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RESUMEN

Se presenta un elemento finito, formulado en desplazamientos, para analisis de interaccién
fluido-estructura, incluso en el caso de fluido con superficie libre. Dicha formulacién requiere,
para su buen comportamiento, el conjugarla con integracién reducida, lo que en principio
conduce a matrices de rigidez deficientes en rango. Se deduce una componente de la rigidez,
que es funcién de la posicién y a la que se denomina, por tanto, geométrica, que al tiempo
que elimina la deficiencia en rango, permite obtener modos de oleaje (de baja frecuencia),
a volumen constante. La formulacién obtenida se generaliza a 3D donde es preciso eliminar
modos espiireos adicionales, penalizando no sélo las rotaciones, como en 2D, sino también sus
derivadas espaciales, es decir, las componentes de la torsién.

SUMMARY

A finite element, formulated in terms of nodal displacements, for analysis of fluid-structure
interaction problems, is presented. Such formulation, in the case of unconfined fluid, i.e., with
a free surface, requires, for a correct behaviour of the element, to be used in conjunction with
reduced integration, which leads to a rank deficient stiffness matrix. A position dependent
component of the stiffness is obtained which, in addition to eliminating rank deficiencies,
allows for calculation of low frequency, constant volume, sloshing modes. This formulation
is generalized to 3D, where additional spurious modes have to be restricted, which can be
accomplished by pena.hzmg not only the displacement rotational components as in 2D, but also
their space derivatives, i.e., the displacement torsional components.

INTRODUCCION

La resolucién de problemas dindmicos con interaccién fluido-estructura ha
despertado gran interés desde tiempo atras. En principio, y durante largos afios, la
consideracién de una masa afladida en la superficie de contacto sélido-fluido se considerd
adecuada para la resolucién del problema’.

Las hipdtesis simplificativas introducidas en la teoria de Westergaard (fluido
incompresible, longitud infinita de embalse, muro de contacto vertical, etc) hacen del
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procedimiento una herramienta ttil pero ciertamente conservadora. Con el desarrollo
de los métodos de elementos finitos, el empleo de una masa afiadida en representacién
del liquido parece incongruente con la sofisticacién del resto del modelo, en el que
incluso se modeliza el suelo con vistas a la consideracién de la interaccién de éste con
la estructura.

Al tratar de desarrollar y formular elementos finitos adecuados para modelizar
el comportamiento del fluido, la tendencia mayoritaria ha sido la de expresar
el comportamiento del fluido en términos de la presién como incdgnita en los
nodos (formulacién euleriana), con el grave inconveniente de su incompatibilidad
con los elementos representativos de la estructura, formulados en funcién de los
desplazamientos nodales (formulacién lagrangiana).

El acoplamiento de los sistemas de ecuaciones planteadas independientemente para
el fluido (incégnitas: las presiones) y la estructura (incognitas: los desplazamientos)
resulta en mayores esfuerzos de cdlculo y, en cualquier caso, no es de facil introduccién
en un programa general de elementos finitos,

Recientemente, Olson y Bathe? y Wilson®, acometieron la tarea de desarrollar una
formulacién en desplazamientos, con vistas a obtener elementos facilmente incluibles en
la biblioteca de elementos de cualquier programa de calculo estructural. Mientras los
primeros reconocen las dificultades encontradas en la resolucién de problemas cuando el
liquido no esta confinado, es decir, cuando presenta una superficie libre, lo que les hace
pasar en un articulo posterior a la formulacién basada en potencial de velocidades?, el
segundo® afirma haber tenido éxito. Sin embargo, la exposicién del método conduce a
una formulacién claramente deficiente en rango en 2D, La expansién a 3D, justificada en
base a unas consideraciones tedricas pero no desarrolladas, resulta asimismo en matrices
singulares con las que el problema, o bien es irresoluble, o bien ~—si para obtencién de
frecuencias se dispone de un algoritmo que permita salfar sobre las frecuencias nulas®—
resulta caro de ejecucién y con el riesgo de polucién de la respuesta por los modos de
vibracién espireos, asociados a dichas frecuencias nulas.

En el presente articulo, y siguiendo la senda iniciada por Wilson y Bathe, se
desarrollan paso a paso y con rigor matematico elementos isoparamétricos de 4 nodos en
2D y de 8 en 3D validos para andlisis tanto de interaccién fluido-estructura como para
problemas de oleaje en dominios fluidos. Se emplea formulacién en desplazamientos
y se recurre definitivamente a integracién reducida y penalizacién de deformaciones,
obteniéndose unos elementos no singulares y que superan con éxito el criterio de la
parcela (patch-test).

FORMULACION EN 2D

Sea el elemento isoparamétrico de 4 nodos, representado en la Figura 1, Siguiendo
la notacién estdndar en teoria de elementos finitos® se tiene que, dentro del elemento,
el eampo de desplazamientos se puede expresar:

u=H ug (1)

donde u? = {u,v) es el vector desplazamiento en un punto genérica uf =
3 3 0
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{uy v1 us...v4}, €l vector de desplazamientos en los nodos.
La matriz :

Hz(hlo ha 0 h30 h40)

Ohy Ohy Ohs O hy (2)

tiene por elementos las funciones de interpolacién bilineal h;, funciones bilineales que
cumplen

hi(P;) = 6;; A (3)
donde P; representa al vértice j del elemento.

y’v‘k

Figura 1. Elemento isoparamétrico de 4 nodos (IJKL, indeformado; I'J'K’'L,
deformado)

Es bien sabido que la matriz de rigidez de este elemento viene dada por la expresién
K:fBT-C-BtdQ (4)
o

en la que () y ¢ son el drea y espesor del elemento, C es la matriz constitutiva que
relaciona tensiones o y deformaciones ¢:

oc=Ce (5)

y B, es el resultado de aplicar a H el operador diferencial matricial L que liga las
deformaciones ¢ con los desplazamientos u, es decir:

e=Lu=LHu,=Buy, (6)

En un fluido compresible sabemos que se cumple la relacién
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Ap
kp = — AV/V (7)

donde kg, médulo de deformacién volumétrica, es una constante; p es la presién, V el
volumen y A significa variacion.

