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ABSTRACT

To overcome difficulties such as non-stationary vibrations, high-
dimensional feature redundancy, and mode selection issues that may
arise during signal decomposition in bearing fault diagnosis. We propose
an adaptive method called Adaptive Variational Mode Decomposition
(AVMD) for extracting time-frequency domain characteristics from the
bearing vibration displacement signals to the maximum extent possible.
Next, the ReliefF algorithm is employed to select desired features, and
an autoencoder is used to reduce the selected features dimensionally.
Furthermore, because the Hunter-Prey Optimisation (HPO) algorithm
can balance multiple objectives during the search process by utilising the
concepts of hunter and prey to generate a better solution set, incorpo-
rating this algorithm into the Deep Belief Network (DBN) establishes an
HPO-DBN fault diagnosis model. Subsequently, we validate the proposed
method using both public datasets and field compressor data. Moreover,
we compare the results with those obtained from the Support Vector
Machine (SVM). The findings indicate that this approach enhances the
bearing fault identification rate, thus supporting predictive maintenance
of bearings.
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1 Introduction

Rolling bearings are sophisticated mechanical components that transform sliding friction between
a rotating shaft and its housing into rolling friction, thereby reducing frictional losses [1]. The failure
of rolling bearings, a crucial component in contemporary industrial production, can have a profound
impact on equipment safety and the efficiency of industrial manufacturing. Damaged rolling bearings
or those with reduced reliability often constitute the primary causes of rotating machinery failures,
accounting for approximately 30% of total failures [2].

In 2000, a major safety accident occurred in the Three Gorges Project in the Yangtze River,
resulting in three fatalities and 31 injuries. The accident investigation report indicated that the cause
of the accident was the incorrect use of bearing models, leading to bearing damage [3]. In 2005, a
bearing failure in a large industrial fan in Miami, Florida, caused the entire fan to suddenly lose
control, detach from its base, and collapse [4]. In 2010, a centrifugal blower bearing failure occurred
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in a chemical plant in Zhuhai, Guangdong Province, China, triggering the high-speed rotation of the
blower. Because the blower cannot be shut down, the blower casing eventually ruptured, releasing
high-temperature gas and chemicals, resulting in multiple personnel injuries [5]. In 2014, an engine
bearing failure at an aircraft engine maintenance centre in Frankfurt, Germany, caused the engine to
abruptly come to a halt during taxiing, leading to an emergency situation [6]. During a drill in 2018,
the inaugural vessel of the United States Navy’s new generation Ford-class nuclear-powered aircraft
carrier encountered severe mechanical issues. These problems included a major failure in the main
propeller bearing. Consequently, the entire exercise had to be suspended, leading to substantial losses
in the military-industrial sector’s economy [7].

The above examples provide clear evidence regarding the importance of conducting further
research on bearing fault diagnosis. Such research is crucial for ensuring the secure operation of diverse
mechanical equipment.

In the year 2014, Wang and colleagues described the Fault Characteristic Order (FCO) Analysis
method for diagnosing rolling element bearing faults in the journal Mechanical Systems and Signal
Processing. However, they did not employ advanced signal processing methods to extract faults
more effectively. In the presented work, the AVMD-based feature extraction method is integrated
with HPO-DBN to enhance the diagnostic accuracy and robustness through varying operation
conditions [8]. Li and Wang suggested the Filtered-Waveform Variational Mode Decomposition
(VMD) to extract the rolling bearing fault features in Entropy in 2025. Although VMD successfully
improved the separation of fault features, it did not incorporate deep learning models for real-time
fault detection. The provided work demonstrated a feature extraction method that employed VMD,
but the proposed method incorporated an HPO-DBN to yield a much more favourable sensitivity
and accuracy, and it adapted well to complexitiesassociated with fault signatures [9]. In 2009, Liu
et al. introduced Empirical Mode Decomposition (EMD) as a method for diagnosing bearing faults
[10]. However, they did not take into consideration the issue of mode mixing that may occur during
its practical application. In 2014, Dragomiretskiy introduced the Variational Mode Decomposition
(VMD) method in the IEEE [11]. Since then, VMD has been extensively utilised by numerous
scholars in the field of bearing fault diagnosis. In the domain of automation, the VMD technique has
demonstrated sensitivity to noise and the requirement for manual parameter adjustment. To address
these issues, Salakutdinov et al. achieved this by optimising and configuring VMD parameters using
neural networks. However, the actual results were not satisfactory compared to the expected values
[12]. The combination of data fusion and deep learning methods, as proposed by Dinesh Kumar Reddy
Basani, has been successfully implemented in this project using AVMD and HPO-DBN for bearing
fault diagnosis. This implementation improves both the accuracy of fault detection and real-time
monitoring of the bearing system. In addition, the combination is potentially more efficient in terms
of computational effort, providing a deeper and more accurate analysis of bearing conditions, unlike
Panga’s system [13]. Yin et al. transformed one-dimensional time series vibration signals into three
different time-frequency domain representations. These representations were fed into the diagnostic
network [14]. However, during the network computation process, it was discovered that the high
correlation between features resulting from their lack of selection greatly reduced the computing speed.

