate model that can be exploited to perform a function 

exploration – that is, to learn a function as well and as quickly as possible. To find the next 

point to sample in a given parameter space, it relies on an acquisition function that measures 

the utility of the input data points. Given the current set of sampled data points and their function 

values, the variance of the posterior GP can be used as an acquisition function. Selecting the 

argument of the maximum of the acquisition function then amounts to greedily picking a 

parameter point where the function value is most uncertain with respect to the current model. 

Such a greedy algorithm only focuses on minimizing the current uncertainty rather than looking 

farther into the future. However, it can be shown that the next point to sample that it picks is 

close to optimal in some sense [5]. 

In this paper, it is proposed to train an artificial NN using the GP-driven greedy 

algorithm summarized below and referred to as Algorithm 1. 

 

Algorithm 1: Greedy algorithm for function exploration using a Gaussian process 

1. Set 𝑖 = 1 and initialize the sampling set: 𝑺 = {𝑥1}. 

2. Evaluate the function on the sampling set, i.e. 𝑦(𝑺) = {𝑦(𝑥1), … , 𝑦(𝑥𝑖)} . 

3. Optimize the hyperparameters of the kernel of the Gaussian process given the sampling 

set 𝑺 and the function values on the sampling set, 𝑦(𝑺)). 

4. Find the critical point 𝑥𝑐𝑟where the predicted standard deviation of the Gaussian process 

is maximized. 

5.  If a stopping criterion is not satisfied, add 𝑥𝑐𝑟 to 𝑺, set 𝑖: = 𝑖 + 1, and go to 2. 

 

GPR is most useful for constructing surrogate models for a small number of independent, 

scalar QoIs. However, in many applications, there are many QoIs or the QoIs are related: for 

example, the, lift, drag, and moment coefficients in aerodynamics are related. This is where 

NN-based regressions are preferred over GPRs. In the absence of an error indicator for an NN-

based regression, the main idea here is to efficiently train an NN-based surrogate model for a 

QoI (or a set of related QoIs) by using GPR as a surrogate error indicator and its acquisition 

function as the algorithm for sampling the next data point to train the NN. 

 

5  SURROGATE MODELING OF AERODYNAMIC QUANTITIES OF INTEREST    

AND PERFORMANCE ASSESSMENTS 

Here, Algorithm 1 is applied to efficiently construct NN-based surrogate models for predicting 

aerodynamic QoIs for a NACA airfoil over a range of flight conditions. To this end, the HDMs 

are constructed using the massively parallel, three-dimensional, compressible flow solver 

AERO-F, which was validated for many flow problems including aircraft flow problems [9, 

10]. Specifically, Algorithm 1 is applied to adaptively sample the training parameter points as 

the critical points of the GP equipped with the maximum predicted variance as an acquisition 

function. The accuracy of the constructed NN-based surrogate model is compared to that of the 

GPR obtained as a byproduct of the process. It is also contrasted with the performance of two 

related NN-based surrogate models trained using uniform grid sampling and random sampling. 

A flowchart of the numerical experiments is graphically depicted in Figure 2. 
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Figure 2: Flowchart for the evaluation of an adaptive approach for training an NN-based surrogate model. 

 

5.1 Parametric Predictions of the Lift-over-drag Ratio for a NACA0012 Airfoil 

The objective is set to predicting in real-time the ratio 𝐿/𝐷, where 𝐿 and 𝐷 denote the lift and 

drag generated by a NACA0012 airfoil, respectively, in the two-dimensional parameter space 

of flight conditions represented by 𝑀∞ and 𝛼∞. Air is modelled as a perfect gas. The flow is 

assumed to be inviscid and modelled using the compressible Euler equations.  

 

5.2  CFD-based Computational Model 

The computational fluid domain chosen for computing all flows around the NACA0012 airfoil 

reported herein is a circular domain extruded in the z direction, because AERO-F is a three-

dimensional flow solver (see Figure 3 (left)). The airfoil chord is 2.24 m and the diameter of 

the circle defining the computational fluid domain is 28 m. The computational fluid domain is 

discretized by 45,000 tetrahedral elements. Figure 3 (right) highlights the presence of local 

refinement near the wall boundary. Symmetry boundary conditions are applied on the circular 

lateral boundaries of the computational fluid domain and slip conditions are prescribed on the 

wall boundary.  

