
14th World Congress in Computational Mechanics (WCCM)

ECCOMAS Congress 2020

Virtual Congress: 11 – 15 January 2021

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

AN ADAPTIVE SAMPLING PROCEDURE FOR TRAINING A NEURAL

NETWORK BASED ON A GAUSSIAN PROCESS

NAHLA ALHAZMI¹, YOUSEF GHAZI², RADEK TEZAUR3 AND CHARBEL

FARHAT4

 ¹ King Abdulaziz City for Science and Technology

Riyadh, 11442, Saudi Arabia

nalhazmi@kacst.edu.sa

² King Abdulaziz City for Science and Technology

Riyadh, 11442, Saudi Arabia

yghazi@kacst.edu.sa

³ Department of Aeronautics and Astronautics, Stanford University

Stanford, CA 94305-4035, USA

rtezaur@stanford.edu

4 Department of Aeronautics and Astronautics, Department of Mechanical Engineering

and Institute for Computational and Mathematical Engineering, Stanford University

Stanford, CA 94305-4035, USA

 cfarhat@stanford.edu

Key words: Acquisition Function, Adaptive Sampling, Gaussian Process, Machine Learning,

Neural Network, Regression.

Abstract. A novel approach is presented for efficiently training a neural network (NN)-based

surrogate model when the training data set is to be generated using a computationally intensive

high-fidelity computational model. The approach consists in using a Gaussian Process (GP),

and more specifically, its acquisition function, to adaptively sample the parameter space of

interest and generate the minimum amount of training data needed to achieve the desired level

of approximation accuracy. The overall approach is explained and illustrated with numerical

experiments associated with the prediction of the lift-over-drag ratio for a NACA airfoil in a

large, two-dimensional parameter space of free-stream Mach number and free-stream angle of

attack. The obtained numerical results demonstrate the superior accuracy delivered by the

proposed training over standard trainings using uniform and random samplings.

1 INTRODUCTION

Classical machine learning algorithms use computational methods to “learn” information

directly from data, without relying on a predetermined equation as a model. Originally, their

development was mostly driven by problems for which no predetermined equation is available.

mailto:nalhazmi@kacst.edu.sa
mailto:yghazi@kacst.edu.sa
mailto:rtezaur@stanford.edu
mailto:cfarhat@stanford.edu

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 2

As such, machine learning algorithms can also be described as algorithms for building data-

driven models. For example, a neural network (NN) regression is a supervised machine learning

algorithm that can be used to build a data-driven model. Given a sufficiently large amount of

data, it typically partitions the data into two subsets, uses one for training, and the other for

testing.

Even for problems where predetermined equations are available to build parametric

computational models – for example, high-dimensional structural dynamics (CSD) and

computational fluid dynamics (CFD) models (HDMs) – NNs are currently in vogue for building

alternative, low-dimensional, surrogate models, at least for a small number of scalar quantities

of interest (QoIs), that are easier to handle and faster to process. In this case however, the data

is not available, but needs to be generated using: the parametric HDMs; and an approach for

sampling the parameter space of interest – for example, a design space or, for applications in

aeronautics and astronautics, a space of flight conditions.

Parameter sampling algorithms come in two flavors: a priori sampling; and adaptive

sampling. A priori sampling algorithms sample points in the parameter space either randomly,

or according to a non-adaptive, predesigned scheme. Examples include the full factorial

sampling [1], random sampling, and Latin hypercube sampling [2] algorithms. Such algorithms

are not optimal because they have no explicit awareness of where the regression will be

inaccurate. For this reason, they may require a larger than necessary number of samples in order

to deliver the expected accuracy at regression time. Consequently, they may lead to

unaffordable training costs for NNs, particularly when the parameter space is high-dimensional.

On the other hand, adaptive sampling schemes sample points in regions of the parameter space

where the regression can be deemed to be inaccurate, and therefore avoid over-sampling.

Hence, they can mitigate the curse of dimensionality, but require the availability of an error

indicator. Unfortunately, when an NN-based surrogate model is to be built for a quantity of

interest, finding a suitable error indicator can be challenging. This is in contrast with projection-

based model reduction approaches for building low-dimensional surrogate computational

models [3], where residual-based error indicators are common for guiding adaptive sampling

procedures known as “greedy procedures” [4].

