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Abstract

In this paper we suggest some algorithms for the fluid-structure interaction problem
stated using a domain decomposition framework. These methods involve stabilized pres-
sure segregation methods for the solution of the fluid problem and fixed point iterative
algorithms for the fluid-structure coupling. These coupling algorithms are applied to the
aeroelastic simulation of suspension bridges. We assess flexural and torsional frequencies
for a given inflow velocity. Increasing this velocity we reach the value for which the flutter
phenomenon appears.

1 INTRODUCTION

The interaction between a fluid and a structure appears in a wide variety of fields. Proba-
bly, the most analyzed fluid-structure interaction problem is the aeroelastic one (specially for
aeronautical applications), for instance in the simulation of the action of a fluid (air) over a
structure (such as a wing or a bridge). Recently, an increasing interest in the simulation of
haemodynamics has motivated a lot of research on fluid-structure algorithms appropriate for
the blood-vessel system.

The implementation of a coupled problem can be done using two different global strate-
gies. Themonolithicstrategy implies the solution of the coupled problems simultaneously (see
[2]). Partitioned methods are usually used in order to keep software modularity and to allow
the use of the numerical methods developed for every field separately. When using pressure
segregation methods for the fluid problem (as in this waqdgtitioned procedures are nat-
urally adapted, since a global iterative scheme is already needed to couple the velocity and
pressure calculations.



The numerical simulation of the fluid-structure coupled problem is complicated. It does
not only inherit the difficulties associated to the fluid and solid simulations, but the coupling
of these two systems is also cumbersome in many situations. The difficulties arising from
this coupled system depend strongly on the physical properties of the case to be simulated.
Thus, the choice of an appropriate algorithm that deals well with the coupling varies with the
problem to solve. For instance, applications in aeroelasticity and haemodynamics have very
different behavior for the same coupling algorithm. Whereas for aeroelastic problems there is
a clear tendency to solve the coupled system using explicit procedures, these methods are not
appropriate in most haemodynamics applications. In the last case, the use of special implicit
procedures for the coupling are required in order to reach good convergence. This situation
can be explained by thedded masseffect (see [5]). When the structure densityis much
larger than the fluid density; (as it happens in aeroelasticity), the coupling procedure is more
stable. On the contrary, when the fluid and structure densities are of the same order (as in
haemodynamics) thadded mastroduced by the fluid over the structural problem makes
the convergence of the coupling algorithm much more involved.

The use of explicit procedures for the coupling has been deeply studied by Farhat and co-
authors in the framework of aeroelasticity in [16, 18, 19, 36]. Therein they suggest improved
explicit procedures that minimize the virtual energy introduced by the explicit algorithm, and
added emphasis is placed on paralelization. The application they have in mind is the interaction
between an aircraft and a compressible flow surrounding it. Fluid-structure algorithms for
aeroelastic problems have also been used in civil and mechanical engineering.

On the other side, for haemodynamics more elaborated algorithms are needed for the cou-
pling. In order to obtain convergence, Newton and quasi-Newton algorithms have been sug-
gested (see [20, 23]). In [42, 14] some methods motivated from a domain decomposition ap-
proach to the fluid-structure problem have been proposed. The relaxation of these methods is
a key aspect in order to reach convergence when dealing with these problems, and some possi-
bilities have been used (see [34, 13]). In [5] a simplified blood-vessel system is studied, giving
a nice explanation of thedded massffect and the big impact of the relaxation on the conver-
gence. Alternatively, some kind of relaxation can be introduced with a pseudo-compressibility.
The introduction of a pseudo-compressibility that vanishes when the convergence of the cou-
pling is reached has been used in [38] for the simulation of a fluid in an elastic cavity.

We can say that, for a given time step size, explicit procedures are cheaper than implicit
procedures. However, explicit procedures are also less accurate. Moreover, when using explicit
techniques we are restrictedgmall enoughime step sizes or otherwise the solution explodes.
Implicit procedures allow larger time step sizes. But, depending on the problem, convergence
can be a delicate aspect and involved implicit procedures can be required.

Herein we want to obtain appropriate algorithms for the simulation of fluid-structure prob-
lems using finite element methods. The interpretation of the coupling of the fluid and struc-
ture as a domain decomposition method without overlapping used in [37] is adopted. Further,
thelinearizationof the Steklov-Poinc#& operator associated to the fluid is suggested and ex-
ploited. We apply these algorithms to the aeroelastic analysis of bridges. We assume a New-
tonian and incompressible fluid. The structure, as it is usually done in the analysis of these
problems, is considered a rigid body with elastic coefficients in the rigid body motion degrees
of freedom.

Let us list what we need in order to solve a fluid-structure problem. In these problems the



displacement of the structure changes the domain of the fluid. Then, the fluid equations have
to be able to deal with moving domains. With this aim we use an AAbifrary Lagrangian
Eulerian) approach. Some ALE formulations have been analyzed in [21, 24, 3, 1]. Comments
about the relationship between the stability of these methods argktimeetric conservation

law can be found in [35, 17]. The ALE scheme has an intrinsic error in time that can spoill
the accuracy of the fluid solver in fixed domains. For this reason, an appropriate ALE scheme
depends on the time accuracy of the fluid solver for fixed domains. The ALE approach involves
the movement of the domain (mesh) with appropriate Dirichlet boundary conditions. This
movement is defined by a mesh displacement. Different techniques have been proposed for its
computation. The most widely used is the harmonic extension of the Dirichlet functions on the
boundaries, being this methodology the one adopted in the present work.

The fluid solver for incompressible flows is a key point of the algorithm because it con-
sumes most of the CPU time. The monolithic treatment of the Navier-Stokes equations is
involved (for the system solver) and time consuming. In order to improve the situation, we
suggest the use of pressure segregation methods in their fractional step and predictor-corrector
forms (see [12, 10, 11]). On the other hand, we use the orthogonal subgrid scale stabilized fi-
nite element method (see [8]) for the space discretization, that allows the use of equal velocity-
pressure interpolation.

Less attention is paid to the structure solver. The following exposition can be applied to any
kind of structural problem, with linear or nonlinear material behavior. Nevertheless, in the ap-
plication we have considered, the structure is considered a rigid body. Thus, the computational
cost of the structure is much lower than the computational cost of the fluid.

We have organized the present work as follows. In Section 2 we state every field problem in
its continuous level and some notation is introduced. We write the strong and weak form of the
governing equations of the coupled problem. In Section 3 we write the interface equation asso-
ciated to the problem under consideration, using a Domain Decomposition framework. Some
methods have been listed. Finally, at the fully discrete level, we introduce the fluid solvers and
appropriate coupling procedures (Section 4). In particular, pressure segregation methods are
suggested. In Section 5 we justify the algorithms chosen for the numerical experimentation
and applications. Section 6 is devoted to the application of these methods to the simulation of
bridge aerodynamics. Section 7 concludes the paper by drawing some conclusions.