Furthermore, the simple network structure frequently led to infinite looping. In 2015, Jie and
co-authors introduced a method utilising Deep Belief Networks (DBN) to enhance bearing fault
diagnosis. They made modifications to the network structure, aiming to address the challenge of
infinite loops. However, they did not take into consideration the parameter selection issue of the DBN
network [15]. In 2024, Naresh Kumar Reddy Panga’s work utilises the Discrete Wavelet Transform
(DWT) for feature extraction in ECG signals in IoT health monitoring systems. However, it does
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not consider any limitations in signal processing that relate to non-stationary signals. Variational
Mode Decomposition (VMD) and Hybrid Particle Optimised Deep Belief Networks (HPO-DBN) are
adopted in the proposed work of a bearing fault diagnosis approach, which furthers the signal pro-
cessing and fault detection. The proposed method leads to greater accuracy and real-time monitoring
of bearing conditions [16].

This paper introduces an innovative approach to diagnosing faults in mechanical equipment,
employing a combination of diverse features. First, the vibration signals are subjected to spectral
analysis and time-frequency analysis. Second, the feature extraction process integrates the application
of the Adaptive Variational Mode Decomposition (AVMD) method on various domains, including
the time domain, frequency domain (consisting of frequency spectrum and envelope spectrum),
and time-frequency domain [17]. Next, the ReliefF algorithm is utilised for feature selection, and
the selected features are fused using an autoencoder. Lastly, the application of the Hunter-Prey
Optimisation (HPO) algorithm empowers the Deep Belief Network to autonomously identify the
optimal parameters, thereby enhancing the precision of fault diagnosis outcomes [18].

The main contributions of this article are:

(1) By employing adaptive variational mode decomposition (AVMD) for feature extraction,
several advantages can be achieved, including the elimination of manual parameter adjustment,
mitigation of noise impact on decomposition results, and enhancement of feature extraction
stability.

(2) By incorporating the hunter-prey optimisation algorithm (HPO), the deep belief network
(DBN) can be optimised, effectively solving the problem of using manual parameter setting.

Below is the structural diagram of the bearing fault diagnosis system, which is based on AVMD
and HPO-DBN (Fig. 1).

2 Feature Extraction

For the diagnosis of bearing faults, it is imperative to collect the original signals of the bearings.
Subsequently, crucial features that reflect bearing faults from multiple perspectives should be extracted
from these original signals.

2.1 Time Domain Feature
The initial signal illustrates the movement of the bearing and is comprised of elements not linked to

the fault, components associated with the fault patterns, significant noise, and any other intervention.
This signal can be mathematically expressed as follows: x(n) = θ(n) + α(n) + ε(n). Where θ(n) is the
normal component, α(n) is the fault component when the fault occurs, and ε(n) is the noise.

In order to reduce the dependency on prior knowledge, M statistical feature is extracted from the
original signal. Some of these characteristics are:

Mean: If no fault occurs in x(n), α(n) = 0. Because noise exists and noise ε(n) fluctuates around 0.
If x(n) is averaged over a period of time, the noise can be cancelled, and the normal component of the
original signal can be obtained. But when a fault occurs, the mean value will change, so by analysing
the change of the mean value, the type and degree of bearing fault can be detected.

f1 = 1
N

N∑
n=1

x(n) (1)
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where x(n) is the original signal and N is the number of samples.