Como el objetivo del elemento que tratamos de desarrollar es analizar el
comportamiento dindmico de un fluido inicialmente en reposo, podemos afiadir en este
caso el siguiente condicionante que ha de cumplir su campo de desplazamientos™

Vxu=0 (8)

Las dos relaciones anteriores nos permiten configurar una ley constitutiva inicial.
En efecto, en 2D:

AV Ou ov

—_— =4 — = ' 9

v oz * dy ()
y llamando simplemente p al incremento de presién (considerado positivo al aumentar
ésta) de (7) se obtiene:

p=kp - € (10)

ademas,

Ou v
|Vxul=|g - 5]=" (11)
donde hemos introducido el simbolo r, para la componente rotacional de la deformacién -
elemental. La condicién (8) nos dice que r, debe ser nula. Hemos de recurrir a una
formulacién tal que penalice este tipo de deformaciones. Para ello, suponiendo que
existe una cierta componente de la tensiéon m,, sobre cuya naturaleza no especulamos
por el momento, que es causa de 7, entre ellas habrd una relacién.

m,=Cr, (12)

donde C es una constante. Pues bien, se se adopta un valor de C suficientemente grande
(teéricamente infinito), el valor de 7, se constrifie automaéticamente a cero®, Esto es
lo que en la literatura especializada se conoce como método de penalizacién®. Es bien
sabido que en elementos finitos valores muy altos pueden causar problemas. Como a
nosotros lo que nos interesa es no tanto que 7, sea 0 como que sea algunos érdenes-de
magnitud inferior a e, necesitamos una constante C' grande relativamente a kg. Por
ello, y siguiendo a Wilson®, hacemos

C= Pe - kB (13)

donde p. es un valor suficientemente grande y, haciendo
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~{2)

=) (15

hemos conseguido una ley constitutiva del tipo (5), donde

(ks O
= { 0 Peks} ()
Es facil ver que para la & adoptada (ver (9) y (11)) el operador diferencial L se
podra expresar
o) ad
L=(9% %
= a@_ 9 (17)
y Oz _
y, de (6) se deduce, entrando con (17) y (2)
h1 hl hgz hg s hg h4 )
B = ( z Y Y z v 1
hly _hlz th '_h2m wi h’4y _hilx ( 8)

con lo que ya se podria obtener K por aplicacién de (4).
Denominando B; (i = 1,2) alafilai de B serd

B,
B = {Bz} (19)
y
_ r nr] (ks O B,
K = /ﬂ BT - B]] (0 oks B[ 40 (20)
(hemos supuesto ¢ = 1, como es normal en problemas de deformacién plana).

Desarrollando (2), podemos escribir

K:kaB’{-Bldﬂ+
n

+pek3fn BI - B, dQ = K¢ + p. Ka (21)
donde hemos denominado K. (matriz de rigidez a compresién) a
Ko = kg AB{ . B, dO (22)

y Ky (rigidez a rotacién) a
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Ky = ks f BI - B, dQ (23)
9]

En adelante utilizaremos la notacién K‘ para designar a estas matrices, donde j
representa el tipo de matriz (compresién, rotacnon etc) e i el orden de integracién a
emplear (i =1 6 2). En TablaIserefleja K% (i=1,2) yen Tablall K} (i=1,2) para
elementos de forma cuadrada, salvo un factor constante. Para analizar el rango de
dichas matrices se emplea una base ortogonal de vectores de 8 dimensiones. Son los
siguientes (Figura 2):

Nombre Coordenadas Carécter
b, 10101010 Traslacién pura u
o, 01010101 Traslacién pura v
?, -1-1-11111-1 Cortante
Py 0-1 010-101 Oscilacién v
b 1 0-1 01 0-10 Oscilacién u
Do 1-1-1-1-1.111 Def. a vol. constante
é. -1 1-1-11-1 11 Rotacién
¢ 1 1-11-1-11-1 Compresion

Es inmediato comprobar que:

—~ ¢, es el inico modo de energla no nula para K%
—~ ¢, es el tinico modo de energia no nula para K1

2
= @oys Poz» P son los modos de energia no nula para K¢

—  @,ysPoz» $, son los modos de energia no nula para K2

Por consiguiente, la combinacién K = KL + p. K}, produce un elemento deficiente
en rango (rango 2) que, consecuentemente, serd inestable desde el punto de vista de
calculo. ‘

La introduccién de orden de integracién 2 en cualquiera de las rigideces
componentes (o en ambas) elimina los modos ¢,, v ¢,, de oscilacion, pero con el
grave inconveniente de que ello equivale a una “solidificacién” del liquido dado que, en
la realidad, esos modos presentan una energia de deformacion mucho mas baja que la
asociada con ¢, y, en mayor medida, con el artificialmente penalizado ¢,.

Es decir, combinaciones del tipo

K = K. + p. - K%
I(=I{i.-|—p.g-1(;1
K = K2 + p. - K2

que disminuirfan la deficiencia de rango, no son admisibles para-fluidos con una
superficie libre, que debe presentar modos de oleaje u oscilacién con frecuencia muy




ELEMENTOS FLUIDOS EN 2D Y 3D 319
baja. Queda, por tanto, como rigidez inicial del elemento la definida por
K = Ki‘ + pe - Kj (24)

con el problema de la deficiencia en rango, que serd subsanada en la seccién siguiente.

Orden de integracién = 1

Orden de integracién = 2

I o=t 14 8 4 =i 4 3 <4 3 -2 =3 2 =3
1 4. =1 ) <l <t 4 eg I & =3 Z3 52 9 4 \
-1 -1 1 -1 1 1 -1 1 -4 -3 4 -3 2 3 -2 3 \
| 1.1 -1 1 -1 1 14 [ 3 2 -3 4 -3 -4 3 -2 |
1 o-1 §-f 1 1 <1 1 ‘ <2 <% 2 3 4 3 4 § i
-1 -1 1 -1 1 1 -1 1 -3 -2 3 -4 3 4 -3 2 ;
1 3-<4 i< =& 4 =1 V2 3 22 3 4 3 4 -3 f
-1 -1 1 -1 1 1 -1 1 \—3 4 3 -2 3 2 -3 af
Tabla I. Matrices K, en 2-D
Orden de integracién = 1 Orden de integracién = 2
1 -1 1 P owie b =L =t 4 -3 2 3 -2 3 -4 -3
W 1ok =l 3 o=k 3 2 8§ 4 8 -4 § 4 3 2
1 -1 1 L -1 1 -1 -l 2 -3 4 3 -4 3 -2 -3
1 -1 1 1 -1 3 -1 -1 E I3 -4 3 4 -3 2 -3 -2 |
O T A T i [22 3 4 <3 2 %3 2 3
1 -1 1 1 -1 1 -1 -1 3 -2 3 2 -3 4 -3 -4
-t 1 -l -1 1 -1 1 1 -4 3 -2 -3 2 -3 4 3
-1 1 -1 -1 1 -1 i 1, -3 2 -3 -2 3 -4 3 4
Tabla II. Matrices K en 2-D

PROBLEMATICA DEL ELEMENTO LIQUIDO

Emn el apartado anterior, hemos visto que 4 modos, que han de ser necesariamente
restringidos (@,y, Pogs Pss ¥Pe, )» Presentan energia de deformacién nula ante la rigidez
definida por (24).