2 THE CONTINUOUS PROBLEM

In this section we introduce the fluid-structure problem at the continuous level. Firstly, we treat
some aspects about the problem domain, the definition of its movement and its restriction to
the fluid and structure, the domain velocity and the matching conditions that these restrictions
satisfy on the interface. Secondly, we state the governing equations of the fluid and structure
problems and suggest how to calculate the domain displacement. We conclude this section
with the matching conditions (that is, continuity of some values) that have to be imposed over
the interface between the fluid and the solid.

We denote by?2; the domain occupied by the heterogeneous mechanical system at a given
time t > 0. This domain is divided into the structure domdki and its complemen®/
occupied by the fluid. We denote by = 8&2{ N 0% the fluid-structure interface. Furthet,



is the outward normal cﬁl{ onY; andn, its counterpart for the structure.
The total domairf), is defined at every time instant by a family of mappiogis

At:QO—>Qt7

where(), is the reference domain associated te- 0. We also define its restrictiod; :=
Ras: (A;) over(); and A/ = RQ{(At) over()/, such that

AP Q5 —
Al ol —of,

being agair2; andQ, the fluid and structure domainstat 0.
From the trace theorem (see [37]) applied4g we know that

Af’Et = Atf|2t7

wherels, denotes the restriction 10,. We stress the fact that, is arbitrary.

Let us introduce some notation. Given a functipn @, x [0,7] — R defined at the
current domain we indicate bf = f o A, the corresponding function defined at the initial
configuration,

A~

FiQox[0,T] — R, f(zmo,t) = f(Ailxo),1).
Furthermore, the time derivatives at the initial configuration are defined as follows:

of of of
= :Q 0, T R, — t) = — t).
0t | 3, X OT) =R 5 wo(w’ )= 3 (@0 t)

We denote byl(x, t) the displacement of the domain evaluated at the current configuration.
Then, we could write the mappind, as.A;(xo,t) = xo + d(xo,t). As before, we split the
domain displacement into its fluid and structure restrictiod asRq:d + RQ{d = d'+d.
Again, from the trace theorem we know that

d’ls, = d’ls, (1)
has to be satisfied. Moreover, we define

od’

W - 9 (2)

w =

which is the domain velocity that we will require in order to write the fluid equations in an
ALE framework.

In the present work we assume a Newtonian incompressible fluid. We use the ALE for-
mulation in order to write the Navier-Stokes equations on moving domains. In what follows
we only consider the boundary conditions®n The rest of boundary conditions are essential
for the definition of the problem but do not affect the following exposition. For this reason we



have omitted them for the sake of clarity. The Navier-Stokes equations that govern the fluid
problem read as follows: find a velocity fieldand a pressure fieldsuch that

ou )
Prgy — AU+ ppu- Vu+ Vp = prf in Qf x (0,7), (3a)
V-u=0 in Qf % (0,7), (3b)

wherep; is the density ang the viscosity of the fluid. The Cauchy stress tensor for the fluid
iso/ = —pI + 2pe(u) wheree(u) = (Vu + (Vu)”)/2 is the strain rate tensor addthe
identity matrix. We denote by := o/|s, - n; the normal stress on;.

Let us recall théreynolds transport formuld.et(x, t) be a function defined of?,. Then,
for any subdomaitv; C ), such that, = A,(V) with V5 C € it holds that

d _ [ (%
a4 W‘”(%’f)dv—/vt(at

At this point, using expression (4) for the time derivative, we can write the fluid equations
(3) in the ALE framework as follows: find a velocity and a pressurg such that

ou
Pf E

+ ¢V - w) dv. (4)

Lo

— pAu+ pp(u —w) - Vu+ Vp = ps f in Qf x (0,7),
Lo

V-u=0 inQ x(0,7). (5
Remark 1 We remark that formulations (3) and (5) are equivalent at the continuous level.

The structure can easily handle with moving domains using a fully Lagrangian framework.
For instance, if we consider an elastic structure, the problem that governs the displacement
field on the structure is: find*(x, t) such that

o%d?

P ~ Vi, - (3°(d*) = p.f, in Qf x (0,7), (6)

wherep; is the solid densityf . is the vector of body forces exerted on the solid afifr,, t)
is the Piola-Kirchoff stress tensor for the solid at the reference configuration. We denote by
o? = 0’|y, - ns the normal stress on;.

The displacement of the structure domdinhas been assumed equal to the structure dis-
placement obtained from (6).

The introduction of boundary conditions af) for problems (5) and (6) in order for the
heterogeneous problem to be well-posed are stated below.

The fluid displacemend” is arbitrary but has to satisfy condition (1). Thus, we can write
d’ as an arbitrary extension df |5, into 2/, that we denote by

d’ = Ext (d|s,) .

Different choices of the lifting operatdixt(-) have been proposed in the literature. Herein, we
adopt an harmonic extension evaluated at the current dafijaiim this cased” is solution of
the Laplace problem

Ad’ =0 in Qf % (0,7), (7a)
d’ = d° on X x (0,7). (7b)



This extension is different from the harmonic extension evaluat€d aised, e.g., if35].

At this point, suitable matching conditions have to be applied on the inteHacehese
are continuity of normal stresses (due to the action-reaction principle) and velocities (due to
the perfect adherence of the fluid to the structure):

od
u=— on Y, x (0,7), (8)
ol +0=0 on X x (0,7). (9)

Then, the fluid-structure coupled problem is completely defined by the fluid problem (5),
the structure problem (6), the fluid domain displacement (7) and the interface matching con-
ditions (1), (8) and (9). For the space discretization of the equations, let us to write the weak
form of the system. Givene (0, T), the functional spaces

will allow us to write the governing equations of the fluid (5) and structure (6) in their weak
forms. The notation used here is as follows;(w) denotes the space of square integrable
functions in a spatial domain, H'(w) is the space of functions ih?(w) with first derivatives
in L?(w), andH'/2(o) is the space of functions defined od a 1-manifolds that are the trace
of functions inH*(w), with ¢ C dw. For functionsf andg defined on ai- or d — 1-manifold,
we write (f, g). := fw fgdw, omitting the subscript when is the domain where the problem
under consideration is posed. koad — 1-manifold andf € H'/2(¢), the space of functions
gsuchthat f, g), < oo is denoted by ~/2(o). Finally, (-, -) denotes the usudl® product in
the domain where the problem considered is posed.

Assuming thatu(¢) is continuous in time for simplicity, the variational form of (5) for a
given time value e (0, T) reads: findu(t) € V() andp(t) € Q(2) such that

0
o1 (G o) + (T, F0) 4 oy (w0 =) Fu0) = (0.5 -0) = pylF .0 Vo € Vol

(V-u,q) =0 Vg € ().

