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Abstract. The efficiency of time-domain acoustic simulations is improved immensely if the degrees of
freedom imparted by the spatial discretization are reduced. Time-stable model order reduction strategies
achieve this by ensuring that frequency-domain system realizations transform in a physical manner after
reduction. Frequency dependent damping matrices add to the challenge and require additional consider-
ation. Handling the associated boundary condition imposition in the time domain is one way to approach
the problem. Convolution complicates this strategy but the obstacle can be surmounted using a recursive
formulation. This work proposes such a method, combining Krylov subspace projection based model
order reduction with an efficient time domain-impedance boundary condition implementation. The mass
and stiffness matrices are frequency independent and reduced using a second-order Arnoldi algorithm.
As Arnoldi iterations implicitly match the moments of the system transfer function, the complex damping
matrix must still be contended with. Discussion is included on when reduced order, time-domain, simu-
lations bear fruit. Comparison with full-order time and frequency-domain calculations demonstrate the
effectiveness of the proposed algorithms with system degrees of freedom decreased from NDOF= 13125
to RDOF= 63, and simulation time reductions of 91–97%.

1 INTRODUCTION

Modeling the intricate microstructure of a porous/fibrous material is cost prohibitive in acoustic simula-
tions. Impedance boundary conditions instead allow a surface to reflect and absorb sound energy, often
to a suitable degree of accuracy. These complicated materials respond to incident perturbations over a va-
riety of time-scales. In the frequency domain this leads to impedance functions that vary with frequency.
Further shaping the frequency response is the thickness of the boundary layer which can be accounted
for using a transfer matrix and an appropriate complex propagation coefficient [1]. In the frequency
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domain this is all well and good, in the time domain calculating numerous convolutions proves costly.
Time-domain impedance boundary conditions (TDIBC), defined by recursively calculated convolutions,
provide an economical way to proceed [2, 3, 4, 5, 6, 7].

In combination with a TDIBC formulation, a method to reduce the problem degrees of freedom (DOF)
is sought. While projection based model order reduction (MOR), guided by the system transfer function,
is effective for transient problems, special care is required for construction of the reduction basis. This
work builds on MOR techniques that require time-domain stability from the outset [8, 9], and a strategy
to accommodate frequency dependent damping while allowing iterative, numerically sound, construction
of the reduction basis [10, 11].

A MOR strategy and TDIBC enables transient acoustic simulations where both efficiency and accuracy
are required. Of particular interest is the ability to directly output binaural audio from the simulations
whereby a dry input signal (recorded under anechoic conditions) is effectively filtered by the linear time
invariant (LTI) system under consideration.

In Sect. 2 the problem is described and a time-domain impedance boundary condition is developed for
acoustic finite element methods. Section 3 discusses how to iteratively construct a reduction basis which
spans a Krylov subspace using a modified second-order Arnoldi algorithm (SOAR) [12, 10]. Section 4
handles the numerical verification strategy while Sect. 5 presents the associated results.

2 PROBLEM DESCRIPTION

This work makes use of the surface normal acoustic impedance, ZZZs(s), and the reciprocal specific normal
acoustic admittance, YYY s(s), with

ZZZs(s)−1 = YYY s(s) =
VVV (s)
PPP(s)

=
AAA(s)
ṖPP(s)

=L{ys(t)} . (1)

The symbol L{·} represents the Laplace transform operator, VVV (s) is the surface normal particle velocity,
AAA(s) is the surface normal particle acceleration, PPP(s) is pressure, and ṖPP(s) is the time derivative of
pressure. The time-domain counterparts will be written as lowercase functions of time, vvv(t), aaa(t), ppp(t),
and ṗpp(s), respectively. Working with ZZZs(s) at the impedance boundary, Γz in Fig. 1, requires a locally
reacting assumption whereby incident sound waves refract in the direction of the surface normal vector,
nnn. The degree to which this is a good approximation depends on the material, see [13] for a discussion
and experimental results. The material under consideration for this work, high flow resistivity mineral
wool, is suitable for use with this assumption. The three-dimensional, interior acoustic, problem under
consideration is additionally defined by the fluid volume, Ω, Neumann boundary, ΓN , and Dirichlet
boundary, ΓD.