Analicemos, desde un punto de vista intuitivo, lo que ocurre en realidad.
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N
r ]

Box

@r @c

Figura 2. Base ortogonal del espacio de 8 dimensiones al que pertenece el vector
deformacién 2D

-~ La deformacién a volumen constante es algo consustancial al comportamiento de un
fluido. Todo fluido, por el hecho de serlo, presenta tendencia a dicha deformacién,
lo que fuerza a mantenerlo dentro de un recipiente.

— Una vez retenido, se imposibilita el que se produzca ese tipo de deformacién. En
dicho caso, el fluido presenta una superficie libre horizontal.

— Al encontrarse el fluido retenido en el interior del recipiente, se desarrolla una
presién hidrostética en su interior, cuyo valor depende de la profundidad (es
directamente proporcional a ella).

- La experiencia nos dice que la tendencia a deformacién a volumen constante es
tanto mayor cuanto més cerca nos encontramos de la superficie, es decir, cuanto
menor sea la presion hidrostatica.

Recordando que la deformacién volumétrica en 21D es

Ju v
Bz B (9)

e =

e introduciendo la notacién
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0 0

0

Al p—
ev 6221.

dzi  Ozi

donde cv significa “a volumen constante” y Av “con variacién de volumen”,

e __3_u| +3_1)=
T 9z lew 3y

Av

=0 (25)

cv
es decir,

My =9

33 !cu - ay lev : é—c” (26)

El Principio de Pascal implica que

9z law Oy lav — Qzi

du ] dv | duz

. (27)

y se cumplira, teniendo en cuenta (26) y (27)

y, por tanto

bop = = (7 = =— (28)
es una medida de la deformacién a volumen constante.
Volviendo al razonamiento intuitivo anterior, se tiene que
si pu(= vh) -0, 8oy — 00
si pu(= 7h) - o0, by — 0 (pw simboliza presién hidrostatica)
por lo que escribiendo

g =7 -h - by (29)

aparte de ser consistentes con los razonarmientos anteriores, introducimos una nueva
relacién constitutiva. En efecto, haciendo en (5)

o" = {p,m.,q} (14

8" = {e,tubn} (15")
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serd la nueva C

kg 0 0
C = 0 peks O
0 0 ~h

El operador L se ve aumentado en una nueva fila, quedando

2 ok
335 dy
L= dy —365

1 0 10
2 9z 2 dy/

lo que origina una tercera fila, B3, en B

1 1 1 1
B; = (*2‘ hyz, — §h1y: é-hz:n---_ 2 4y)

y la rigidez del elemento resulta

K = K¢ + peKr + 7hmKsg
donde

Kazfnsg-mdn

(16)

(17)

(30)

(31)

(32)

¥ hm es la profundidad media del elemento. En la Tabla III se incluyen las expresiones
de K*, para 6rdenes de integracién 1 y 2. Procediendo de modo similar a como se hizo

anteriormente con K. y Ky, resulta que

-~ ¢@,, es el inico modo de energia no nula para K},
~ @oyrPox ¥ $e, son modos de energia no nula para K2

"Orden de integracién = 1 Orden de integracién = 2

-3 -4 -3 -2 3
2 3 4 3 -4
3 4 3 2 -3
2 3 4 3 -4

1 -1 -1 -1 -1 1 1 1
/—1 X 3 1.1 -1 -1 -1
.’ )

i1 1 1 1 1 -1 -1 -1
i -1 1 1 1 1 -1 -1 -1 3 2 3 4 -3
-2 -3 -4 -3 4
-3 -2 -3 ~4 3
-4 -3 -2 -3 2

Tabla III. Matrices K en 2-D

2
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Por tanto, la matriz

K = K¢ + p.K} + vk, K2 (33)
tiene rango 5 y no “solidifica” el fluido.
Queda un sexto modo, @,, por restringir. Sabemos que en los fluidos
T = py (34)
donde

@ ov

7:6y+5$ (35)

relacién que aumenta una vez mds la relacién constitutiva (5). Haciendo ahora

o" = {p,ms,g,7} (14
e’ = 4e 07} _ (15")
con
ks 0 0 0
- 0 ,Pe.ks 0 0 o
C = e < 0 (1_5 )
(SIM) p
serd por tanto
o) o)
Jz oy
£ -4
— Y z
L = s 36' 1.0 (17"
2 g 2 3?
0 g
9y 0z /) —
y aparece una nueva fila B4 en B
B4 - (h]y h;r hzy .. h4m) (36)
y definiendo la rigidez a cortante
Ks = / B « B, dQ (37)
Q

podremos expresér la rigidez total

K = Ki + pKi + 7hm K& + pKi (38)
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donde se ve que introducimos directamente la rigidez a cortante con orden de integracién
1 dado que, con ese orden de integracién, el tnico modo de energia no nula es
precisamente el inico que quedaba por restringir, es decir, ¢,.

En el Apéndice A, el lector puede encontrar una deduccién mads rigurosa de la
matriz K.

COMPROBACION DE LA CONVERGENCIA DEL ELEMENTO

Siguiendo a Taylor y otros®, la condicién necesaria y suficiente para que el elemento
sea convergente y que la respuesta sea tinica es que supere con éxito el denominado
criterio de la parcela. Para que el tamarfio de la parcela sea irrelevante hay que tomar
como constante el valor de h en la ecuacidn constitutiva (16'), tal como se hizo en (31),
sacando el valor de h,, (profundidad media) fuera de la integral. Hacemos hincapié en
esto pues el valor de h no ha de ser necesariamente sacado fuera de la integral (32).
Hecha esta salvedad, se prepara una parcela de elementos del tipo de la Figura 3. El
test completo supone tres pasos sucesivos a los que Taylor y colaboradores denominan
respectivamente como tests A, B y C, que consisten en: -

— Si se somete a la parcela a un campo de desplazamientos lineales arbitrarios, del
tipo

u = Az + By + C
v = De + Ey + F _ (39)

imponiendo esos desplazamientos en todos los nodos (exteriores e interiores), en
los nodos interiores se producirdn fuerzas nodales nulas (test A),

—~ Imponiendo los desplazamientos (39) exclusivamente a los nodos de frontera (todos
menos el nodo 5 en nuestro caso), los desplazamientos obtenidos en los nodos
interiores cumplen la ley del campo (test B).

- Finalmente, para fuerzas aplicadas en los nodos frontera, consistentes con las
tensiones-constantes a que dan lugar en el dominio los campos lineales de
desplazamientos, los desplazamientos obtenidos en los nodos de borde e interiores
cumplen con la ley del campo, sin mas que suponer un minimo de condiciones de
borde esenciales para impedir las deformaciones de cuerpo rigido (test C).