The weak form of the structure system (6) for a given time valag0, T) is: find d*(t) €
Y(€2§) such that

02ds N
Ps (WﬂU) + (<o-s(ds))’v‘$oy) = ps<fs7y> + <Ufwy>2t Vy € y(QS)



Finally, the boundary conditions that have to be imposedpfor the weakformulation
of the coupled problem are:

<o-f177>2t + <0'£,’7>2t =0 V’}’ € F(Et) X <O7T)7

L o
oot |y,

on Y, x (0,7),

wherea? ando belong to(H~/2(%,))%.

3 THE DOMAIN DECOMPOSITION APPROACH

In this section we reformulate the fluid-structure problem in a Domain Decomposition (DD
onwards) framework, as done in [42] and later works [14, 13]. First, the fluid problem is intro-
duced in this framework, and after that, the structure problem. The resulterface equation
is written in different forms, in order to justify the use of different algorithms suggested in the
literature for the fluid-structure problem.

Let us consider the time discretized version of (5) using backward-differencing formulas
(BDF) for the time integration at time step™ = (n + 1)dt, 6t > 0 being the time step size
(assumed constant for simplicity). We denote the Bbdperator as

1 & il
D, f™*! = 5, > ap (10)
=0

wheref is a generic time dependent functigit,denotes its approximation &t, k is the order
of accuracy of the scheme ang and a; are the parameters that define the BDF numerical
integration (see [28]). The first and second order BDF methods are defined as:

len+1 — fnJrl _fn,
3 4 1
D n+tl _ “/pent+l _ " rn _n—l.
2f 5 TR YA

At a fixed time stepr + 1, let us denote by the interface variable corresponding to the
displacement on the fluid-structure interfacky, . ,. We denote byFLs; the operator that
gives the velocity and pressure fieldtat! for a given,

Fls : D(Simi1) — V(L 1) x Q(Q..1)
A — (un+ljpn+1)

There are multiple choices for tif s, () operator, corresponding to the different possibilities

for the time approximation of the incompressible Navier-Stokes equations, such as the mono-
lithic system or the fractional step version at the continuous level in space (see [43]). Let us
start with the monolithic scheme, denotedM;; (). In this caseFLs(A) = (u"™, pt)

is computed by solving the problem: given € T['(Z;n+1), find u™ € V(an+1) and



Pt € Q(Q),.,) such that

Ps (Dkun—H, 'v) +u (Vun+17 Vv) Yy ((un—l-l . wn+1) ) Vu”“, 'u)

ot
—(p"tVv) = pf<f”+1, v) Vo € V[)(Qth)
(11a)
(V : un+l, CI) =0 Vg € Q(Q tn+1)
(11b)
= 5, (A + Za d ) on Y. (11c)

Borrowing classical concepts from domain decomposition methods, we can define the
Steklov-Poincae interface operatosee [37]) for the fluid as followsS; is the Dirichlet-
to-Neumann map if2/ such that

Sy HY2(%,) — HV2(%)
Ai— ol (12)

This operator consists of solving the fluid problem given a value for the interface vaNable
that isFLs;(A), and recover the normal stress on the interfa¢e Thus, this is a mapping
between the trace of the displacement fidldnd the space of normal stresses exerted by the
fluid. Obviously, this operator depends on the fluid solver uségl,

We point out that the Steklov-Poin@wperatoiS; for the fluid is nonlinear. Itinvolves two
different non-linearities: one associated to the convective term of the Navier-Stokes equations
and a second one due to the fact that the fluid dofaie: Q/ (A) does depend on the interface
variable (shape non-linearity). This implies that the superposition of problems cannot be used
and thusS; has to deal also with forcing terms and non-homogeneous boundary conditions.

Analogously for the structure, we define the Steklov-PoiaogeratorsS, is the Dirichlet-
to-Neumann map if2; such that

S, : HY3(%,) — HY2(%)
A oS (13)

In this caseS, consists of solving the structure problem usik@s Dirichlet boundary con-
dition for d° on X, and extract the value of the normal stresson X;. Therefore, this is a
mapping between the trace of the displacement tieddd the space of normal stresses exerted
by the structure. Again, this operator is nonlinear even for linear constitutive equations (as the
elastic case considered) because ofthepe derivativéthe deformation of the solid domain).

Let us introduce als&; !, which is the so calle®oincaie-Steklov interface operatof; ! is

the Neumann-to-Dirichlet map 2} such that

S;1HTVA(R,) — HY? (%)
ol — A (14)

The operatoiS; ! consists of solving the structure problem usimyas Neumann boundary
condition onX; and recover’ on the boundans; ! will be used for fixed point algorithms.

8



At this point the interface condition (9) that involves continuity of normal stresses, on
can be easily rewritten as: fild € I'(X,.+1) such that

Si(A) + 8,(A) = 0. (15)

Thus, using the DD approach the initial coupled problem has been reduced to an interface
equation.

An alternative form of the interface equation, obtained by applying the inverse of the
Steklov-Poinca& operatoS; ! in (15), reads as: find € I'(X;.+1) such that

578 A) = A (16)

This expression motivates the use of the fixed point algorithm (see [6]). The iterative fixed
point procedure can be written as: givah, with & > 0, find A**! such that

—S7H(SHA)) = AF (17)

whereS; () is associated to an appropriate semi-discrete fluid sélizg(\). The initializa-

tion A° of the iterative process is treated in Section 5. Let us explain this equation: given a
value for the interface displacemeXit, we solve the fluid problem for this* usingFLs, (A¥)

and recover the normal stresses on the interéggehat is to say, we computg(\*). Then,

we calculate the structure problem wiitj = o/ as boundary condition on the fluid-structure
interface. It gives a new value of the interface displacement, that now watdll In this

case we solve thleumann-to-DirichlePoincaé-Steklov interface operaterS; ! (o). This
procedure is repeated until convergence.

Remark 2 The solution of the fluid probleifiLs; () requires nonlinear iterations. Thus, al-
gorithm (17) involves the use of nested iterative loops.

We are also interested on a linearized versios ofWe denote byFLgs, (ult!;~) the lin-
earized fluid operator that differs from the non-linearized version, i.e. (11), in the fact that the
convective term in the momentum equation of the fluid has been replaced®y Vu !
with «+! given. We also denote h§;(u”+!) the linearization ofS; around the pointu™**,
that is, involving the solution of the linearized fluid problem withs,(u”;~). In the next
section we suggest the use of temilinear interface operator in some cases. We stress the
fact thatS;(u”"') is non linear due to thehape derivative

A different version of the fixed point algorithm (17) is obtained when usingstmai-
linearizedversion of the interface operatoy; for the fluid. In this case the fixed point algo-
rithm reads as follows: giveR* andu™+* with k& > 0, compute\**! by

_Sfl(gf(un+1,k; Ak)) — 2\ (18)

and obtainu”#+1 from FLs, (w"t*; A\¥). The procedure is repeated until a selected norm of
w UL Lk and (o)A — AFis below a threshold tolerance.