This paper presents a new idea for addressing the above dilemma. It consists in training

an NN-based surrogate model (or regression) using a parametric HDM of interest and a

Gaussian Process (GP) [5]. Indeed, a GP models distributions over functions and generates a

stochastic model that can be utilized to construct an acquisition function for guiding an adaptive

sampling of the parameter space of interest. However, given a parametric computational model,

a GP and its acquisition function are typically used to construct a computationally leaner

surrogate model in the form or a regression model. Hence, one may ask why using a GP to

construct an NN-based surrogate model of a given parametric computational model, when the

GP can also be used to build a low-dimensional surrogate of that same HDM? The answer lies

in the superior approximation properties of NNs and in particular deep NNs. Using as a

backdrop the problem of constructing for an airfoil surrogate models of aerodynamic QoIs such

as the lift-over-drag ratio in the two-dimensional parameter space (free-stream Mach number

𝑀∞, free-stream angle of attack 𝛼∞), it is shown in this paper that: a GP can be used to construct

and train NN-based surrogate models; that such models outperform accuracy-wise counterparts

directly constructed using the GP itself; and that they also outperform NN-based surrogate

models trained using uniform grid sampling and random sampling. The surrogate models

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 3

constructed and trained using the proposed approach are particularly interesting for time-critical

applications such as design optimization and uncertainty quantification.

2 BASICS OF GAUSSIAN PROCESS REGRESSION

Formally, a GP is a stochastic process – that is, a collection of random variables 𝑌(𝑥), indexed

by an 𝑛-dimensional vector 𝑥 that often represents a time or parameter space such that every

finite collection of the random variables has a multivariate normal distribution. GPs have

recently found their place in machine learning (ML) as a popular tool for classification. They

have also been used for regression for quite some time under the term “krieging”. As a

collection of normal random variables, a GP can be characterized by its mean value function,

𝑚(𝑥) = 𝐸[𝑌(𝑥)], where 𝐸 is the mathematical expectancy, and its covariance function

𝑘(𝑥, 𝑥′) = 𝑐𝑜𝑣(𝑥, 𝑥′) = 𝐸[(𝑌(𝑥) − 𝑚(𝑥))(𝑌(𝑥) − 𝑚(𝑥))] (1)

that is often also called the kernel.

A choice of the kernel can be tuned to a particular data set to represent varying degrees

of smoothness or other prior properties known or assumed about the data. Matérn, exponential

rational quadratic, and piecewise polynomial are examples of such kernels [5]. However, the

most well-known is the squared exponential kernel (also known as the radial basis function

(RBF) kernel)

k(𝑥, 𝑥′) = σ2 𝑒𝑥𝑝
−|𝑥−𝑥′|

2

2λ2 (2)

where the hyperparameter σ controls the variance and λ is known as the length scale.

For regression purposes, the training data – either directly available or generated using

a parametric computational model that is possibly an HDM – is used as a prior and Bayesian

posterior predictions can be shown again to form a Gaussian process whose mean and

covariance function can be easily computed [5]. The resulting Gaussian process model is often

called nonparametric because it depends only on the training data, the choice of the kernel, and

its hyperparameters. To estimate the values of the hyperparameters, cross-validation or

maximizing the marginal (log) likelihood [5] are the most popular techniques.

3 BASICS OF NEURAL NETWORKS

Artificial NNs are another popular ML tool. Modelled after biological neurons and their

synaptic connections, the nodes of such a network attach to each other by passing information

through links among them [6]. Various architectures can be formed, of which a feed-forward

network is one of the most common. Its nodes are divided into layers (see Figure 1): an input

layer; single or multiple hidden layers; and an output layer. A node in a layer takes input from

nodes in the previous layer, processes it, and passes it to the nodes in the next layer. The

propagation function for one such node can be written as

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 4

𝚽(∑ 𝒘𝒌𝒌 𝒂𝒌 + 𝒃) (3)

where 𝒂𝒌 are the inputs a node receives from counterparts of the previous layer, 𝒘𝒌 and 𝒃 are

the weights and the bias of the affine function that is applied to the inputs, respectively, and 𝚽

is typically a nonlinear function known as the activation function.