Nétese que las tensiones consistentes con cada deformacién son del tipo indicado
en la Figura 4. Asimismo, el minimo de condiciones esenciales a aplicar en e] test C
son 2: un desplazamiento z y otro desplazamiento y en el mismo o distinto nodo,

Podemos afirmar que el elemento propuesto supera con éxito el test. Sin embargo,
la realizacién del test es importante no sélo como técnica de comprobacién de que la
transcripcién al ordenador de la formulacidn es correcta, sino porque nos permitira
analizar en cada caso los problemas numéricos que presenta la aplicacién practica del
elemento y que serdn objeto de una seccidén subsiguiente.
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Figura 3. Malla empleada para “patch-test”, en analisis de convergencia en 2D

- 1= F \
_ — \
- e - \\ \ r >\
big -- \ 1
- — \\//"’
bbb -~
p=Kg e m = Py Kg'r

g
/ ! # ~ e
o fl ==
/& - IR
==
Zx,=,u-‘€,‘, g:= T.h-J

Figura 4. Tensiones consistentes con los desplazamientos para test C.
GENERALIZACION A 3 DIMENSIONES

Una vez obtenida una formulacién adecuada para el elemento de 4 nodos en 2D, el
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camino queda abierto para su extrapolacién a 3D.
La deformacién volumétrica viene ahora dada por la expresién

du v ow
e= % =+ o 40
oz ¥ Oy * 0z (40)
y su relacién con el incremento de presién viene dado de nuevo por la expresién (10),
que constituye la primera relacién constitutiva.

El rotacional tiene ahora 3 componentes

_ o
= bz By
Sw Ou
_ dw ou 4
"y Oz Oz &)
_ou b
5 = Oy dz

Para constrefiirlas —recordemos el cardcter irrotacional del movimiento para estado
inicial en reposo—, usamos de nuevo un penalti en las relaciones que las ligan con las
correspondientes componentes tensionales mg, my y m;:

my = C -rp 1= 2,y2 (42)

donde C es el coeficiente de penalizacién o valor suficientemente grande para restringir
r;. Tal como se hizo en 2D, al interesarnos un valor C grande con relacién a kg,
aplicamos de nuevo la relacién (13), con lo que

C:pe'kﬂ

m; = Pe - ky + 7 (43)

constituyen tres nuevas relaciones constitutivas.
La deformacién por cortante presenta, asimismo, tres componentes;

=gl b
1, =2a,y,2
”w (44)

Las tensiones tangenciales estan ligadas con las deformaciones a través de la
viscosidad

Tii = WYij - (45)
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lo que da lugar a tres nuevas relaciones constitutivas. Haciendo

T
g = {P| Mgy My Mz, Toy, Tyz;sz} . ) (46)

T

T = {e,rz,ry_,rz,'rzy,‘ryz,’rzz} (47)

y teniendo presentes (10), (43) y (45), vemos que la matriz C de (5) es ahora

C = dia'g (kBa pekﬂspekﬂmpekﬂa ey :u') : : (48]
Para formar la rigidez, y habida cuenta de que para el elemento de 8 nudos en 3D
es :
' hy 0 0 ... hg 0 O '
H= |0 A 0 ... 0 hg O (49)
0 0 hy ... 0 0 hg

y de que, de acuerdo con (6) y (47), la matriz L serd (ver (40), (41), y (44)):

[ % aiz\
dy
&

8

-
1l
S o Sl o
|
L Sk o Shoe

podemos aplicar (4) una vez obtenida B como una matriz 7 X 24 igual al producto
L - H. Si la descomponemos por cajas en:

B; (1 x 24))
(51)

B(7x24) = (B2 (3 x 24)
B3 (3 X 24)

de la aplicacién de (4) resulta:

K = ks [ BI - Bidy + pks [B] - Bady + p | BY - Bady  (52)

donde, denominando
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RIGIDEZ A COMPRESION : Ko by f BT . Byd, (53)
RIGIDEZ A ROTACION : Kr = ks f BI . B,d,  (54)
RIGIDEZ A CORTANTE : K. = f BT . Bud, (55)

podemos escribir:

K = K¢ + pe - Krn + pKs (56)

La novedad introducida en el andlisis en 2D, la componente geométrica de la rigidez,
ha de ser evaluada. Para ello, es preciso obtener expresiones para la deformacién a
volumen constante. Usando la notacién anteriormente introducida se tiene:

T T TR (I
€= 33|AV * am|cv % 6y|AV By‘GV T fzlav T 8y L:'V (47)
donde, por definicién, sera:
Buy v ow
§;|CV 8_y!CV T ozlev T 0 (56)
¥y, por el principio de Pascal,
by =2 o ?_‘E| = & 59
dzlav — Qdylav dzlav — 3 (59)
de donde, dado que
3u; 3“,‘ 8u,: i
dzilov = Bz Gmlav T DY (£0)
sera
oy = ¥.B08 Ldu Lo
dzlev — Oz 3 3 0= 3 dy 3 9z
dylev 3 Oz 3 0y 3 0z
goy . o Aem  LOw 20w
3z|cv_ T 7308z 303y ' 30z

que permite generalizar a 3D la expresién (28)



ELEMENTOS FLUIDOS EN 2D Y 3D 329

o5 = 0w _ Oy _Ou v
ev: 83\01/ dylev ~— 8z 8y
v Ow v dw
g O ewr v W 61
20 3y|GV 0z |CV dy 0z (61)
T T -
o dz icv dzlcv 0z Oz

y, estableciendo, tal como se hacia en 2D

g = vhéL, i = 2,Y,2 (62)

tenemos 3 nuevas relaciones constitutivas, que aumentan C en 3 filas, sin dejar de ser

diagonal (los elementos adicionales son iguales cada uno de ellos a yh). Asimismo, la
matriz B pasa a ser '

B = B, (63)
B4(3 x 24)

donde B; (¢ = 1 a 3) son las ya definidas y

By =Ly - H (64)
habiendo de ser la matriz L4, de acuerdo con (61)
a
1 6% ) a’a5 aO
L4 = 5,' 0 B“:‘; - B; (65)
g 0 2
z dz

con lo que, aplicando (4) y recordando (56), resulta

K = K¢ + pKr + pKs + 7o - Ko (66)

con

y, tal como se hizo en 2 D, se extrae el término h fuera de la integral a base de sustituir

h por su valor medio en el elemento, aunque esta sustitucién no sea estrictamente
necesaria.

Adoptando, en principio, los mismos érdenes de integracién ya empleados en 2D,
serd

K = K, + pK} + pK; + 7hn - K2 (68)
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Probaremos cada una de las componentes de K para analizar posibles deficiencias
en rango, con la base formada por los vectores de las Figuras {5a, b y c), que tienen la
ventaja de tener una sola familia de coordenadas desigual a 0'°.