Remark 3 When using the algorithm (18) the same loop deals with the coupling of the fluid
and structure systems and the nonlinearity of the fluid equations.

9



Remark 4 Thesemi-linearizedixed point algorithm (18) involves the domain update at each
iteration. This situation can be relaxed by using some criteria ¢Wéf ' — \*) in order to
decide to update or to freeze the domain at the current iteration (that is to say, to neglect or
not the shape derivative). Alternatively, instead of freezing the domain, we can use a transpi-
ration method (cheaper than the movement of the domain), as suggested in [15], in order to
accelerate the iterative process.

Alternative forms of the interface equation (15) motivate different iterative algorithms for
the coupling. For instance, if we rewrite (15) as

=SSy (A) —A=0, (19)

it motivates the use of a root finding technique. The use of the Newton algorithm in order
to obtain the root of (19) has been explored in recent works (see e.g. [20]). It involves the
computation of the tangent operators&f and S,. Again, these tangent operators account
for the non-linearity of the fluid equations and the shape derivative. Its computation is an
involved task. Approximate Jacobians invoking different approximations lead to a variety of
Quasi-Newton methods (see [23, 32, 33]).

Depariset al.in [14] use the approach adopted herein in order to motivate new algorithms.
These algorithms, widely used as DD methods, are applied to the fluid-structure problem. They
consider the preconditioned Richardson method to solve (15): gitiefor & > 0, find A**!
such that

PeWFE = AF) = =S, (AF) — S,(AF) (20)

whereP;, is a preconditioner of the Jacobian®f(\*) + S,(A\*). Some alternative choices of
P, are suggested in [14].

Besides the iterative algorithm for the coupling, a relaxation method is advisable in order to
improve the convergence properties of all the previous algorithms. The impact of the relaxation
parameter on the convergence of the iterative algorithm for a simple test case has been analyzed
in [5]. The Aitken acceleration method is the most widely used. The value of the optimal
relaxation parameter for the Aitken technique has a known value for scalar equations. Different
alternatives for the extension to the vector case have been proposed in [29, 13].

4 THE DISCRETE PROBLEM

This section is devoted to the fully discretized version of the coupling problem. We are fo-
cused on the discretization of the fluid. Three different sorts of methods are considered: mono-
lithic, pressure-correction and predictor-corrector. Every method is introduced and stated. In
the applications we consider the stabilized versions of these schemes using orthogonal subgrid
scales. However, for the sake of clarity, we omit the stabilization terms in the formulation.
We refer the reader to a set of articles that deal with stabilized pressure segregation methods
[7,11, 12, 10, 9]. The use of a stabilized space discretization allows us to use the same low-
order finite element space for the interpolation of velocity and pressure. After the exposition of
the alternative methods for the fluid problem, we state the discrete extension operator used for

10



the calculation of the fluid domain movement. Finally, we suggest some coupling procedures

taking into account the fluid solver used. These procedures are stated for being used in Section
6.

4.1 The discrete fluid problem

The fully discretized version of the monolithic scheme (11), denoteblNy; (), reads as
follows: forn =0, 1,2, ..., given\,, € Fh(Etnﬂ) (understood as the displacement on the solid
boundary at time steqm) findu*' € V,(Q/,.,) andpp*! € Q,,(Q),.,,) such that,

% (Drup™™, o) + p (Vup™, Vo) + pr ((up™ — w™) - Vui ' vy,)
—(h ™ V- on) = py (£ on) You € Vo),
(21a)
(V- ul ' g) =0 Van € Qu(9,.),
(21b)
1 e
uz+1 5t (Ah + ; al dTL—i—l 7l> on Etn+l7 (210)

wherel'), (Xn+1), Vh(anH) and Qh(anH) are finite element approximation spaces of the
functional spaces (S+1), V(QL.,,) andQ(Q/,.,.), respectively.

Let us introduce how we approximate the continuous spaces with finite dimensional sub-
spaces that can be handled numerically. ®gte a finite element partition of the domem;f
in a family of element§ K. }.—1 .., n being the number of elements. We denote the diame-
ter of the sphere that circumscribes elemgnby /., and the diameter of the sphere inscribed
in K by 0. We also call: = maxgcer (hi) ando = mingcer (0x ). We assume that all the

element domaing’ € ©! are the image of a reference eleménthrough polynomial map-
pings F, affine for S|mpI|C|aI elements, bilinear for quadrilaterals and trilinear for hexahedra.
On K we define the polynomial spacég (K), whereR, is, for simplicial elements, the set
of polynomials inz4, ..., x4 of degree less than or equal#pcalled P,. For quadrilaterals and
hexahedraR, consists of polynomials in, ..., z, of degree less than or equal kan each
variable, called),. We also introduce the finite element partitij of the interface’,, which

is completely defined b, . For simplicity, we consider that the finite element partitions of the
fluid and solid meshes match an, or alternatively, the structure is considered a rigid-body,
as in Section 6.

11



The finite element spaces introduced before and that we will use in the following are:

Iy ={B, e CO(Q) | Byl = 0o F', © € Ri(K), K € O},
Qu(9) = {@n € C°() | Gl = Go F', G € Ri(K), K € L},
T'h(S0) = {An € C%(S0) | Fnlx = 7o Fg', 7 € Ri(K), K € Z}

V() =

)=

(30) =
V(1) = {vh € CO( 1) | vn = B 0 ALY, By, € V()]

)

)=

)=

Vo @) = {vn € Vi(Qfo)| vl 0 = 0},

Qh( i1 {an € C°( tn+1) lan=qno A", Gy € Qh(Qg)},
Th(Se) = {m € CO(Z) | =T o A", A € Ti(Z0)}-

Again, we consider the linearized version BNy ,(A,) around ufjf, denoted by

MNs 5 (w fﬁl, An). MNs: () implies the computation of velocities and pressure together.

A substantial reduction of the computational cost is obtained when using a splitting technique.
These techniques allow the uncoupling of velocity and pressure computation. Herein, we con-
sider a pressure-correction method obtained at the discrete level (see [7]).