An NN is usually trained iteratively by optimizing its hyperparameters – which are the

weights and biases of each of its nodes – so that a cost (loss) function of interest is minimized.

In a supervised learning framework, the training data comes in the form of input-output pairs

and the loss function measures the discrepancy between the output of the NN given an input in

the training set, and the corresponding output in the training set. Classical, gradient-based,

optimization algorithms have been adapted and tuned for performance to NN applications using

a technique called back-propagation that makes it possible to efficiently compute the gradient

of the cost function with respect to the parameters of the network.

Figure 1: Typical architecture of an artificial NN.

When using an NN as a data fitting tool, mathematical results such as the universal

approximation theorem [7] provide confidence that any input-output relationship can be

approximated. For example, a single hidden layer network with a large enough number of nodes

can approximate any continuous function. However, such results are neither unique to NNs, nor

necessarily constructive: they do not give guidance on how many nodes, or layers need to be

used to achieve the desired results.

4 ACTIVE LEARNING USING A GAUSSIAN PROCESS REGRESSION

Unlike in a typical application of ML where vast amounts of paid-for data are often available,

data in engineering sciences can be scarce, expensive to measure experimentally, or time-

consuming to compute using HDMs such as those arising in CSD and CFD applications. In this

context, it is desirable to be able to train an ML algorithm with as little data as possible and by

inference, use the most useful (in some sense) data points.

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 5

Given a parametric computational model, Gaussian process regression (GPR) already

provides, as stated in Section 1, a surrogate model that can be exploited to perform a function

exploration – that is, to learn a function as well and as quickly as possible. To find the next

point to sample in a given parameter space, it relies on an acquisition function that measures

the utility of the input data points. Given the current set of sampled data points and their function

values, the variance of the posterior GP can be used as an acquisition function. Selecting the

argument of the maximum of the acquisition function then amounts to greedily picking a

parameter point where the function value is most uncertain with respect to the current model.

Such a greedy algorithm only focuses on minimizing the current uncertainty rather than looking

farther into the future. However, it can be shown that the next point to sample that it picks is

close to optimal in some sense [5].

In this paper, it is proposed to train an artificial NN using the GP-driven greedy

algorithm summarized below and referred to as Algorithm 1.

Algorithm 1: Greedy algorithm for function exploration using a Gaussian process

1. Set 𝑖 = 1 and initialize the sampling set: 𝑺 = {𝑥1}.

2. Evaluate the function on the sampling set, i.e. 𝑦(𝑺) = {𝑦(𝑥1), … , 𝑦(𝑥𝑖)} .

3. Optimize the hyperparameters of the kernel of the Gaussian process given the sampling

set 𝑺 and the function values on the sampling set, 𝑦(𝑺)).

4. Find the critical point 𝑥𝑐𝑟where the predicted standard deviation of the Gaussian process

is maximized.

5. If a stopping criterion is not satisfied, add 𝑥𝑐𝑟 to 𝑺, set 𝑖: = 𝑖 + 1, and go to 2.

GPR is most useful for constructing surrogate models for a small number of independent,

scalar QoIs. However, in many applications, there are many QoIs or the QoIs are related: for

example, the, lift, drag, and moment coefficients in aerodynamics are related. This is where

NN-based regressions are preferred over GPRs. In the absence of an error indicator for an NN-

based regression, the main idea here is to efficiently train an NN-based surrogate model for a

QoI (or a set of related QoIs) by using GPR as a surrogate error indicator and its acquisition

function as the algorithm for sampling the next data point to train the NN.