Figure 1: System architecture

Maximum amplitude: An increase in bearing signal amplitude indicates the occurrence of bearing
failure. Different types of bearing failures, such as rolling element damage, raceway wear, eccentricity,
and stuck conditions, can be identified by monitoring the variations in the maximum amplitude [19].
The maximum amplitude can also provide information about the severity of the bearing failure. When
the failure gradually develops or intensifies, the maximum amplitude tends to increase gradually, and
the moment of the failure can also be determined.

f2 = max(|x(n)|) (2)

Standard deviation: Standard deviation can be used to detect whether the bearing has abnormal
vibration. When the bearing fails, the vibration signal often presents irregularity or unstable changes.
An abnormal vibration signal will cause the standard deviation of the vibration signal to increase.
Bearing faults can be detected and diagnosed by monitoring the change of standard deviation [20].
At the same time, the change of the standard deviation of the abnormal vibration signal can provide
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information about the fault type. For example, faults such as rolling element damage and raceway wear
may increase the amplitude variation of the vibration signal, thus increasing the standard deviation.

f3 =
√√√√ 1

N − 1

N∑
n=1

(x(n) − f1)2 (3)

Square root amplitude: The square root amplitude is used to measure the fluctuation size of the
data set, which can provide an estimate of the energy of the vibration signal and provide important
information in the bearing fault diagnosis [21]. For example, failures such as rolling element damage
and raceway wear may increase the amplitude variation of the vibration signal, thus increasing the
square root amplitude. By monitoring the change of square root amplitude, bearing faults can be
detected and diagnosed.

f4 =
(

1
N

N∑
n=1

√|x(n)|
)2

(4)

Skewness: Skewness describes how far and in what direction the data distribution deviates from the
mean. When the bearing fails, the vibration signal may have an atypical skew distribution, and different
types of bearing faults may lead to different skew directions of the vibration signal distribution [22,23].
For example, faults such as rolling body damage and raceway wear may skew the vibration signal
distribution to the right, that is, with positive skew. By analysing the variation mode of skewness, the
type of bearing fault can be preliminarily determined [24].

f5 = 1
N − 1

N∑
n=1

(
x(n) − f1

f4

)3

(5)

Kurtosis: Kurtosis describes the peak characteristics of the data distribution, i.e., the degree of
concentration of values in the data set and the shape of the tail distribution. When bearings fail,
vibration signals may exhibit atypical peak characteristics. For example, faults such as rolling body
damage and raceway wear may cause the peak state of vibration signal distribution to be steeper, that
is, with higher positive kurtosis [25].

f6 = 1
N − 1

N∑
n=1

(
x(n) − f1

f4

)4

(6)

2.2 Frequency Domain Features
For bearing vibration signal feature extraction, fault features that are not obvious in the time

domain can be obtained through spectrum analysis of vibration displacement signals and extraction
of frequency domain features [26]. Some of the frequency domain features are:

The calculation of the average frequency of a vibration signal enables the comprehensive represen-
tation of the signal’s frequency domain characteristics. By conducting this calculation, the influence of
noise on the original signal is effectively eliminated, facilitating the extraction of precise and accurate
signals [27].

f1 = 1
Nfft

Nfft∑
j=1

X(j) (7)
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In the frequency domain after transformation, the original signal, denoted as X(j), corresponds
to the transformed sampling count represented by Nfft.

Centre frequency: The centre frequency is determined by calculating the weighted average of
each frequency component on the spectrum to determine the concentration location of the signal’s
main energy [28]. The occurrence of bearing failure often leads to alterations in the vibration signal
spectrum, manifesting as the emergence of supplementary frequency peaks or bands. These changes
can be used to identify bearing faults by comparing the centre frequency of vibration signals with the
centre frequency under normal operation [29].

f2 =
Nfft∑
j=1

[f (j)X(j)]/

Nfft∑
j=1

X(j) (8)

RMS frequency: RMS frequency is a statistic that measures the frequency distribution of a signal,
which reflects the balance of energy or amplitude of the signal at different frequencies [30]. The more
serious the bearing fault, the more obvious the change in energy or amplitude of the fault frequency
component, and the larger the amplitude of the root mean square frequency value. For example, rolling
element failure usually causes an increase in the RMS of frequency in the lower frequency range;
Raceway failure usually causes an increase in the RMS of frequency in the high frequency range [31].

f3 =
√√√√ Nfft∑

j=1

[f (j)X(j)]/

Nfft∑
j=1

X(j) (9)