We denote byFS;;. h()\h) the following problem: givem\, € T'j(X+1), find uZH €
Vi(QL,.) andpitt € 9, (,,,) from the following scheme:

1. Finda) " € V,(Q/,,.) such that

A (An+1 Za un 7,7 ) —|—[L(V’U,Z+1 V’Uh)

'Yp&
+pf (( n+l n+1 An-‘rl’ 'Uh)
—(pp v vy) = pf<f”“,vh) Vo, € Vh,O(Q{TrH)? (22a)

wrtt = ()\h Za d~ ) on St (22b)

2. Findp;*! € Q4 (2 tm) such that
— 7,0t (I (Vopt™ = VEE™) . Van) = pr (@7, Var)  Van € Qu(sn).  (23)
3. Findu™! € V() such that

LI (gt =it v) = (T =P Vo) =0 Yoy, € Vio(,,),  (24a)

oty
1 e
wtt = 5 ()\h + ; a;dZ’) on L1 (24D)

In step 2,5} is an appropriate approximation tp;*' andIl,, is the L? projection onto
the velocity space. We consider mtrementaffractional step method wheii*! = p. This
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method has an splitting error of ordéXd¢?). The results are much better than fotal pro-

jection methods, wherg} ™' = 0, without extra computational cost. Equation (23) of the
second step of the method can be approximated by the pressure Poisson equation (see [7]):
find pi*! € Q,(Q/,...,) such that

—7,0t (Vppt =Vt Vay) = py (4, i ,Va) Van € Qn(2 tn+1) (25)

Remark 5 This approximation introduces the same artificial boundary condition that we find
when we do the splitting at the continuous level (see [43]), thabig;" /on = 0 on the
Dirichlet boundary of the velocity. This misbehavior is of special interest for fluid-structure
interaction problems, due to the fact that the fluid-structure interface is a Dirichlet boundary.
Thus, an artificial boundary condition over the pressure is imposed on the surface where the
pressure is integrated for the calculation of the stresses exerted by the fluid. We defend the
use of (23) if we want to avoid the artificial boundary conditions. The system matrix associ-
ated to (23) is cumbersome, but can be tackled when using an iterative solver, case in which
only matrix-vector products are needed. Furthermore, the use of a closed integration rule
for approximating the Gramm (mass) matrix that appears in (23) reduces considerably the
computational cost. Nevertheless, it would be interesting to assess the impact of the atrtificial
boundary condition on fluid-structure problems.

For the pressure-correction method we only consider the fixed point iteration algorithm
using nested loops, as justified below.

When we use an iterative implicit procedure for the coupling, the fluid problem is evaluated
(at least) as many times as coupling iterations. Thus, it is natural to put in the momentum
equationp; ™! = pZ—H k ph+1 * being the pressure obtained at the previous iteration. In fact,
if the resulting scheme convergéise intermediate velocity; ! converges to the end-of-step
velocity @) "', Furthermoreu;*' converges to the solution of the monolithic fluid system
Thus we do not need to distinguish betwegfi' andu; ' and (24) can be ignored. The final
system to be solved at every coupling iteration is the following: gixénc I',(X;.1) and
Pyt e (), find g T € v (QF L) andp T € ©,,(Q,,,) such that

Pf (Dkuz+1,k+1 ) ny (V n+1,k+1 V'vh> +py << n+1,k+1 w”“) ) VuZH’kH, ’Uh>

ot
— (Ph TV wn) = pp(F s vn) Yoy, € Vio(Q,. (26a)
— 0t (T (Vo™ = V™), Van) = prlup ™, V) Van € Qu(2.(26b)
1 e
uptR — (X, Za;dzfi on Yynii. (26¢)
oty P

This problem is denoted byCs; 5 (p; Lk : A%). We remark that in the case presented nested
loops are needed: an internal Ioop to deal with the nonlinearity of the convective term and
an external for the convergence to the monolithic fluid system (for fluid problems) or the
monolithic coupling system (for fluid-structure problems). Again, there is the possibility to

use one loop for everything. In this case, the final system is: g\jea I';(Z,n11), u’,f“ ke

13



Vi(QL 1) andp ™ € 04(Q.00), find wp T € v (QF,0) andpl T € 04(9).40)
such that,

o (Dkuzﬁ-l,kz-i-l’ Uh) + o (VuZ+1’k+1, Vvh> TPy <(u;¢+1,kz Yy AL Uh)

— Py, y V. Up) = Pl s, Uh Vh h,0\8 &pntt ),
(pp ™,V - vn) = pp(F s 0n) Yop € Vio(2i) (27a)
— 0t <Hh <sz+1,k+1 B sz—l—l,k) ,th>
= ps (’u,z—H’k—H, th> Vg, € Qh(Q{nﬂ)a (27b)
1 2]
uz+1,k+1 —— [+ Z a;dz_i ON Diyn+1. (27¢c)
oty pa

In this case the fluid solver is denoted BE s, 5, (u] ™", pr ™% AF).

Methods (26) and (27) angredictor-correctorschemes. These methods have been intro-
duced in [11, 12] without the fluid-structure motivation. In these references the stabilization
terms omitted in the present exposition are carefully treated.

Remark 6 Along this section we have considered™ independent of the iterative process
for the sake of clarity. However, this is not the general case. How to treat this mesh velocity in
the iterative algorithm has been pointed out in Remark 4.

4.2 The discrete fluid domain movement

As commented in the previous section, we use a harmonic extension operatpimorder
to obtaind;. The discrete problem reads as follows: gieEh € T',(Xn11), find (d] )"+ €
Vi(€,,,) such that

(V(dg)"ﬂ, Vvh> —0 You € Vio(Q1), (28a)
(d])"™ = X (28b)

We call (d{)”+1 = Ext,(An). The harmonic operator is applied O);f because it allows to
solve this problem using the same mesh that we use to compute the fluid problem.

4.3 Coupling algorithms for the discrete problem

In this section we propose three different coupling procedures for the pressure segregation
methods listed in Section 3, exploiting their properties. We only consider the fixed point al-
gorithms (17) and (18) for the coupling, but these ideas can be easily extended to methods
motivated from (19) and (20). Let us start with the pressure-correction method (27). As com-
mented above the use of this method will be restricted to cases where an explicit procedure is

. . . . . . . ~ntl .
used for the coupling. In this case the resulting iterative algorithm is: gk/lgn, find A7
such that

~n+1

A= =878 ) (29)
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and (up ™, pptt) = FS&’h(XZJrl). Here,XZH is an appropriate approximation af*'. Dif-

ferent alternatives have been suggested in the literature. A first order approximation in time

. ~n+l1 . . ipr -

IS Ah+ = Aj. A more accurate second order approximation that reduces the artificial energy

introduced to the system is proposed in [36]. However, numerical instabilities occur much ear-

lier with the second order predictor (see the numerical experimentation in [34]). In this work

we have adopted as initial condition
~n+1
PR

= =S ((ah)"), (30)

that is, we solve the structure problemtat! using as Neumann boundary condition the nor-
mal stresgo/ )" exerted by the fluid at the previous time step. A second order method of this
type is

Xn—&—l

==S12(a})" = ()" ). (31)
A stability analysis of an aeroelastic test case (similar to the one in [36]) using (30) and (31)
together with explicit procedures has been developed in [39] with good results.