5 SURROGATE MODELING OF AERODYNAMIC QUANTITIES OF INTEREST

AND PERFORMANCE ASSESSMENTS

Here, Algorithm 1 is applied to efficiently construct NN-based surrogate models for predicting

aerodynamic QoIs for a NACA airfoil over a range of flight conditions. To this end, the HDMs

are constructed using the massively parallel, three-dimensional, compressible flow solver

AERO-F, which was validated for many flow problems including aircraft flow problems [9,

10]. Specifically, Algorithm 1 is applied to adaptively sample the training parameter points as

the critical points of the GP equipped with the maximum predicted variance as an acquisition

function. The accuracy of the constructed NN-based surrogate model is compared to that of the

GPR obtained as a byproduct of the process. It is also contrasted with the performance of two

related NN-based surrogate models trained using uniform grid sampling and random sampling.

A flowchart of the numerical experiments is graphically depicted in Figure 2.

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 6

Figure 2: Flowchart for the evaluation of an adaptive approach for training an NN-based surrogate model.

5.1 Parametric Predictions of the Lift-over-drag Ratio for a NACA0012 Airfoil

The objective is set to predicting in real-time the ratio 𝐿/𝐷, where 𝐿 and 𝐷 denote the lift and

drag generated by a NACA0012 airfoil, respectively, in the two-dimensional parameter space

of flight conditions represented by 𝑀∞ and 𝛼∞. Air is modelled as a perfect gas. The flow is

assumed to be inviscid and modelled using the compressible Euler equations.

5.2 CFD-based Computational Model

The computational fluid domain chosen for computing all flows around the NACA0012 airfoil

reported herein is a circular domain extruded in the z direction, because AERO-F is a three-

dimensional flow solver (see Figure 3 (left)). The airfoil chord is 2.24 m and the diameter of

the circle defining the computational fluid domain is 28 m. The computational fluid domain is

discretized by 45,000 tetrahedral elements. Figure 3 (right) highlights the presence of local

refinement near the wall boundary. Symmetry boundary conditions are applied on the circular

lateral boundaries of the computational fluid domain and slip conditions are prescribed on the

wall boundary.

5.3 Generation of Reference/test Data

To facilitate error measurements for the ML algorithms under consideration, a steady-state

solution of the flow is computed for a range of free-stream flow conditions and postprocessed

to obtain the lift-over-drag ratio 𝐿/𝐷. Specifically, the Mach number 𝑀∞ is varied from 0.2 to

0.5 in increments of 0.01, and the angle of attack 𝛼∞ is varied from 0◦ to 5◦ in increments of

0.25◦. The data set thus obtained is referred to below as the reference/test data set. A contour

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 7

plot of the pressure solution near the airfoil for 𝑀∞ = 0.4 and 𝛼∞= 5◦ is shown in Figure 3

(right).

Figure 3: Parmetric flows over a NACA0012 airfoil – Computational fluid domain (left); and pressure contours

at the parameter point (𝑀∞ = 0.4, 𝛼∞ = 5◦) (right).

5.4 Generation of a Training Data Set Using the Acquisition Function of a Gaussian

 Process Regression

Algorithm 1 (see Section 4) is applied to adaptively approximate the lift-over-drag ratio 𝐿/𝐷

in the parameter space (𝑀∞, 𝛼∞) = ([0.2, 0.5] × [0◦, 5◦]). Starting from two corners of this

rectangular space, additional data points are sampled by the GP and its acquisition function.

Since the lift-over-drag ratio is expected to vary smoothly, an RBF kernel is employed. The

Python package Scikit-learn [11] is used to evaluate the GP model and optimize the

hyperparameters of the RBF kernel. To monitor convergence of the function exploration, the

following heuristic error indicator is adopted

𝑐𝐺𝑃 =
max(𝐿/𝐷)𝑠𝑡𝑑

𝑚𝑎𝑥(𝐿/𝐷)𝑝𝑟𝑒𝑑
 (4)

where (𝐿/𝐷)𝑚𝑒𝑎𝑛 and (𝐿/𝐷)𝑠𝑡𝑑 are the mean and standard deviation predicted by the posterior

Gaussian process on a test set that is chosen here to coincide with the reference set described

above. Alternative choices include a relative decrease of the maximum standard deviation, or a

fixed number of iterations that is considered practically affordable (which is not the case here

because a large reference set has been precomputed enable the evaluation of the errors of the

procedure).