He aqui los resultados de la prueba:

a) Componente KL

Los tinicos modos de energia no nula frente a KL son X, Y3 y Z;, de los que es
ficil obtener:

Ve = X3 — Y3 — 24 :  compresion uniforme
Vie = 2Y3 + xo — Z; | volumen constante (hourglass)
Vi, = 2X, + Y3 + Z; | (Figura6)

que cumplen

Ve k 0 0
Vi, Kb [VLVELVEY = (0 00
Vi, 00 0

es decir, KL tiene rango 1 y constrifie (da energia) a 3 de los modos bésicos del espacio
de 24 dimensiones.
b) Componente K},

Hay 6 modos basicos de energia no nula (X1, Xs,Y1,Y3, 2, Z3). Haciendo
R:L.:Z;;—Yl S:,;:Z3+Y1
R,=2Z; + Xy S: =23 - X4 (Figura 7)
Rz:Yz-i-X;; Sz=Y2—X3

se puede ver que los R; son vectores rotacion, segun los 3 ejes, asi como los S; son
vectores de deformacién a cortante, segin los 3 planos coordenados. Pues bien,

¢, - KL - ¢% = diag (X,K,K,0,0,0)

donde

¢R = (Rz)RyaRz;Sx:Sya Sz)

Por tanto, K}, tiene rango 3 y constrifie a 6 modos basicos distintos a los 3
constrefiidos por KL (total de modos constrefiidos: 9).
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J, X

Figura 5,(a) Base ortogonal del espacio de 24 dimensiones al que pertenece el vector
deformacién en 3D. (a) Vectores con componente X

¢) Componente K1
Aqui, el producto

¢,  Ki - ¢F = diag (000 K K K)

con los que el rango de K aumenta en 3, aunque los modos constrefiidos siguen siendo
los 9 obtenidos anteriormente.

d) Componente K2

Los modos con energia no nula son:

Xy Sy 8y 5y e 1 Tatnilia X
Y3 Ty Ts Ty dela familia Y
Zy Uy Uy Uy de la familia 2
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Figura 5.(b) Vectores con componente Y

Es decir, K% constrifie 9 modos més (hasta un total de 18) dado que X,,Y3 y Z;
ya estaban constrefiidos por KL. A este respecto, los 2 modos combinados V. y V2,
que habiamos obtenido anteriormente, cumplen

V}:IG'KE:'V}IT#O

G
Vi - Ko - Vig # 0

Vie - Kb - VI, = 0

con lo que, como era de esperar, K2 elimina la deformacién (hourglass) a volumen
constante.

El problema es que quedan 3 modos (aparte de los traslacionales puros) que siguen
teniendo energia nula ante K. Dichos modos son S;, T1 y Uz que se puede ver (Figura
5) que son modos torsionales



333

ELEMENTOS FLUIDOS EN 2D Y 3D

z2

Ut

48

/

P S—

Z3
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u4

~d

Figura 5(c) Vectores con componente Z

2
HG

Vectores Vg; VL y V

Figura 6.
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Figura 7. Vectores R; y Si(i = z,y,2)

S,,de las caras + z y las caras ¥

T,,de las caras + 2 y las caras * 2

Us,de las caras +y y las caras + 2

cuya energia nula ante K1 se explica porque, al usar en ésta orden de integracién 1,
los planos restringidos son los planos medios del cubo que precisamente, para estos 3
modos, permanecen indeformados.

Las componentes de la torsién seran:

Ory

Ve, Oz

_ Ory
8!»‘ - 3,9, (69)

ar,

y & 0z

Habfamos procurado constrefir (via el coeficiente de penalizacién pr) las
componentes de la rotacién. La conveniencia de emplear integracion reducida nos
impide restringirlas de hecho més que en los planos medios. Pero de 7y = ry =7, =0,
en todo el dominio, por (69) se deduce que, asimismo,

b = 0, = 0. =0 (70)

lo que sugiere eliminar las componentes de la torsién con orden de integracién 1 y por
medio de un coeficiente de penalizacién.

De (69) y (41) se tiene:
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N 4

s Pt
' s2 / B s3

Figura 5.(a) Base ortogonal del espacio de 24 dimensiones al que pertenece el vector
deformacién en 3D. (a) Vectores con componente X

¢) Componente K}
Aqui, el producto

¢, - Ki - ¢% = diag (000 K K K)

con los que el rango de K aumenta en 3, aunque los modos constrenidos siguen siendo
los 9 obtenidos anteriormente.

d) Componente K%

Los modos con energia no nula son:

Xz Sl 53 Sq de la familia X
Y;; Tg T3 T4 de la familia Y
Zy Uy Uy Ug de la familia Z
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Figura 5.(b) Vectores con componente ¥

Es decir, K2 constrifie 9 modos mas (hasta un total de 18) dado que X,,Y3 y Z;
ya estaban constreiiidos por K¢. A este respecto, los 2 modos combinados Vi, y V2,
que habiamos obtenido anteriormente, cumplen

Vie - KL - VI £ 0

G
Vie - Kg - Vi # 0

VLG'KZ'V?J'I;;:O

G

con lo que, como era de esperar, K2 elimina la deformacién (hourglass) a volumen
constante.

El problema es que quedan 3 modos (aparte de los traslacionales puros) que siguen
teniendo energia nula ante K. Dichos modos son S, Ty y Us que se puede ver (Figura
5) que son modos torsionales
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Figurd 5(c) Vectores con componente Z

2
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Vectores V¢; VL, y V

Figura 6.
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Figura 7. Vectores R; y S;(1 = z,9,2)

S,,de las caras + z y las caras + y

T,,de las caras * z y las caras =+ z

Us, de las caras + y y las caras t 2

cuya energia nula ante KJ se explica porque, al usar en ésta orden de integracién 1,
los planos restringidos son los planos medios del cubo que precisamente, para estos 3
modos, permanecen indeformados.

Las componentes de la torsién seran:

Org
= Be
ar
g, i g
or,
b2 Oz

Habfamos procurado constrefiir (via el coeficiente de penalizacién pp) las
componentes de la rotacién. La conveniencia de emplear integracién reducida nos
* impide restringirlas de hecho més que en los planos medios. Pero de r, =ry =7, =0,
en todo el dominio, por (69) se deduce que, asimismo,

lo que sugiere eliminar las componentes de la torsién con orden de integracién 1 y por
medio de un coeficiente de penalizacién.