When using implicit procedures for the coupling we have claimed that predictor-corrector
schemes are superior. As commented above, there are some possibilities for the iterative
process. Let us start with the one-loop algorithm. For every coupling iteration 0, the

problem to be solved is: giveN, ™", w; """ andp; ™", find A}t such that

)\ZJrl,kJrl _ _8;1(:9‘;(UZ+1,1¢; )\Zﬂ,k)) (32)
with (a) T R = PCs, (w) T pr R AR Thus, in the implicit coupling
process, we have to solve (32) until convergence. In this method the same loop deals with
the non-linearity of the convective term and the convergence to the monolithic system. Some
other alternatives for the treatment of the iterations are possible. For instance, the use of nested
loops, one for the coupling and one for the non-linearity. This case is similar to (32) but using
Sf(X,j“’k) together with the fluid solver (26). Further, a third algorithm could be used. At
every coupling iteratiort we could iterate over the predictor-corrector method until conver-
gence to the monolithic fluid system. However, for simplicity, we only use (29) and (32) in the
numerical experimentation. Alternative versions of (32) can be tested for every application in
order to identify which is faster.

Remark 7 In the algorithm (29) associated to the pressure-correction method, we use the
Steklov-Poinca operatorS;(-) that involves nonlinear iterations due to the convective term.
However, for the predictor-corrector coupling algorithm (32) the semi-linearized version
S(u) ™" : ), that does not involve nonlinear iterations, has been used.

5 ON SOME ALGORITHMS FOR AEROELASTICITY

As explained above, the appropriate algorithm for the solution of the coupled system depends
on the kind of problem to be solved. In this paper we have in mind aeroelastic problems. Let
us draw some features about this sort of applications:
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e The fluid solver consumes much more CPU time than the structure. For this reason, the
number of fluid evaluations has to be minimized in order to optimize the computational
cost.

e The convergence of the coupling iterative procesasy As explained in Section 1, this
behavior is associated to the fact that the structure density is much larger than the fluid
density.

The use of Newton and Quasi-Newton methods, or the use of preconditioners together with
a Richardson iterative process are justified in some cases (for instance haemodynamics) when
the convergence of fixed point algorithms is very slow. However, for aeroelastic problems the
convergence rate of the last method is good. That, together with the fact that the fixed point
algorithm minimizes the number of fluid evaluations per iteration, has motivated its choice for
the application to bridge aerodynamics.

Besides, the bottle neck of the coupling method is the fluid solver. We can use explicit
and implicit fluid solvers. The first class of solvers is cheaper but the time step allowed is
restricted to be smaller than a critical time step size. Using an implicit procedure the cost
per evaluation is more expensive bitcan be larger. It is commonly accepted that to capture
well the physics of the flow, a time step sizeof the order ofl0 — 1004t.. should be used.

In order to reduce the computational cost associated to the fluid solver we suggest the
use of fractional step methods. Pressure-correction methods (22)-(24) and predictor-corrector
methods (26) and (27) are considered.

The pressure-correction scheme (in its implicit, semi-implicit or explicit version) is a good
choice when using explicit procedures for the coupling. The coupling problem to be solved in
this case is the one defined in (29). This method introduces a splitting error (due to the splitting
of the Navier-Stokes equations) and a coupling error (due to the explicit procedure for the
coupling). Furthermore, the coupling error affects the stability of the coupling procedure (see
e.g. [34]).

When using implicit procedures, as explained above for the fully discrete problem, the use
of a predictor-corrector scheme is more appropriate, because we can profit from the coupling
iterations in order for the fluid solver to tend to the monolithic system (decreasing the splitting
error). The nice property of this method is that, when reaching convergence, the solution is
the same as that obtained by thenolithicapproach to the coupled problem. In (32) we have
stated the algorithm using only a single loop for the fluid and the coupling.

6 APPLICATIONS

6.1 Bridge Aerodynamics

Among the different topologies of bridgesyspensiorbridges span the greatest distances.
However, the bending moments acting on the deck sections of this sort of bridges are relatively
small. Even though the span between piles is very large, the distance between cables, that in
fact are working as piles, is small. For this reason these structures are flexible and light.

These features make suspension bridges very influenced by wind actions. While for other
topologies the aeroelastic behavior is not considered important, for suspension bridges it im-
plies a key aspect of the design process.
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The action of a fluid over a structure can induce three different phenomena:

e Divergence It can be considered static instability. It happens when the deformation
induced by the fluid to the structure increases the fluid action until failure. It is similar to
the bucklingof a pile loaded by an axial force. This phenomenon is of little importance
in bridge design because it happens for very high wind speeds.

e Buffeting This dynamic phenomenon is associated to the effect of the fluctuations of
the inflow over the structure. For suspended bridges, the inflow is usually very homoge-
neous. However, in some conditions it can induce low frequency vibrations. Even though
these vibrations do not endanger the structure they can induce fatigue effects.

e Flutter: This dynamic phenomenon is induced by the fluid-structure coupling (the en-
ergy transfer). The flutter happens when the damping induced by the fluid to the struc-
ture makes the overall structure damping negative. Then, the oscillations of the bridge
increase until failure. It happens for high velocities (0 — 70 m/s) of the inflow (but
much smaller than the divergence velocity).

In the application described now we consider only the flutter phenomenon, which is the
most important aeroelastic effect when designing suspension bridges. When this aeroelastic
phenomenon was not taken into account by the engineers it caused some historical failures
of bridges. The Tacoma bridge is probably the best known case. Suspension bridges have a
very low structural damping that make them sensitive to this effect. One of the most important
criteria of design is th#utter limit velocity (when flutter occurs). An acceptable structure must
have a large enough flutter limit velocity. A large gap between the maximum velocity of design
and this limit is required.

The flutter analysis has been developed by experimentation in wind tunnels. For instance,
the design of the Great Belt bridge (Denmark) involved more than 16 sections (see [31]).
We point out that in wind tunnels the flutter limit is not obtained directly, that is, increasing
the inflow velocity of the wind tunnel until failure. This flutter limit is obtained evaluating the
aeroelastic derivatives' his methodology, that was originated in aeronautics, was extrapolated
to bridge aerodynamics by Scanlan and Tomko in [40]. When using this methodology, the
assessment of the effect of the fluid over the structure is made with an inflow velocity far from
the flutter limit and prescribed deck motions. This experimentation process is very expensive
and time consuming. Further, the Reynolds number of the real problem cannot be reproduced
in conventional wind tunnels.