Frequency standard deviation: The frequency standard deviation characterises the extent of
dispersion among frequency components with respect to the frequency mean. It specifically highlights
the variability range observed within the signal’s frequency distribution. When a bearing fails, the
distribution of the frequency component often changes, resulting in an increase in the frequency
standard deviation. By monitoring the change of frequency standard deviation, the presence of bearing
faults can be found in time [32].

f4 =
√√√√ Nfft∑

j=1

{[f (j) − f3]2X(j)}/
Nfft∑
j=1

X(j) (10)

2.3 Time-Frequency Domain Features
As the vibration signal from bearings typically exhibits non-stationary behaviour, its statistical

properties undergo temporal variations. By extracting time-frequency domain features, one can
effectively capture the signal’s temporal and spectral changes, thereby obtaining fault characteristics
during the evolving process [33].

The time-frequency domain provides the following characteristic features:

Entropy feature: The entropy feature describes the complexity and amount of information of
the signal spectrum; it is also used to describe the randomness and periodicity of the signal. The
vibration signal caused by a bearing fault is often drowned out by noise, which makes feature
extraction difficult. Entropy features are robust to noise reduction and fault feature enhancement,
and can extract nonlinear vibration features from fault signals, thus enhancing bearing fault diagnosis
performance. For example, when the bearing works normally, the vibration signal generally has an
obvious periodicity. When the bearing fails, the vibration signal may lose periodicity due to the
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influence of friction, fracture or loosening. Entropy features can quantify the disorder or aperiodicity
of signals, providing a powerful means to detect bearing faults [34].

F = −
N∑

i=1

pi ln pi (11)

where the probability density function of each component is denoted as pi.

2.4 Feature Extraction
For feature extraction in the time-frequency domain, an improved variational mode decompo-

sition (AVMD) method is proposed. The AVMD method builds upon enhancements made to the
variational mode decomposition (VMD) technique. The VMD method is introduced below.

The signal is decomposed by the VMD method into k eigenmode functions, and the original signal
is formed by the superposition of all these components [35]. The expression for the intrinsic mode
function is as follows:

vk(t) = Ak(t) cos(φk(t)) (12)

In this context, the phase function φk(t) exhibits a non-monotonic decrease.

For each vk(t), the Hilbert transform yields the analytical signal.[
δ(t) + j

πt

]
∗ vk(t) (13)

The equation involves the Dirac function represented by δ(t) and the convolution denoted by “∗”.

Next, the eigenmode function’s spectral diagram is shifted to the corresponding frequency
baseband, denoted by the Fourier transform:

[(δ(t) + j
πt

) ∗ vk(t)]e−jωkt (14)

where, e−jωkt is the central frequency index.

Then the centre frequency of the eigenmode function is estimated, and the corresponding
eigenmode function is reconstructed. This paper constructs the following optimisation problems:

min{v2},{α2}

⎧⎪⎪⎨
⎪⎪⎩
∑

k

∥∥∥∥∥∥∥∥
∂

⎡
⎢⎣
⎛
⎜⎝δ(t)+

j
πt

⎞
⎟⎠∗vk(t)

⎤
⎥⎦e−jα2t

∂t

∥∥∥∥∥∥∥∥

2

[2

⎫⎪⎪⎬
⎪⎪⎭

st.
K∑

k=1

vk = X(j)

(15)

For the given problem, the objective is to minimise the total centre frequency bandwidth of each
modal component by considering the 2-norm of the spectral term as the objective function. This
minimisation allows for the decomposition of the original signal into optimal individual eigenmode
functions. Additionally, it is necessary to ensure that the total energy of the original signal equals the
sum of the energies of the modal components.

To solve the variational equation mentioned above, the constrained variational problem is con-
verted into an unconstrained variational problem. This transformation incorporates the augmented
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Lagrange function, which combines the quadratic penalty term and the Lagrange multiplier method:

L({vk}, {ωk}, λ) = α
∑

k

||∂t[
(

δ(t) + j
πt

)
∗vk(t)]e−jωkt||2

2 +||f (t)−
∑

k

vk(t)||2 +{λ(t), f (t)−
∑

k

vk(t)} (16)

where α is the penalty function, λ is the Lagrange multiplier.