De (69) y (41) se tiene:
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g v 8w
T 020z 0zdy
8w Oy
g, = - 71
Y Oyoz 8ydz (71)
o - 8%u 8%
T 920y dz0z
Es decir,
0 = Ly -u =Lg- Hu, = By u, (72)
siendo
0 ok _ 8
\ 0z0z 0z0y
s o4 9
Ly = | — g5z ¥ (73)
62 32
0z0y =~ 0z0z 0
y By es una matriz 3 x 24 -
Por tanto, haciendo
Ki = ke / BI - By dv (74)
resulta, teniendo en cuenta (66)
K = K, + peKR — ,U,Ks -+ ‘)’hm-KG B pt-Kg (75)

donde p, es el coeficiente de penalizacién adecuado a la restriccién de torsiones y cuyo
valor analizaremos en breve (Se ha asumido una nueva relacién constitutiva

= ks 6 i = 2,92 (76)

y se ha convertido el coeficiente de penalizacién en un nimero p; veces mayor que k).
Si analizamos el rango de K; frente a los 24 vectores basicos resulta, en efecto, que
los 1inicos con energia no nula son los deseados, es decir, 55,77 y Us, con lo que ante

K = Ki + pKy + pKi + vhaKZ + pK; (77)

los 1inicos modos de energia nula son los puramente traslacionales (TX,7Y y TZ,
Figura 5). Sin embargo, el rango de K, es simplemente 2, lo que originard ciertos
problemas que se analizan en un apartado siguiente.

Dado que la energia desarrollada por un modo R (ante K}) es del orden de 50
veces mayor que la desarrollada por S, Ty y Us ante K}, el valor de p;, que surtird el
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mismo efecto de apartar las frecuencias esptreas del rango de las de compresién, ha de
ser necesariamente unas 50 veces mayor que el de p,:

pe = 50 pe (78)

PROBLEMAS NUMERICOS

La teoria anterior, impecable desde un punto de vista analitico, tropieza con las
limitaciones del tratamiento numeérico-informatico que ha de hacerse de ella.

Se han desarrollado formulaciones de la rigidez de fluidos en 2D (38) y en 3D
(77), con respectivamente 4 y 5 componentes, de las que en cada caso s6lo una puede
considerarse “ordinaria” en el sentido de que las magnitudes de sus elementos son
comparables, del orden de magnitud, a las de otros elementos estructurales. El resto de
las componentes matriciales podrian ser calificadas de “extraordinarias” o anormales.

Para complicar atin més las cosas, las hay anormalmente (y artificialmente) grandes
a causa de los coeficientes de penalizacién, como son p. - K} en 2y Dy p; - K} en 3D,
mientras que otras son anormalmente pequenas uKL (por el valor intrinseco de y) y
yhKZ (tanto por el valor en general de yh como en particular para h — 0). Ahora
bien, normalmente los modos de oleaje no son de interés en analisis dindmicos normales.
Esto nos permite recurrir al siguiente truco:

K = K. + p.(K} 4+ 50K}) 4+ »(K. + K2%) (79)

donde hemos sustituido g y vh, en (77) por , siendo el significado de esta nueva
constante el de una micropenalizacién cuyo objetivo seria alejar las frecuencias de
oleaje a volumen constante lo suficiente del rango de frecuencias de compresién en
el que estariamos interesados, sin que se produzcan problemas numeéricos; eso si, al
coste de perder la precisién en dichas frecuencias.

Sin embargo, si en las frecuencias en que estuviésemos interesados fuesen
precisamente las de oleaje, el truco seria:

K = KL + K} + 50K} + vhn -KZ 4 uK} (80)

La penalizacién p, desaparece (K} y 50 K} ya estdn suficientemente penalizadas
por k) y aparecen los coeficientes auténticos yh,, y p.

Los valores correctos en cada caso y, en particular, en cada ordenador, se podrian
discutir en base al criterio de la parcela propuesto en un apartado anterior; los valores
adoptados mantendran, con la precision exigible, el éxito del test.

Para problemas normales (interaccién liquido-estructura en casos de excitacién
sismica) en un ordenador VAX, la aplicacién de (79) con p. = 1000 y = = 0.001,
usando doble precisidn, ha resultado satisfactoria tanto en 2D como en 3D.
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MODOS DE BAJA FRECUENCIA

La propia naturaleza del liquido, reflejada en esas componentes de la rigidez
afectadas por la micropenalizacién, da lugar a la aparicién de modos de volumen
constante con frecuencias asociadas bajas. Es importante conocer su nimero para
poder comprobar que, efectivamente, sus frecuencias resultan suficientemente alejadas
(por debajo) de las asociadas a modos de deformacién volumétrica.

Sea la malla en 2D de la Figura 8.a, donde empleamos L elementos en sentido
longitudinal y M en sentido vertical. El nimero de nodos sera:

(NUMNP)=(L+1) - (M+1)=L-N + L + M + 1

con lo que el niimero bruto de grados de libertad es

(NBGDL)=2LN + 2L + 2M + 2

Los 3 bordes imponen un nimero de condiciones de contorno esenciales que rebajan
(NBGDL). El nmiimero de condiciones de contorno esenciales es

(NEBD)=L +1 4+ 2(M+1) =L + 2M + 3

Por consiguiente, el niimero neto de GDL' § es:

(NNGDL)=(NBGDL) — (NEBC) = 2LM + L — 1

: SUPERFICIE LIBRE

1 L
i f 1
_,__l_...,{_l .. ;"_E,/._ Mo
b + !—- * g + NUDOS CON 2GOL
q1: ! :
i O NUDDS CON {GOL
A !
q . 2 ® NUDJS SiN GDL
O o + 4
—3-4 I el Tt 2
Ar |
U I I /.
prot 2
1”/}’ E . s
{

Figura 8. (a) Dominio rectangular L x M en 2D. (b) Dominio paralelepipédico
LxMxNen3D

Las constricciones introducidas via las componentes KL y K} de K son dos (una
de compresién y otra de rotacién) por elemento, para un total de 2L M.
Por consiguiente, el nimero de modos de baja frecuencia sera

(NLFM)=(NNGDL) — 2LM =1 — 1 (81)
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es decir, tantos como columnas liquidas haya en el modelo menos uno.

De los 2L M modos restantes, la mitad (LM ) corresponden al rango de interés.
La otra mitad presentard frecuencias relativamente altas respecto a las del grupo de
compresién. Otra cosa indicaria que el valor p, elegido es inadecuado.

En 3D, la determinacién de (NLFM) no es tan simple al no ser todas las
constricciones introducidas via rigidez, independientes de las condiciones de borde.
No haber tenido esto en cuenta lleva a Wilson y Khalvati* pensar erréneamente que su
elemento funciona en 3D. .