The increasing in the capability of computers together with the improvement of numerical
methods have motivated in the last decade the use of computer methods for the analysis of
bridge aerodynamics [41]. For the bridge analyzed herein, the Great Belt bridge, we refer now
to some previous works. Jenssen and Kvamsdal in [30] analyze this bridge using the finite
volume method and an explicit procedure for the coupling. The aeroelastic derivatives are
computed to obtain the flutter limit. Selvaet al. in [41] use the finite element method in a
moving (non-inertial) frame of reference for a direct simulation of the flutter. The more recent
work of Frandsen [22] uses the finite element method and a monolithic approximation of the
coupled fluid-structure problem. This reference includes a good review on this topic.

In our numerical simulation no turbulence modeling has been considered. Due to the fact
that the bridge deck is a bluff body, the flow is detached and the influence of the turbulence
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effects for this case is less important than for the aeroelastic analysis of wings. However,
for wide decks, the flow re-attaches at a given point. Nevertheless, we use a stabilized finite
element method motivated by a multiscale approach. There is a recent trend among the com-
putational mechanics community to claim that this kind of methods can replace conventional
turbulence models (see [25, 26, 27, 4]).

The present application is devoted to the evaluation of flexural and torsional frequencies
of the Great Belt bridge for a given inflow velocity and the direct flutter simulation using the
methods introduced in the previous sections. The finite element method together with stabi-
lized predictor-corrector and pressure-correction fluid solvers for the coupling have been used.
The ALE framework has allowed to formulate the flow problem in moving domains. First and
second order accurate methods (in time) have been considered.

6.2 The bridge model

For the numerical aeroelastic analysis of bridges, the 3D problem is usually reduced to a 2D
problem. In fact, this is also the usual procedure for wind tunnel tests. In order to simulate the
correct natural frequencies in the fundamental symmetric flexural and torsional modes, spring
stiffnesses are applied to the elastic center of the cross-section. Lumped mass and moment of
inertia on the gravity center have been introduced to simulate the mass and moment of inertia
per unit length. Furthermore, the 2D cross-section is considered a rigid body.

In order to obtain the equations governing the displacement of the bridge section, Newton’s
law is formulated on the gravity center, and the spring force depending on the displacement of
the structure is applied to the elastic center. When the gravity center and the elastic center are
in different positions, the resulting governing equations are nonlinear. However, assuming that
the rotation angle ismall the equations can be easily linearized. Thus, the linearized ordinary
differential equation (ODE) that governs the displacement of the structure reads as follows:
find the displacement vectal, € ®? (for a2d problem) such that

Md, +Cd, + Kd, = f, (33)

where M is themassmatrix, C' is thedampingmatrix, K is thestiffnesamatrix andf is the
external force exerted over the structure. The displacement vector contains the translation and
rotation of the structure, that is,

whered,, andd, are the displacements along thendy directions, respectively, ant) is the
rotation. Thdinearized massnatrix has the following expression:

m 0 —sg

M = 0 m sy
—5; Sy g
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wherem, Iy, s, ands, denote the mass, inertial moment and static moments associated to the
elastic center (per unit length), respectively. The stiffness matrix is given by

ke 00
K=[0 k 0
0 0 ke

wherek,, k, andky are the corresponding stiffness coefficients. The damping coefficients of
each degree of freedom define the damping matrix, which is taken as

c, 0 0
C = 0 ¢ O
0 0 Cy

The damping coefficients are usually given gseacentage logarithmic decremedt [% log-
arithmic decrement implies a damping coefficient

l
c=—vmk,
0

m andk being the mass and stiffness coefficients, respectively.
The external force vector (including force and moment) over the bridge exerted by the fluid
atagiventimeis

fo
f - fy )

me

and can be obtained as

o 1] = / ol ds,

mgz/ ol x rd¥.
2

where, as beforez/ is the normal stress oR, exerted by the fluid, and is the position
vector (being the frame of reference centered at the elastic center). We point out that this
external force depends on the displacement of the structure, thfatsf (ds), and thus the
problem is nonlinear.

For the time integration of the ODE (34) we use the unconditional stairistant-average-
accelerationscheme, also callelapezoidal rule which is described by the following set of
equations:

Mdsn+1 4 Cdsn+1 + KdZH _ fn+1’

d = dv + otd,” + 2 (d's”“ n d;”) ,
This second order accurate scheme is particularly appropriate for the case under consideration
due to the fact that preserves the energy of the structure, given by

1. 1
E, = §dS-Mds+§ds-KdS, (34)
which is an important feature when analyzing the aeroelastic stability of the structure.
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6.3 The coupling model

In this section we describe the fluid solver on moving domains and the coupling procedure
that will be used for the direct analysis of flutter. The coupling procedure that we use herein
for the simulation of this phenomenon is implicit. As it is widely known, explicit procedures
introduce artificial energy to the system that can lead to undesirable numerical instability (see
[36] and [34]). Due to the fact that we want to assess the stability of the coupling problem,
intimately related to the energy transfer between fluid and structure, it is justified the use of
an implicit procedure that avoids this artificial energy. Further, the implicit procedure tends
to the solution of the monolithic coupled system, eliminating the splitting error associated to
staggered procedures.

Due to the complexity of external flows that appear in aeroelastic applications, and its
highly transient behavior, the use of second order methods are worth it, and even more when
no extra computational cost is introduced. We have used here the BDF-2 scheme, both for the
time integration of the momentum equation and for the evaluation of the mesh velocity in the
fluid domain. By doing this, and as it is proved in [1] for the convection-diffusion equation, the
ALE formulation does not spoil the second order of accuracy of the fluid solver. The movement
of the fluid domain has been computed by solving the discrete problem (28).

The formulation for the fluid problem that will be used is a stabilized pressure segregation
method. More specifically, a predictor-corrector method is considered because of the fact that
we use an implicit procedure, as justified in Section 5.

We point out that, when the structure is considered a rigid body, the interface equation (16)
has the followingntegratedform,

—S < /Z t S;(\) dE) = A (35)

whereX = A\(d;) andS;(A) gives the forces and moments (not the stresses) that cause a dis-
placement. Likewise,S;(A) contains not only the components of the normal stress exerted
by the fluid, but also the moments per unit of area (length=f 2), and therefore the integral
of S¢(A) gives the total force and moment exerted by the fluidipn

In this case we use a fixed point iterative method to solve the nonlinear interface problem
(35). More precisely, the method used here is the integral version of the iteration scheme stated
in (32).

Even though this kind of problems have a good convergence, we have used the Aitken
acceleration technique for scalar equations. We define the residual of the interface equation as

r(AF) = -S;! (/E Si(AM) dZ) D

Exploiting the fact that the structure is considered as a rigid body, the relaxation parameter can
be obtained from the expression for scalar equations. In this case, we consideaagbeal
relaxation matrix

wk 0 0
wh = 0 wfj 0 ,
0 0 wf



that verifies

WP (rAF) — (A1) = AF - AL

Therelaxedversion of a fixed point iteration applied to (35) is

A deep study of relaxation methods in a fluid-structure framework can be found in [13].