Then iterate:

v̂n+1
k (ω) = f (ω) −∑K

i=1,i<k v̂n+1
i (ω) −∑K

i=1,i<k v̂n
i (ω) + λ̂n(ω)

2

1 + 2α(ω − ωn
k)

2
(17)

ωn+1
k =

∫ ∞
0

ω|v̂n+1
k (ω)|2dω∫ ∞

0
|v̂n+1

k (ω)|2dω
(18)

λ̂n+1(ω) = λn(ω) + γ

[
f̂ (ω) −

K∑
k=1

v̂n+1(ω)

]
(19)

γ stands for noise tolerance. Finally, each eigenmode function is obtained.

The previously described method is a classical approach known as Variational Mode Decomposi-
tion (VMD). However, its effectiveness relies on manually selecting the number of eigenmode function
components for the final decomposition. To ensure a complete decomposition of the original signal
and maximise the signal’s energy ratio, it is necessary to carefully choose this value. To address these
limitations and capture the complete characteristics of all signals, this paper proposes an adaptive
mode decomposition approach called Energy Ratio-based Adaptive Mode Decomposition (AVMD).

The following formulas are used to calculate the energy of the original signal and each intrinsic
mode function:

E =
√∑N

n=1 x2(n)

N
(20)

In this context, the signal energy E is calculated based on the signal sequence x(n) and the number
of sampling points N.

The expression for the energy ratio is as follows:

δ =
∑K

m=1 Em

Ex

(21)

where the total energy of the signal Ex and the energy of each intrinsic mode function Em are defined.

The optimal value for k, which maximises the energy ratio for the first time, can be observed from
the provided formula. The AVMD algorithm can be expressed using the following steps:

Step1. Input the original signal and compute the energy ratio when k = 2.

Step2. Set k = k+1, calculate the energy sum of each eigenmode function and calculate the energy
ratio.

Step3. Check if the current energy ratio surpasses the energy ratio from the previous iteration.
Suppose it doesn’t, consider the energy ratio from the previous iteration as the peak value. Once the
peak value of the energy ratio is attained, output the corresponding k value. Others, return to Step 2.

Step4. Use the output value at this time for VMD decomposition of the original signal.
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3 Feature Selection
3.1 Feature Dimension Reduction

It is challenging to depict the equipment’s fault condition solely based on a single characteristic
when it comes to bearings. Instead, the combination of multiple features selected using a feature
selection algorithm is very necessary in order to express bearing fault states effectively.

The ReliefF algorithm is used for feature selection in this paper. The ReliefF algorithm determines
the sensitivity of features by calculating the relative size of the intra-class spacing of the same type of
features and the inter-class spacing of different types of features [36]. The algorithm is as follows:

Step1. Initialise the weight matrix vector W = 0;

Step2. Obtain a sample R from the feature vector, and select k nearest neighbour samples Hj and
Mj from samples of the same or different categories as R; j(1, 2, . . . , k);

Step3. Update the weight Aj of each feature in R according to the following formula:

W(Aj+1) = W(Aj) −
k∑

j=1

diff (Aj, R, Hj)/k +
k∑

j=1

diff (Aj, R, Mj)/k (22)

diff (Aj, R, Hj) = |value(Aj, R) − value(Aj, Hj)

max(Aj) − min(Aj)
(23)

diff (Aj, R, Mj) = |value(Aj, R) − value(Aj, Mj)

max(Aj) − min(Aj)
(24)

In the above formula, value(Aj, B) is the value of the j eigenvalue Aj of sample B;

Step4. Cycle step 1–3 m times to calculate the weight of each sample iteratively.

The overall structure of the feature selection algorithm based on AVMD and ReliefF is shown
below (Fig. 2):

Figure 2: Structure diagram of the feature selection algorithm
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3.2 Feature Fusion
For the extracted features, it is necessary to reduce the feature redundancy. Since most rotating

machinery is a nonlinear system, it is necessary to adopt a nonlinear feature fusion method for feature
fusion. In this paper, an automatic encoder is used to carry out feature fusion [37].

Before using the autoencoder, all feature data needs to be normalised, as follows:

z = x − u
s

(25)

The equation above defines u as the sample mean and s as the sample standard deviation.

The autoencoder consists of an encoder and a decoder. This paper uses a trained autoencoder and
retrograde feature fusion. The recursive structure incorporates the residual by comparing the input and
output of the feedforward network.