The acoustic wave equation which dictates the finite element formulation is

∇
2 ppp(xxx, t)− 1

c02 p̈pp(xxx, t) =−QQQ(xxx, t), (2)

here c0 is the speed of sound in air, ∇2 is the Laplacian, and QQQ(xxx, t) is a source term, a function of both
space and time. The finite element formulation in the time domain is written as [14]

Mp̈pp(t)+Cṗpp(t)+Kppp(t) = fff ext(t). (3)
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where K,C,M ∈ RNDOF×NDOF are the stiffness, damping and mass matrices, respectively, and fff ext ∈
RNDOF×1 is the input load vector.

n

ΓD

Γ = ΓN ∪ ΓD ∪ ΓZ

ΩΓN

ΓZ

Figure 1: The interior acoustic problem. The fluid domain Ω with impedance, Neumann, and Dirichlet boundaries
ΓZ ,ΓN ,ΓD, respectively.

When the damping matrix is a function of frequency, the term C ṗpp(t) becomes a damping force vector,
fff d , where convolutions are required for the DOFs on ΓZ ,

fff d
i = ρ0Siys(t)i ∗ ṗi(t) = ρ0Siai(t). (4)

here the area associated with i’th boundary node is Si, the normal particle acceleration is ai, and the
operator for convolution is ∗. As pointed out in the introduction, the convolutions can prove costly in
terms of memory and computational burden.

A minimal memory, recursively calculated treatment of the convolutions is desired. First, a rational
function is used to fit the Laplace domain admittance

YYY s(s)≈
Nξ

∑
k=1

µk

s−ξk
, (5)

where ξk are the poles of the approximations, and µk are the gains. To insure time-domain stability, the
algorithm vect f it3 is used in the present work [15, 16, 17, 18]. The inverse Laplace transform of Eq. (5)
is

yyys(t)≈
Nξ

∑
k=1

µkeξktHHH (t) , (6)

where HHH(t) is the Heaviside or unit step function. Note that the time dependence of the admittance
kernel is now determined no matter the problem of interest. The pressure derivative convolves with the
admittance kernel, as shown in Eq. (4),

aaa(t) = yyys(t)∗ ṗpp(t)≈
Nξ

∑
k=1

µkφφφkkk(t) (7)

to arrive at an expression for the particle acceleration. The variables φφφk are introduced and are defined by

φφφk(t) = eξkt ∗ ṗpp(t)+φφφkkk(0)e
ξkt . (8)

A discrete version of Eq. (8) is determined by taking the pressure derivative as constant during the time
step to arrive at

φφφ
k
n+1 = φ

k
neξk∆t − 1

ξk

(
1− eξk∆t

)
ṗppn+1, (9)
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see [4, 7, 19] for more details. The variables φφφk are known by different names in the literature, all of
which allude to a characteristic preservation of information property. In [2] the authors expound upon
this in an illuminating way.

3 MODEL ORDER REDUCTION

To decrease the system size, a structure preserving second-order Arnoldi method (SOAR) is taken as
the starting point [10, 12]. The principle idea is to expand the system transfer function around various
expansion points, s0, to an appropriate order. The desired basis vectors, termed moments, are the coef-
ficients of the Taylor series expansion. A couple of challenges arise, the first being explicit calculation
of the transfer function moments proves to be numerically unstable [20]. An implicit method of basis
construction is then desired. Unique system transfer functions arise depending on the problem of inter-
est. In the present case, frequency dependency in the damping matrix and the consideration of arbitrary
expansion points dictate modifications to previously proposed iterative algorithms. This work proceeds
in the manner of [10] and [11].

The goal is to determine constant (at a given expansion point) coefficient matrices A1 and A2, as well as
a starting vector bbb to allow calculation of the reduction basis

Kn(A1,A2,bbb) = span{qqq0,qqq1, ...qqqn−1}= span{V}, (10)

using the recurrence relations [10]

qqq0 = bbb, qqq1 = A1bbb,

qqqn = A1qqqn−1 +A2qqqn−2.
(11)

To prevent a singular reduction basis, each new vector, qqqiii, is orthonormalized with respect to the previ-
ously calculated basis vectors, resulting in the vector vvvi. These vectors span a Krylov subspace and form
the projection matrix V ∈ CNDOF×RDOF. To determine A1, A2 and the starting vector bbb, a decision is re-
quired as to whether the input or output Krylov subspace is to be spanned. The input and output subspaces
for a standard, zero-centered, transfer function based off the frequency-independent system in Eq. (3),
are defined by Kn(−K−1C,−K−1M,−K−1b̄bb) and Kn(−K−TCT,−K−TMT,−K−Tc̄cc), respectively. Re-
placement matrices M̃, C̃, and K̃ are desired which account for the aformentioned modifications to the
transfer function. In [10] the authors walk through the determination of these matrices when looking
at non-zero expansion points. In [11] the authors describe how to account for frequency dependency in
the system matrices. The details on combining both considerations are presented in [7]. The desired
matrices are

M̃ = M+YYY ′s(s0)D,

C̃ = 2s0M+ s0YYY ′s(s0)D+YYY s(s0)D,

K̃ = s2
0M+ s0YYY s(s0)D+K.