AR = kgl
3t

Si(AM) A ) + (I — wF)AF

6.4 Assessment of frequencies and direct flutter simulation

This section is devoted to the numerical simulation of the flutter limit and the assessment of
frequencies of the Great Belt bridge (Denmark). The parameters that define the problem have
been summarized in Table 1 and have been extracted from [41]. The problem domain and
its finite element discretization is shown in Figure 6.4. We have used an unstructured mesh
of 48453 linear triangles for this simulation. A time step sizé) 6fl s has been considered.

The horizontal movement is restricted, as it is usually assumed. We do not know which are
the appropriate elastic coefficients when analyzing the real sized problem with the real inflow
velocity. For this reason we have assumed the elastic coefficients used for the dimensionless
approximation analyzed by Selvaet al. in [41]. It has to be taken into account that this
assumption affects the obtained results and complicates the comparison to wind tunnel exper-

iments.
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Figure 1. Space domain of analysis and mesh used for the simulation

Firstly, given an inflow velocity ofu;, =

21

(50,0) m/s, we obtain the temporary response
of the bridge. In figures 2(a), 2(b) and 2(c) we show the vertical displacement, velocity and
acceleration. Figures 2(d), 2(e) and 2(f) show the rotation angle, angular velocity and angular



Mass per unit lengthyn [Kg/m)| 2.27 x 103
Vertical static moment on elastic centre

per unit lengths, [Kg - m/m)| 1.61 x 10*
Mass moment of inertia on elastic centre
per unit lengthJ, [Kg - m?/m)] 2.47 x 10°

Vertical spring stiffnessy, [N/m?] 8.78 x 10°
Torsional spring stiffnessy [N - m/m?] | 7.21 x 10°
Vertical logarithmic dampingd,, [%] 1
Torsional logarithmic dampindy [%] 0.6

Table 1: Properties of the Great Belt Bridge

acceleration. We plot the results after some time of computation. In figure 3 we plot the energy
of the structure, defined in (34). These plots prove the stability of the structure.

Using aFourier Fast Transfornwe have obtained the frequencies associated to the verti-
cal displacement (flexural frequency) and rotation angle (torsional frequency). We show these
results in Figures 4(a) and 4(b). In both cases a clear dominant frequency governs the move-
ment.

We show contours of the velocity norm and pressure at different time steps in Figures 5
and 6, respectively.

The average number of iterations needed for the convergence of the integral version of
method (32) to the monolithic system for a given time step is ardutelations per time step
for an inflow velocity of50 m/s.

In a second step, we increase the inflow velocity until we reach the aeroelastic instability.
The flutter phenomenon appears for an inflow velocityy®im/s. We plot the same values
as before in figures 7-8. We easily see in this case that the flutter instability appears for this
velocity. In fact, the instability is translational and torsional (see Figures 7(a) and 7(d)). We
plot velocities and accelerations for vertical displacement and rotation angle in Figures 7(b)-
7(c) and 7(e)- 7(f). The aerodynamic instability is clearly shown from the increase of the
structure energy (Figure 8).

Obviously, the number of iterations needed for the inflow velocitysain/s increases with
the structure energy. We end this section with the plots of the velocity norm and pressure at
different time steps in Figures 9 and 10, respectively.

6.5 Aeroelastic derivatives using numerical experimentation

A different approach to the direct flutter simulation is the calculation of the aeroelastic deriv-
atives. This is the usual procedure when using wind tunnel tests. We refer to [40] for an intro-
duction to this methodology.

In [39] Rossi has used the coupling method (29) for the assessment of aeroelastic deriva-
tives. In fact, our fluid software has been used for the assessment of the flutter derivatives. This
method involves the use of a pressure-correction method together with an explicit coupling
procedure. The bridge model is identical to the one presented herein.

In this case, the results obtained are in agreement with the wind tunnel experiments. The
key difference, compared to the direct flutter simulation presented here, is the fact that in the
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(e) Angular velocity vs. time

(f) Angular acceleration vs. time

Figure 2: Movement of the bridge for an inflow velocity, = (50,0) m/s
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Figure 3: Bridge energy vs. time for inflow velocity,, = (50,0) m/s
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Figure 4: Fourier transform of vertical displacement and rotation angle of the bridge for inflow
velocity u;, = (50,0) m/s
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Figure 5: Contours of the velocity norm at different time steps (increasing time from left to
right and from top to bottom) for inflow velocity;,, = (50,0) m/s



Figure 6: Contours of the pressure at different time steps (increasing time from left to right and
from top to bottom) for inflow velocity,,, = (50,0) m/s
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Figure 7: Movement of the bridge for inflow velocity,, = (55,0) m/s
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Figure 8: Bridge energy vs. time for inflow velocity,, = (55,0) m/s

Figure 9: Contours of the velocity norm at different time steps (increasing time from left to
right and from top to bottom) for inflow velocity,,, = (55,0) m/s
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Figure 10: Contours of the pressure at different time steps (increasing time from left to right
and from top to bottom) for inflow velocity,, = (55,0) m/s
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reference mentioned the problem considered is the same as in the wind tunnel, and thus the
results can be fairly compared.

7/ CONCLUSIONS

The coupling methods proposed herein for the calculation of the flutter limit have shown an
excellent behavior in aeroelastic applications. €hapling method proposed converges to the
monolithic problem (for the predictor-corrector solvemhat is, the coupling process does not
introduced any extra error (apart from tolerance stop criteria). Furthermore, this method shows
a good convergence behavior for this kind of problems.

The other key point is the fact thtite present methods uncouple the velocity and pressure
computationthat implies a high reduction of the computational cost of the fluid problem, the
bottle neck of aeroelastic simulations.

Summarizing, the key features of the formulation we propose are the use of second or-
der stabilized pressure segregation methods (both pressure-correction and predictor-corrector
versions) together with a second order ALE formulation, a second order structure solver and
a coupling iterative procedure that tends to the monolithic system. Thesyverall fluid-
structure coupling procedurproposed hereiis second order accurate in timan important
property for highly transient external flows that appear in aeroelastic applications.

We have applied this methods to the aeroelastic analysis of a bridge deck. The flutter ve-
locity of 55 m/s obtained herein differs from the 65-70 m/s obtained from the aeroelastic
derivatives assessed with wind tunnel tests. However, this gap could be expected, since the
problems solved are different. It seems that the elastic coefficient that should be used for the
direct analysis of flutter in dimensional form has to be higher than the one used for the scaled
problem.

In fact, numerical experiments using the same method (even the same software) are in
exceptional agreement with the wind tunnel results when assessing the aeroelastic derivatives,
as reported in [39]. This is even more relevant considering that in this reference an explicit
coupling procedure has been used together with a pressure-correction method, thus introducing
a splitting error and artificial energy.
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