The output layer and input layer are related in the form of x̂i ≈, xi in this study. To quantify the
reconstruction loss, the mean square error is employed, with the objective function aiming to minimise
this loss. The following equation presents the objective function for minimising the reconstruction loss:

J(x̂, x) = 1
m

m∑
i=1

(x̂ − xi)
2 (26)

In the formula mentioned above, the symbol m represents the count of neurons in the hidden layer.

The dimensionality of high-dimensional features can thus be reduced by back-propagation and
gradient descent using trained autoencoders.

4 Fault Diagnosis Model Based on HPO-DBN

A Deep Belief Network (DBN) consists of multiple Restricted Boltzmann Machines (RBMs) and a
top-level classifier. The DBN architecture comprises multiple hidden layers. The input to the network
is the sample data that satisfies the given criteria, and the corresponding label for the input data is
placed at the top. Initially, the input samples are sequentially allocated to the visible neurons in the
first layer. Through deep learning, the weights between layers and the biases of each neuron gradually
stabilise, enabling the input data samples to be maximally fitted [38].

Upon completion of training, the network undergoes testing by running test data. The test data is
automatically analysed, and classification into the most suitable category is performed. The training
process of a DBN consists of two steps: unsupervised training utilising RBM, followed by supervised
fine-tuning [39].

4.1 Unsupervised Training and Supervised Fine-Tuning Based on RBM
The most important part of this step is to train the RBM, which is done in each step. To initiate

the training process, the training data is input to the neurons in the visible layer. The data is then
mapped to the hidden layer using a greedy learning approach. Subsequently, the hidden layer data is
transmitted back to the visible layer through the CD-k algorithm (where “k” represents the number of
samples). Finally, the reconstruction error is computed to facilitate adjustments to the internal weight
and bias [40].
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Forward unsupervised training based on RBM can only approximate the internal parameter
vector of each RBM; it cannot find the optimal solution of the entire model. Therefore, supervised
fine-tuning is needed to find the optimal solution from a large set of solutions.

Supervised fine-tuning in the backward direction falls under the umbrella of supervised learning.
Typically, the classifier for the final output layer employs the BP algorithm. Upon defining the network
architecture, it becomes crucial to determine the appropriate number of nodes in the hidden layer, as
well as the number of neurons and the learning rate. The DBN model, which meets the desired criteria,
can be obtained through a specific number of iterations. Refer to the accompanying figure for the
illustration of the DBN network structure (Fig. 3):

Figure 3: DBN network structure diagram

4.2 Parameter Selection and Algorithm
When using DBN, it is necessary to set the related parameters. The DBN structure design involves

two key aspects: the quantity of network layers and the size of hidden layers in terms of node count.
Expanding the number of hidden layers can narrow the gap between nodes across layers, thereby
enhancing classification accuracy. However, it may also lead to prolonged training time. Additionally,
the inappropriate configuration of relevant parameters can significantly impact the classification
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outcome [41]. The network structure utilised in this study comprises four layers, including an input
layer, an output layer, and two hidden layers.

Optimising the number of nodes in the hidden layer is crucial for achieving desirable training
outcomes. Currently, there is no universally applicable approach for determining the optimal number
of nodes in this layer. In this study, we propose a methodology utilising the Hunter-Prey Optimiser to
optimise the selection of hidden layer nodes.

The algorithm employed in this study is the Hunter-Prey Optimiser (HPO), which draws inspira-
tion from the behavioural patterns observed in predatory animals, such as lions, leopards, and wolves,
as well as their prey, including deer and antelope [42]. The core principle of this population-based
optimisation algorithm can be summarised as follows:

(1) Initialize the population

To begin with, the initial population randomness is defined as �x = {�x1, �x2, . . . , �xn}, and the
objective function is evaluated as �O = {O1, O2, . . . , On} for all individuals within the population. The
subsequent procedures involve the utilisation of prescribed rules and strategies to regulate and direct
the population’s exploration in the search space, thereby facilitating an iterative search process. Within
each iteration, the algorithm rules dictate the update of each member’s position within the population,
which is then assessed by the objective function. The population initialisation follows the subsequent
rules:⎧⎨
⎩

xi = rand(1, d). ∗ (u − l) + l
u = [u1, u2, . . . , ud]
l = [l1, l2, . . . , ln]

(27)

The formula mentioned above involves several variables, each serving a distinct role in the
computation. Specifically, xi represents the hunting position, l corresponds to the minimum search
range, u denotes the maximum search range, d represents the number of dimensions in the problem
variable, and rand is a random number utilised within the algorithm.