Sea un dominio paralelepipédico de L x M % N elementos. En ausencia de Ky, el
numero de modos de baja frecuencia es

(NLFM)=LM + L + M + N - 3 (82)

valor a todas luces excesivo dado que, en general, estos modos no interesan para el
calculo v que muchos de ellos son, ademas espureos. Definiendo Ky en la forma
consistente presentada en el texto (71-74) y recordando que la matriz asi formulada
tiene rango 2, el mimero de modos de baja frecuencia es:

(NLFM)=(L-1) + (M=1) + (L-1) x (M-1)=LM -1  (83)

donde ya no aparecen modos espureos y que son, por tanto, los auténticos modos
de oleaje. En efecto, en el dominio paralelepipédico considerado (Figura 8.b),
podemos considerar L planos medios verticales en direccién transversal y M planos
medios verticales en direccién longitudinal, planos que pueden asimilarse a dominios
bidimensionales y que presentarian, por consiguiente, M — 1 y L — 1 modos de baja
frecuencia cada uno. La introduccién de Ky reduce la independencia de esos modos,
quedando como posibles:

a) igual deformacién en todos los planos medios transversales (torsién nula en 3
direcciones), para un total de (M — 1) modos,
b) igual deformacién en todos los planos medios longitudinales (de nuevo torsién nula
en 3 direcciones), para un total de (L -- 1) modos,
¢} combinacién de modos a) y b) (torsién nula en direcciones vertical y diagonal),
" para un total de (L — 1) - (M — 1) modos (Figura 9).

Ello quiere decir que los (L + M + N — 2) modos, eliminados por introduccién
de Ky, eran espureos y surgian como fruto de ignorar el cumplimiento de (70). Como
de todas formas el valor (83) sigue siendo alto y recordando, una vez mas, que en
problemas normales de interaccién fluido-estructura estos modos de baja frecuencia
carecen de interés estructural, redefiniendo Ky no segin (74) sino a base de forzar

821..‘.5

8mj8:~:k

=0 ifi#k (84)

con lo que (70) se sigue cumpliendo, la rigidez asi obtenida (ver APENDICE B), tiene
ahora rango 3 con lo que automédticamente desaparecen los modos de oleaje tipo C,
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Figura 9. Modos tipicos de oleaje. (a) longitudinales; (b) transversales y (c) mixtos
quedando definitivamente

(NLFM)=L + M — 2 (85)

con un ahorro de (L —1) (M —1) > 0 modos de baja frecuencia eliminados.

VALIDACION Y EJEMPLOS NUMERICOS

Una vez formulados los elementos liquidos en 2D y 3D, fueron introducidos en
un programa general de elementos finitos lo que nos permitié realizar una serie de
pruebas de las que presentamos, a continuacién, las mds interesantes.

a) Frecuencias de vibracién verticales

Para un depésito con superficie libre y profundidad de liquido H, los valores de
dichas frecuencias vienen dados por la expresién'?
# 2K -1 =C

W, =

® 2 H

(86)

donde C = \/I_(B/p es la velocidad de propagacién de las ondas en un fluido con médulo
de deformacién volumétrica Kz y densidad p. Se emple6 un modelo de 640 m de altura,
modelizado mediante 16 elementos de 40 m cada uno (Figura 10.a). En la Tabla IV
se comparan los valores teéricos con los obtenidos para el modelo descrito, asi como la
evolucidn con el nimero de elementos.
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FRECUENCIAS (rad/seg}

Medo tecricas cbtenidas erLor

ne. (form. 86) i
1 3.58 3.581 PiiE
2 10.74 10.72 .28
3 17.50 17.74 .89
4 25.08 24,60 1.84
5 32.22 31.22 3.10
6 39.38 37.54 4.87
7 46.34 43.49 6.35

a) Error creciente con ordinal del modo

N\ Modo 1 2 3
\ no. )

No. de N\ frec. arr. frec. erc. Erec. erc,
elemntos \ obt. % obt. % obt. %

I oA 9.86 - =2

2 3.495 2.37 8.43 21.50 -

4 3.56% L2 10.14 5.59 15.18 15.20

8 3283 08 10.60 F.38 17.21 3.85

16 3.581 .03 1075 .28 17.74 .89

b) Error decreciente al refinar la malla

Tabla IV. Precisién de frecuencias verticales.(c = 1459.45 m/seg)

b) Frecuencias de vibracién horizontales

La realizacién de este ejemplo resulta sumamente ilustrativa sobre el
comportamiento del fluido. En la referencia’? se obtienen las siguientes expresiones
para estas frecuencias:

e _ 2K-1xC

it o EEBC (878)
2 D

donde D es el semiancho del depésito.

La primera expresién corresponde a modos antisimétricos y la segunda a modos
simétricos. Sometiendo a un modelo confinado (es decir, sin superficie libre) al
andlisis, las frecuencias obtenidas coinciden con las predichas por las férmulas (87).
Ver Figura 10.b y Tabla V. Sin embargo, la existencia de una superficie libre cambia
radicalmente las cosas. Esto puede parecer sorprendente en principio, pero no es asi.
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Figura 10. Modelos empleados en los ejemplos. () frecuencias verticales.

(b) frecuencias horizontales. (¢} caso mixto.

De la atenta observacién del método de obtencién de las frecuencias (86 y 87) en la
referencia'?, se puede ver que, de un problema en 2D, los autores obtienen dos problemas
undimensionales por separacién de variables. Una de las condiciones de contorno es que
los modos tienen coordenadas vertical 0 en la superficie superior, lo cual no es cierto
salvo que aquella esté confinada.

Es por ello que en el modelo mixto (Figura 10.c) siguen apareciendo modos puros
verticales con la frecuencias predichas por la férmula (86), pero los modos horizontales
y las frecuencias (87) dejan de cumplirse. Aparecen en su lugar frecuencias mixtas por
interaccién de los modos horizontales con los verticales (Tabla VI, b). Curiosamente,
con g (micropenalizacién de la matriz de cortante) tendiendo a un valor alto (Tabla
VI, a), se recuperan los modos puros horizontales, lo que supone una prueba adicional
por reduccién al absurdo de lo anteriormente expuesto, ya que en un liquido, g — 0.
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FRECUENCIAS (rad/seq)

Modo tipo teoricas obtenidas error
no. (form. 86) %
1 anti 7.16 7.16 .00
2 sim 14.32 14.24 .56
3 anti 21.18 21.19 .05
4 sim 28.64 27.94 2.44
5 anti 35.80 34.41 3.88
6 . sim 42.96 10.56 5.58
7 anti 50.12 46.32 7.58
8 sim 57.28 . 51.63 9.86

a) Error creciente con ordinal del modo

Modo 1 Antisim. Modo 1 Simetr.
No. de Cfrec. err. Tfrec. err.
elemntos obt. % obt. %
2 6.45 9.92 -
4 6.99 2.37 12.91 9.84
8 7.12 .56 13.97 2.44
16 7.16 .00 14.24 .56

b} Error decreciente a2l refinar la malla

Tabla V. Precisién de frecuencias horizontales.(c = 1459.45 m/seg)