Figure 4 (left) shows the convergence of the error indicator 𝑐𝐺𝑃 and the relative error

𝑒𝐺𝑃 defined as

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 8

𝑒 =
‖(𝐿/𝐷)𝑝𝑟𝑒𝑑−(𝐿/𝐷)𝑟𝑒𝑓‖

‖(𝐿/𝐷)𝑟𝑒𝑓‖
 (5)

It can be seen that both the relative error and relative error indicator drop below 1% after 18

training points have been sampled. In order to enable a comparison with training on a uniform

sampling of 4 × 4 points however, only the first 16 training points selected by the greedy

algorithm are retained in the remainder of this paper. Figure 4 (right) shows a good agreement

between the reference ratio 𝐿/𝐷𝑟𝑒𝑓 and its counterpart 𝐿/𝐷𝑝𝑟𝑒𝑑 predicted by the GP using the

16 training points. The relative error using the adaptive sampling is 1.2%. For comparison, the

relative error obtained by sampling on a 4 × 4 uniform grid is 7.8% and on a random sample of

16 points, it is 2.2%.

Figure 4: Parametric predictions for the NACA0012 airfoil – Convergence of GPR as a function of the number

of adaptively selected training points (left); and reference as well as GPR solutions using 16 adaptively selected

training points (right).

5.5 Optimal Configuration of a Neural Network for a Given Training Data Set

Using the training set adaptively determined in Section 5.1.1 via GPR, an NN-based surrogate

model is constructed here. First, the performance of such a model in terms of accuracy

(measured with respect to the reference training data) is discussed as a function of the chosen

activation function, number of hidden layers, dimensions of the hidden layers, specific

optimizer, and specific learning rate.

To this end, the NN is constructed using the pyTorch software package. Many

activation functions (e.g., sigmoid, tanh, ReLU, …) are considered and best accuracy (measured

as in (5)) is obtained using the 𝑙𝑜𝑔 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function. Similarly, a variety of

optimizers are considered and the Adam optimizer [12] – a stochastic, first-order gradient-based

optimization algorithm – configured with the learning rate of 4×10-3 is found to deliver the best

accuracy. The sensitivities of the accuracy of the NN-based surrogate model to the number of

hidden layers and number or nodes in the hidden layers are reported in Table 1. They indicate

that while achieving a small relative error on the training set is a necessary condition for

achieving a small relative error on the test set, it is not, however, by itself a guarantee for

obtaining good accuracy on the test set. The best results are obtained with an NN configured

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 9

with three layers of dimensions 10, 40, and 40, respectively. This network is illustrated in

Figure 5.

Table 1: Parametric predictions for the NACA0012 airfoil – Accuracy of the NN-based surrogate model trained

via GPR sampling, as a function of the number of hidden layers and nodes.

H1 H2 H3
Relative error on the

training set
Relative error on the

test set

10 - - 33.712% 31.403%

40 - - 33.716% 31.458%

10 10 - 0.585% 9.308%

40 40 - 0.389% 1.675%

40 10 - 0.650% 2.099%

10 40 - 0.246% 19.322%

10 10 10 0.005% 0.940%

40 40 40 0.004% 1.095%

40 10 10 0.005% 5.434%

10 40 10 0.004% 0.911%

10 10 40 0.005% 1.034%

40 40 10 0.005% 1.486%

40 10 40 0.005% 1.464%

10 40 40 0.017% 0.572%

Figure 5: Parametric predictions for the NACA0012 airfoil – NN with three hidden layers of dimensions 10, 40,

and 40, respectively.

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 10

5.6 Performance Comparisons

Here, the accuracy of the predictions made using the NN-based surrogate model shown in

Figure 5 and trained at 16 parameter points determined via GPR sampling is compared to:

• The accuracy of two counterpart NN-based surrogate models where:

o The best topology for the NN is determined as in Section 5.1.4, by scanning depth

and the dimensions.

o Training is performed using uniform (4 × 4) and random samplings, but the same

total number of sampled parameter points (16).
• The accuracy of the GPR itself when constructed using any of the three aforementioned

samplings.

The comparisons are performed in Table 2, where the relative errors are measured as in (5).