(12)

Here D is a density-area matrix which results from pulling the admittance function out of the integrals
defining a typical acoustic damping matrix [14]

C(s)i j = YYY s(s)Di j = YYY s(s)
∫

ΓZ

(ρ0NNNiNNN j)dΓ , (13)
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where NNNi and NNN j are weighting and shape functions, and ρ0 is the density of air. Alas, reduced order
system matrices and vector representations

Mr = VTMV, Dr = VTDV, Kr = VTKV,

b̄bbr = VTb̄bb, ppp = Vp,
(14)

are arrived at. The vector b̄bb selects the input DOF, the reduced input vector is represented by b̄bbr, the
vector of moment coordinates by p ∈ CRDOF×1, and the reduced system matrices are Mr,Dr,Kr ∈
CRDOF×RDOF. The aim is to substantially reduce the system DOFs (RDOF << NDOF) without sac-
rificing accuracy. The expansion points and moment order were selected using an automated Krylov
subspace algorithm, see [21] and [22] for more details.

4 COMBINED APPROACH

Modifications to a standard Newmark-beta integrator [23] (γ = 1/2, β = 1/4) allow the reduced order
system to be combined with the TDIBC approach. The steps of the time-stepping scheme are shown in
Algorithm 1,

Algorithm 1 Surface Admittance Approach
1: procedure CALCULATE TIME SERIES( )

2: Initialize: p1 = ṗ1 = 000RDOFx1, aaa1 = φφφ
k
1 = 000NDOFx1, p̈1 = Mr

−1 fff r
1,

3: with fff r
n = b̄bbrun

4: for n = 1 to length(un)−1 do

5: p′n+1 =pn +∆tṗn +
∆t2

4 p̈n . Initial predictions distinguished by ′

6: ṗ′n+1 = ṗn +
∆t
2 p̈n

7: φφφ
k′
n+1 = φφφ

k
neξk∆t − 1

ξk

(
1− eξk∆t

)
BVṗ′n+1

8: aaan+1 = ∑
Nξ

k=1 µkφφφ
k′
n+1

9: rrrn+1 = fff r
n+1−VTDaaan+1−Krp

′
n+1 . fff d

n+1 = VTDaaan+1

10: p̈n+1 =
(

Mr +
∆t
2 Ct +

∆t2

4 Kr

)−1
· rrrn+1

11: pn+1 =p′n+1 +
∆t2

4 p̈n+1 . Correct variables

12: ṗn+1 = ṗ′n+1 +
∆t
2 p̈n+1

13: φφφ
k
n+1 = φφφ

k
neξk∆t − 1

ξk

(
1− eξk∆t

)
BVṗn+1

14: yn+1 = c̄ccTVpn+1 . Output
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where the variables yet to be introduced are the binary impedance boundary node selection matrix B, the
residual rrr, reduced input-force vector fff r, the input time series u, output DOF selection vector c̄cc, and the
desired output time series y.

5 NUMERICAL VERIFICATION

For numerical verification the test problem mimics the geometry of the KU Leuven Sound Box [24], see
Fig. 2 for the interior volume geometry. The input signal is a band-pass filtered impulse (20–550 Hz
passband) with the intention to keep the frequency response beneath the maximum frequency dictated by
the finite element mesh. The maximum element size was set considering quadratic elements and a con-
servative six-element per wavelength thumb rule [14] where fmax = 500 Hz was taken in the calculation.
The surface admittance function at the impedance boundary was calculated using the Miki model [25]
for a 60 mm layer of mineral wool with a flow resistivity of 32102 Pa·s/m2 [26]. The surface admittance
was fit with four real poles/gains and two complex conjugated pole/gain pairs resulting in relative errors
of less than 0.2% across the frequency range under consideration.

output

input

(0, 0, 0)x

y

z

Rockwool 225
0.060 m thick

pt. x [m] y [m]

1 0 0 0

2 0 0.982 0

3 0.778 0.981 0

4 0.815 0 0

5 0 0 1.150

6 0 0.849 1.082

7 0.783 0.848 1.082

8 0.815 0 1.150

in 0.395 0.495 0.561

out 0.290 0.099 0.561

3

2

4
5

6

7

8

z [m]

Figure 2: A monopole source is postioned at the input DOF and the response is taken at the output DOF. The table
includes the coordinates of the vertices, input DOF, and output DOF. The impedance boundary is set on the bottom
of the chamber.