(2) Predator search

Once the initial population has been generated and individual members identified, the objective
function is used to calculate the fitness value associated with each solution. This fitness function serves
as a determinant of solution quality, distinguishing between favourable and unfavourable outcomes.
Based on these results, subsequent search procedures are repeated iteratively to identify the optimal
position. The search mechanism is as follows:

xi,j(t + 1) = xi,j(t) + 0.5[(2CZPpos(j) − xi,j(t)) + (2(1 − C)Zγ (j) − xi,j(t))] (28)

The formula provided above encompasses various variables, each playing a distinct role in the
computation process. Specifically, xi,j(t) denotes the current position of the predator, xi,j(t + 1)

represents the subsequent position of the predator, Ppos signifies the position of the prey, γ denotes
the average of all positions, and Z pertains to the adaptive parameter. Then Z,P is as follows:

P = R1 < C; IDX = (P == 0) (29)

Z = R2 ⊗ IDX + R3 ⊗ (∼ IDX) (30)

Within the mentioned formula, the random vectors R1 and R3 are defined within the interval
[0, 1]. The variable P represents the index value determined by comparing R1 and C. Additionally,
the random number R2 is constrained to the range [0, 1]. The index value IDX corresponds to vector
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R1, which satisfies the condition (P = 0). Moreover, parameter C serves as a balancing factor that
governs the trade-off between exploration and development. During the iterative process, the value of
f decreases to 0.02. The subsequent calculation for C is as follows:

C = 1 − i
(

0.98
M

)
(31)

Within the aforementioned formula, the variable i represents the current iteration number, while
M signifies the maximum iteration number. γ in the above formula is calculated as follows:

γ = 1
n

n∑
i=1

xi (32)

The following equation describes the Euclidean distance:

Di =
(

d∑
j=1

(xi,j − γj)
2

) 1
2

(33)

In the hunting scenario, when the hunter successfully captures its prey, the captured prey will
perish, necessitating the hunter to relocate to a new prey location for the subsequent hunt. To address
this challenge, the algorithm incorporates a decrement mechanism outlined below:

k = round(C × N) (34)

Within the formula, the variable N denotes the number of individuals in the search population.
At the algorithm’s onset, the value of k is initialised to be equal to N. In order to select and capture
the prey, the search individual farthest from the average position γ is chosen. The global best position,
which offers the prey a higher chance of survival, corresponds to the safest location. Consequently,
the prey’s position is updated according to the following procedure:

xi,j(t + 1) = Tpos(j) + CZ cos(2πR4) × [Tpos(j) − xi,j(t)] (35)

Within the provided formula, the variable xi,j(t) represents the current position of the prey.
Following that, xi,j(t + 1) denotes the position of the prey in the next iteration, and Tpos(j) signifies the
global optimal position. Additionally, Z stands for the adaptive parameter, whereas R4 is the random
number belonging to the interval [0, 1]. By utilising the cosine function and its input parameters, the
position of the subsequent prey can achieve global optimality across various radii and angles. The
selection process between predator and prey operates according to the following criteria:

xi(t + 1) =
{

xi(t) + 0.5
[(

2CZP_pos(j) − xi(t)
)+ (2(1 − C)Zγ (j) − xi(t))

]
if R5 < β

xi(t + 1) = Tpos + CZ cos (2πR4) × (Tpo − xi(t)
)

else
(36)

Within the formula provided above, we assign the variable R5 to a randomly generated number
falling within the interval [0, 1]. Meanwhile, β represents a regulating parameter, which we set to 0.1 for
the purposes of this experiment. If the value of R5 is smaller than β, we consider the search population
to portray a hunter, thus necessitating an update in the search’s next position using the aforementioned
formula.

https://www.scipedia.com/public/Sha_et_al_2026 13

https://www.scipedia.com/public/Sha_et_al_2026


X. Sha and F. Qian,

Bearing fault diagnosis

based on aVMD and HPO-DBN,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 25

Below outlines the sequential procedures involved in the intelligent optimisation algorithm
employing a hunter-prey approach:

Step 1: Initialise population initialisation, set random variables.