The following observations are noteworthy:

• The accuracy obtained by any (tuned) NN-based surrogate model exceeds that of the

GPR-based surrogate model trained using the same sampled parameter points. This is

expected considering the superior approximation properties of deep NNs and their larger

number of hyperparameters.
• The proposed adaptive sampling approach leads to the best accuracy. Specifically, it

leads to relative errors that are about 7 times and 2 times smaller than those associated

with uniform and random samplings, respectively.

Table 2: Parametric predictions for the NACA0012 airfoil – Evaluation of the constructed surrogate models.

Surrogate model
Relative error

(training set)

Relative error

(test set)
GPR (adaptive sampling) NA 1.1%

GPR (uniform grid sampling) NA 7.8%

GPR (random sampling) NA 2.2%

NN (adaptive sampling) 0.017% 0.57%

NN (uniform grid sampling) 0.004% 1.54%

NN (random sampling) 0.437% 0.70%

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 11

Figure 6: Parametric predictions for the NACA0012 airfoil – Predictions obtained using an NN-based surrogate

model trained via GPR sampling.

6 CONCLUSIONS

This paper presents a novel approach for adaptively training a neural network (NN)-based

surrogate model based on the acquisition function of a Gaussian Process (GP) regression (GPR).

The approach reduces the amount of training needed to achieve a certain accuracy and therefore

is particularly interesting in the context of time-critical applications such as design optimization

and uncertainty quantification. Numerical experiments associated with the prediction for the

NACA0012 airfoil of the lift-over-drag ratio in a large two-dimensional space of free-stream

Mach number and angle of attack demonstrate the superior accuracy delivered by the proposed

training method over training using uniform and random samplings.

7 ACKNOWLEDGEMENTS

The authors acknowledge support by a research grant from the King Abdulaziz City for Science

and Technology (KACST). This document does not necessarily reflect the position of this

institution and no official endorsement should be inferred.

REFERENCES

[1] Box J. F., R. A. Fisher and the Design of Experiments, 1922–1926, The American

Statistician (1980) 34:1-7.

N. Alhazmi, Y. Ghazi, R. Tezaur and C. Farhat

 12

[2] McKay M. D., Beckman R.J., Conover W. J., A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code, Technometrics,

American Statistical Association (1979) 21: 239-245.

[3] Carlberg K., Bou-Mosleh C., Farhat C., Efficient nonlinear model reduction via a least-

squares Petrov-Galerkin projection and compressive tensor approximations, International

Journal for Numerical Methods in Engineering (2011) 86: 155-181.

[4] Farhat C., Tezaur R., Chapman T., Avery P., Soize C., A feasible probabilistic learning

method for model-form uncertainty quantification in vibration analysis, AIAA Journal (2019)

57:1-14.

[5] Rasmussen C. E., Gaussian processes in machine learning, Advanced Lectures on Machine

Learning, Springer (2004) 63-71.

[6] Stulp F., Sigaud O., Many regression algorithms, one unified model: A review, Neural

Networks (2015) 69:60-79.

[7] Csáji B. C., Approximation with artificial neural networks, Faculty of Sciences (2001),

Eötvös Loránd University, Hungary.

[8] Krause A., Singh A., Guestrin, C. Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies, Journal of Machine Learning Research

(2008) 9:235-284.

[9] Geuzaine P., Brown G., Harris C., Farhat C., Aeroelastic dynamic analysis of a full F-16

configuration for various flight conditions, AIAA Journal (2003) 41:363–371.

[10] Farhat C., Geuzaine P., Brown G., Application of a three-field nonlinear fluid-structure

formulation to the prediction of the aeroelastic parameters of an F-16 fighter, Computers and

Fluids (2003) 32:3–29.

[11] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M.,

Prettenhofer P., Weiss J., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M.,

Perrot M., Duchesnay E., Scikit-learn: Machine learning in Python, Jounal Machine Learning

Research (2011) 12:2825-2830.

[12] Kingma D. P., Ba J., Adam: A method for stochastic optimization, 3rd International

Conference for Learning Representations, San Diego (2015).