Concerning the model reduction projection basis, expansion point and moment order selection were
handled using an automated Krylov subspace algorithm (AKSA) [21, 22]. The resulting reduced-order
system based frequency response function (FRF) differs from that of the full-order system by less than
3e-4% over the entire frequency range. The reduced-order system has RDOF = 63 degrees of freedom
as compared to the full-order system at NDOF = 13125 degrees of freedom.

The filtered impulse response for the system, calculated using Algorithm 1, is shown in Fig. 3a. The
errors resulting from comparing the full-order and reduced-order system (ROM) responses are plotted in
Fig. 3b.

The time series in Fig. 3a are next discrete Fourier transformed (DFT) to compare with the full-order
FRF. The FRF was calculated directly in the frequency domain at a 1 Hz resolution. This comparison
successfully validates the TDIBC formulation.

Figure 5 affords a closer look at errors relative to the full-order FRF where the various cases represent
changes in the time step. The legend includes the sample frequency, fs, for each case. The time step is
set at 1/ fs. The errors are averaged over 1/3-octave band intervals.
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Figure 3: a) The filtered impulse response of the chamber for both the full and reduced-order systems. The time
step, ∆t, is set at 1/ fs, with fs = 44.1 kHz. b) The error between the full-order and reduced-order system responses.
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Figure 4: The frequency responses of the chamber for the normalized pressure level. The ‘TD’ curves were
discrete Fourier transformed from time series calculated using Algorithm 1. Direct frequency domain calculation
at a 1 Hz resolution yielded the ‘FD’ curves

5.1 Discussion

The comparison of the results natively calculated in the time domain with the full-order FRF in Fig.’s 4
and 5 demonstrate the accuracy and effectiveness of the TDIBC formulation. Figure 5 demonstrates, as
expected, that the accuracy improves with the shortening of the time step. The question of whether or
not the errors will result in audible differences is of course perceptual in nature and depends both on the
frequency and loudness. Experimental results in [27] indicate a threshold of 0.5 dB over the frequencies
considered at present. The desired accuracy and potential for error audibility then dictate the time step
size. In [7] the authors show the errors are insignificant as compared to errors introduced by boundary
simplifications.

The reduced order model proves to be an accurate representation of the system. The reduced order model
has RDOF = 63 DOF while the full-order system has NDOF = 13125 DOF. Both cases require consider-
ation of 457 nodes on ΓZ . Application of a six-element per wavelength thumb rule [14] with fmax = 500
Hz determined the number of boundary nodes. The ROM cases resulted in a reduction of simulation time
of 91–97% including the offline cost of the basis calculation, see Table 1. The simulations were ran on a
personal computer with a 2.60 GHz six-core processor and 16 GB of RAM. Additional simulations were
performed using a closely related surface impedance formulation in [7].
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Figure 5: One-third octave band averaged errors calculated relative to the full-order FRF. For the frequency re-
sponses originating in the time domain Algorithm 1 was used with time steps set at 1/ fs, where the nominal sample
frequencies are listed.

Table 1: Averaged simulation times where the time steps were set at 1/ fs. A single reduced-order model is
responsible for all ROM cases while a single full-order model was used to calculate the FULL cases.

fs [kHz] ROM (YYY sss) [s] FULL (YYY sss) [s]
11.025 32 1488
22.050 61 2854
44.100 115 5470
88.200 240 10566

Calculate ROM: 100 s

6 CONCLUSION

A model order reduction strategy and time-domain impedance boundary condition formulation have
been paired to accurately and efficiently simulate an acoustic finite element system. A reduction of
simulation times from 91–97% was observed while minimizing the possibility of audible errors. This
approach is limited to rigidly backed porous/fibrous impedance boundaries and when the locally-reacting
assumption is valid. Future developments may seek to alternatively model the characteristic impedance
using an equivalent fluid model as in [28]. Working with a surface impedance function is also possible
and is demonstrated in [7]. Working in the time domain requires special handling of convolutions but
allows for direct binaural output of the acoustic response.
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