¢) Frecuencias de olaje

Hemos resuelto con p, = 1, tal como se explicé anteriormente, el problema de oleaje
que se recoge en la referencia® (Figura 11) y sin extraer h,, de la ihtegral (32), con lo
que, manteniendo la nomenclatura del texto, seria

K=K2+K}z+7/;lB§-h-B3dQ+pKls (88)

El resultado, con g — 0, se recoge en la Figura 11 donde se ve una perfecta
coincidencia con la referencia® para la primera frecuencia, que es la iinica presentada
por los autores de dicha referencia. :

d) Caso tridimensional

Hemos discutido en b) la resolucién del sistema de autovalores en 2D, realizada
por Chopra. Un comentario adicional surge de la resolucién de un caso tridimensiongl:
habria, con igual razén, modos horizontales longitudinales que modos transversales. No
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FRECUENCIAS (rad/seg)

Modo caracter teoricas obtenidas error
no. (form. 86-87) %

2 vertical 21.83 - 21.66 .17
2 h-antsim 47.76 46.49 2.656
3 vertical - - 65.50 63.090 3.68
4 h~simetr 95.52 85.99 9.98
5 vertical 109.17 98.29 9.97
6 h-antsim 143.28 112.37 21.57
7 vertical 152.83 123.87 18.95
8 vertical 196.50 137.29 30.13

a) Modelo 4 x 5 con MACROpenalti en K .

S
Modo caracter frecuencias
no.{*) cbtenidas
1 vertical purc ; 21.72
2 antisimetrico 50.20
mixto hor.-vert
3 antisimetrico 61.55
mixto hor.-vert
4 vertical puro 63.11
5 antisimetrico 71.75
mixto hor.-wvert
6 antisimetrico 79032
mixto hor.-vert
7 simetrico 86.37
mixto hor.-vert
8 simetrico 89.07
mixto hor.-vert
9 simetrico 93.17

mixte hor.-vert

(*): Ordinal, ignorandc los 3 modcs de oleaje.

b) Modelo 4 x 5 con MICROpenalti en K .
s

Tabla VI. Modelo bidimensional con modos desacoplados (a) y acoplados (b). (Nétese
que la formulacién (a) es incorrecta)

podemos entrar en detalles que se escaparian del alcance de este trabajo. Solamente
- queremos hacer hincapié en que la solucién de Chopra, con la limitacién antes apuntada,
al ignorar las frecuencias longitudinales, serfa valida para longitud infinita de embalse.
En cualquier caso, la dimensién longitudinal suele ser de orden de magnitud
superior a la transversal y a la profundidad, —al menos en casos de interaccién presa-




344 A. SALMONTE

embalse-, con lo que si bien es cierto que las primeras frecuencias tienden a 0, siempre
habra un cierto K para el que los valores dados por (87) entren en el rango de influencia
de la estructura. La dimensién longitudinal ha de estar fijada, por tanto, en base a un
criterio de este tipo. Es un caso similar al de interaccién suelo-estructura: la dimensién
infinita del suelo daria frecuencia nula y, sin embargo, se adopta, bien que un poco
“aprioristicamente”, un dominio de suelo con un radio entre H y 3H, siendo H la
altura de la presa'®'®-

T
T :
s R .

:]’ | B —

; (b)
— . 5M0m

Figura 11. Modos de oleaje a volumen constante en 2D. (a) primer modo : 2.209
rad/seg. (b) segundo modo : 3.501 rad/seg.

CONCLUSIONES

Resumiremos las conclusiones del tema expuesto en los siguientes puntos:

1. Es posible la definicién de un elemento finito liquido planteado en desplazamientos,
para resolucién de problemas de interaccién fluido-estructura en fluidos confinados
totalmente o con una superficie libre. .

2. Para ello es preciso emplear repetidamente integracién reducida en los términos
penalizados, tanto los penalizados de forma natural (compresibilidad) como los
penalizados artificialmente (irrotacionalidad y atorsionalidad).

3. El problema originado por la deficiencia en rango de la rigidez obtenida con el
esquema de integracién reducida se resuelve afiadiendo una rigidez geométrica, con
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integracion normal, planteando el balance diferencial de energia de posicién ante
pequenos desplazamientos sin variacién de volumen.

4. Lo anterior permite obtener las frecuencias de oleaje, con ciertas limitaciones de
tipo numérico.

5. En la resoluciéon del problema aparecen siempre estos modos, normalmente
innecesarios, pero que se pueden reducir al minimo.

6. La vibracion horizontal de un fluido con superficie libre, no es independiente de la
vertical.

APENDICE A

Obtencién rigurosa de K

En el texto se recurre a conceptos intuitivos para la obtencién de la rigidez que
hemos denominado geométrica K. A continuacién se procede a una obtencidn mas
rigurosa de la misma.

Sea un elemento diferencial de area dfl en el interior de un dominio amplio de
fluido, de profundidad total #. En un instante determinado, la energia potencial de
dicho elemento tiene una parte convertible en otras formas de energia:

Y(H - ym) dQ (4-1)

Si la masa fluida experimenta una pequefia deformacién a volumen constante, el
elemento considerado pasa a tener una energia convertible:

Y(H — ym)dQ (1 - &) (A-1)
En efecto,

— antes de la deformacién d} = dz -dy
— después de la deformacién, segiin (26)

dz — dz (1 - %z- w) = dz(l + &)
dy — dy(1 + g—: ) = dy(i-da)

por tanto, dQ — dQ(1 — 62))
Es decir, la energia convertible ha disminuido en y(H — y,, )62, d2, energia que se
ha consumido en la deformacién a volumen constante

dE = vz, - 62,dQ (A-3)
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donde z,, = H — y, es la profundidad media del elemento que, en términos de rigidez
equivale a asociar, tal como se hizo en el texto, una tensién g = 72,6, con la
deformacién é., a volumen constante.

APENDICE B

Obtencién de Ky con rango 3

Si forzamos via un penalti adecuado a que

0%u 8%v 0w
Oydz =~ 020z Ozdy 0 . (B-1)

autométicamente se cumple la condicién (70). Para comprobarlo basta entrar con (84)
en (71). B
Definimos 3 relaciones constitutivas del tipo

¢ Ky 2% il 143 gk £ 3 B3
;= - i =143 4 i -
pt B amjamk J ( )
llamando
R B T T
: aa:jé’mk L
serad
¢ = Liu=LH-u = Beu, (B -3)
32
ao: 0 O
8% i
=10 & ° (&=
0 0 Sﬁb_m 7
lo que nos permite redefinir Ky
& = B fB?-BE-dv (B -5)

matriz.con rango 3 y perfectamente sustituible en (75) al no afectar nada mas que a
los 3 modos torsionales S5, Ty y Us.
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