 

5.3  Generation of Reference/test Data 

To facilitate error measurements for the ML algorithms under consideration, a steady-state 

solution of the flow is computed for a range of free-stream flow conditions and postprocessed 

to obtain the lift-over-drag ratio 𝐿/𝐷. Specifically, the Mach number 𝑀∞ is varied from 0.2 to 

0.5 in increments of 0.01, and the angle of attack 𝛼∞ is varied from 0◦ to 5◦ in increments of 

0.25◦. The data set thus obtained is referred to below as the reference/test data set. A contour 
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plot of the pressure solution near the airfoil for 𝑀∞ = 0.4 and  𝛼∞= 5◦ is shown in Figure 3 

(right). 

 

 

 

 

Figure 3: Parmetric flows over a NACA0012 airfoil – Computational fluid domain (left); and pressure contours 

at the parameter point (𝑀∞ = 0.4, 𝛼∞ = 5◦) (right). 

 

5.4  Generation of a Training Data Set Using the Acquisition Function of a Gaussian  

       Process Regression 

Algorithm 1 (see Section 4) is applied to adaptively approximate the lift-over-drag ratio 𝐿/𝐷 

in the parameter space (𝑀∞, 𝛼∞) =  ([0.2, 0.5] × [0◦, 5◦]). Starting from two corners of this 

rectangular space, additional data points are sampled by the GP and its acquisition function. 

Since the lift-over-drag ratio is expected to vary smoothly, an RBF kernel is employed. The 

Python package Scikit-learn [11] is used to evaluate the GP model and optimize the 

hyperparameters of the RBF kernel. To monitor convergence of the function exploration, the 

following heuristic error indicator is adopted 

𝑐𝐺𝑃 =
max(𝐿/𝐷)𝑠𝑡𝑑

𝑚𝑎𝑥(𝐿/𝐷)𝑝𝑟𝑒𝑑
                                                        (4) 

where (𝐿/𝐷)𝑚𝑒𝑎𝑛 and (𝐿/𝐷)𝑠𝑡𝑑 are the mean and standard deviation predicted by the posterior 

Gaussian process on a test set that is chosen here to coincide with the reference set described 

above. Alternative choices include a relative decrease of the maximum standard deviation, or a 

fixed number of iterations that is considered practically affordable (which is not the case here 

because a large reference set has been precomputed enable the evaluation of the errors of the 

procedure).  

Figure 4 (left) shows the convergence of the error indicator 𝑐𝐺𝑃 and the relative error 

𝑒𝐺𝑃 defined as  
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𝑒 =
‖(𝐿/𝐷)𝑝𝑟𝑒𝑑−(𝐿/𝐷)𝑟𝑒𝑓‖

‖(𝐿/𝐷)𝑟𝑒𝑓‖
                                                     (5) 

It can be seen that both the relative error and relative error indicator drop below 1% after 18 

training points have been sampled. In order to enable a comparison with training on a uniform 

sampling of 4 × 4 points however, only the first 16 training points selected by the greedy 

algorithm are retained in the remainder of this paper. Figure 4 (right) shows a good agreement 

between the reference ratio 𝐿/𝐷𝑟𝑒𝑓 and its counterpart 𝐿/𝐷𝑝𝑟𝑒𝑑 predicted by the GP using the 

16 training points. The relative error using the adaptive sampling is 1.2%. For comparison, the 

relative error obtained by sampling on a 4 × 4 uniform grid is 7.8% and on a random sample of 

16 points, it is 2.2%. 

 
Figure 4: Parametric predictions for the NACA0012 airfoil – Convergence of GPR as a function of the number 

of adaptively selected training points (left); and reference as well as GPR solutions using 16 adaptively selected 

training points (right). 

5.5  Optimal Configuration of a Neural Network for a Given Training Data Set 

Using the training set adaptively determined in Section 5.1.1 via GPR, an NN-based surrogate 

model is constructed here. First, the performance of such a model in terms of accuracy 

(measured with respect to the reference training data) is discussed as a function of the chosen 

activation function, number of hidden layers, dimensions of the hidden layers, specific 

optimizer, and specific learning rate.   

To this end, the NN is constructed using the pyTorch software package. Many 

activation functions (e.g., sigmoid, tanh, ReLU, …) are considered and best accuracy (measured 

as in (5)) is obtained using the 𝑙𝑜𝑔 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function. Similarly, a variety of 

optimizers are considered and the Adam optimizer [12] – a stochastic, first-order gradient-based 

optimization algorithm – configured with the learning rate of 4×10-3 is found to deliver the best 

accuracy. The sensitivities of the accuracy of the NN-based surrogate model to the number of 

hidden layers and number or nodes in the hidden layers are reported in Table 1. They indicate 

that while achieving a small relative error on the training set is a necessary condition for 

achieving a small relative error on the test set, it is not, however, by itself a guarantee for 

obtaining good accuracy on the test set. The best results are obtained with an NN configured 
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with three layers of dimensions 10, 40, and 40, respectively. This network is illustrated in  

Figure 5. 
 

Table 1: Parametric predictions for the NACA0012 airfoil – Accuracy of the NN-based surrogate model trained 

via GPR sampling, as a function of the number of hidden layers and nodes. 

 

H1 H2 H3  
Relative error on the 

training set 
Relative error on the 

test set 

10 - - 33.712% 31.403% 

40 - - 33.716% 31.458% 

10 10 - 0.585% 9.308% 

40 40 - 0.389% 1.675% 

40 10 - 0.650% 2.099% 

10 40 - 0.246% 19.322% 

10 10 10 0.005% 0.940% 

40 40 40 0.004% 1.095% 

40 10 10 0.005% 5.434% 

10 40 10 0.004% 0.911% 

10 10 40 0.005% 1.034% 

40 40 10 0.005% 1.486% 

40 10 40 0.005% 1.464% 

10 40 40 0.017% 0.572% 

 

 

Figure 5: Parametric predictions for the NACA0012 airfoil – NN with three hidden layers of dimensions 10, 40, 

and 40, respectively. 
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5.6  Performance Comparisons 

Here, the accuracy of the predictions made using the NN-based surrogate model shown in 

Figure 5 and trained at 16 parameter points determined via GPR sampling is compared to:  

• The accuracy of two counterpart NN-based surrogate models where: 

o The best topology for the NN is determined as in Section 5.1.4, by scanning depth 

and the dimensions. 

o Training is performed using uniform (4 × 4) and random samplings, but the same 

total number of sampled parameter points (16). 
• The accuracy of the GPR itself when constructed using any of the three aforementioned 

samplings. 

The comparisons are performed in Table 2, where the relative errors are measured as in (5). 

The following observations are noteworthy: 

• The accuracy obtained by any (tuned) NN-based surrogate model exceeds that of the 

GPR-based surrogate model trained using the same sampled parameter points. This is 

expected considering the superior approximation properties of deep NNs and their larger 

number of hyperparameters. 
• The proposed adaptive sampling approach leads to the best accuracy. Specifically, it 

leads to relative errors that are about 7 times and 2 times smaller than those associated 

with uniform and random samplings, respectively. 

 
Table 2: Parametric predictions for the NACA0012 airfoil – Evaluation of the constructed surrogate models. 

 
 

Surrogate model 
Relative error 

(training set) 

Relative error 

(test set) 
GPR (adaptive sampling) NA 1.1% 

GPR (uniform grid sampling) NA 7.8% 

GPR (random sampling) NA 2.2% 

NN (adaptive sampling) 0.017% 0.57% 

NN (uniform grid sampling) 0.004% 1.54% 

NN (random sampling) 0.437% 0.70% 

 



N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat 

 11 

 
 

Figure 6: Parametric predictions for the NACA0012 airfoil – Predictions obtained using an NN-based surrogate 

model trained via GPR sampling. 

6 CONCLUSIONS 

This paper presents a novel approach for adaptively training a neural network (NN)-based 

surrogate model based on the acquisition function of a Gaussian Process (GP) regression (GPR). 

The approach reduces the amount of training needed to achieve a certain accuracy and therefore 

is particularly interesting in the context of time-critical applications such as design optimization 

and uncertainty quantification. Numerical experiments associated with the prediction for the 

NACA0012 airfoil of the lift-over-drag ratio in a large two-dimensional space of free-stream 

Mach number and angle of attack demonstrate the superior accuracy delivered by the proposed 

training method over training using uniform and random samplings.  
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