Step 2: Start the predator search and set the search mechanism.

Step 3: Set the search mechanism parameters according to the search mechanism.

Step 4: The fitness value is computed, and the optimal position of each iteration is recorded.

Step 5: The balance parameter C, which determines the trade-off between exploration and
exploitation, is updated using a specific formula. Additionally, the number of populations N is
searched, along with the adaptive parameter Z.

Step 6: Update the position according to the value of R4.

Step 7: Calculate the fitness value.

Step 8: Checking if the stop condition has been satisfied. If the condition is met, the optimal
solution is output. Otherwise, the process proceeds to Step 5. In combination with Genetic Algorithm
(GA) and Particle Swarm Optimisation (PSO), HPO offers a better balance between exploration and
exploitation, leveraging its predator–prey mechanism. While GA depends primarily on crossover and
on mutation, PSO depends on velocity updates toward the global best and toward the personal best.
HPO tends to maintain diversity in populations longer while minimising premature convergence, which
makes it more effective in optimising the parameters of deep neural networks for a fault detection task.

Step 9: End the algorithm and output the optimal weight.

According to the above algorithm steps, the algorithm flow is shown as follows (Fig. 4).

4.3 Fault Diagnosis Model
To determine the optimal number of nodes in the hidden layer, HPO is employed. This technique

enables the identification of the most suitable number of nodes in each RBM layer. Consequently, the
intricate features encapsulated within DBN can be effectively mapped to distinct feature spaces. By
reducing the feature vectors without compromising recognition accuracy, the objective is to achieve
the highest possible recognition accuracy.

The HPO-DBN structure diagram is as follows (Fig. 5).

Suppose the input x = {x1, x2, . . . , xm} is an m-dimensional training sample, the first hidden layer
is h1 = {h11, h12, . . . , h1a}, and the second hidden layer is h2 = {h21, h22, . . . , h2b}.

The optimisation of the number of hidden-layer nodes in the DBN network involves the utilisation
of the HPO algorithm, which consists of three steps. To evaluate the distinguished characteristics
of the HPO algorithm, it was compared to several other commonly used optimisation techniques,
such as grid search, random search, PSO, and genetic algorithms. The comparison focused on two
aspects, convergence speed and output quality. HPO outperformed the evaluated techniques in both
speed and quality of results, most especially with higher population sizes. The main areas for studying
hyperparameters were: Hidden nodes: [20, 200], Learning rates: [1e−3, 1e−1]. Also, we evaluated
sensitivity to population size and found that a population size equal to 30 gave the best trade-off
between computational cost and model quality. Convergence curves also bore out that HPO converged
significantly faster than the other optimisation techniques.

Step 1: Initialisation of the HPO algorithm and the DBN network parameters. The HPO algorithm
is applied to assign initial values to the node count in the hidden layer.
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Figure 4: Flowchart of the hunter-prey intelligent optimisation algorithm

Step 2: Iteratively updating the node count in the hidden layer based on predefined rules within
the HPO algorithm. The termination criteria for the algorithm include reaching an error rate of 0
or reaching the maximum number of iterations. These steps are repeated until the optimal number
of hidden layer nodes is determined. In contrast, the optimised DBN Parameters using Genetic
Algorithms exhibited slower convergence speed, lower accuracy gains, and were not as effective. Under
the same conditions, the predator–prey search strategy of HPO retained population diversity and
avoided premature convergence, allowing it to reach optimal solutions more efficiently than GA.

Step 3: Utilising the obtained number of hidden layer nodes as input for the DBN network.
The effectiveness and accuracy of the network are validated and measured using the test set. The
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hierarchical structure being learned with the Deep Belief Network can also be understood using the
principle of fault diagnosis. Each lower layer operates like a detector for basic patterns exhibited
in the signals, such as changes in amplitude or peaks of frequency, and more abstract and complex
combinations are depicted in the deeper layers that relate to certain fault categories. This represents a
more interpretable hierarchy of features that relate directly back to the bearing condition states, which
were learned. When training a Deep Belief Network (DBN), the energy function is minimised using
a technique called contrastive divergence, which reduces the error in observing reconstructed data
from a model. Minimising the energy function reduces the reconstruction error, leading the network to
learn useful hidden representations for classification. The Hunter-Prey Optimisation (HPO) algorithm
has some unique characteristics that can enhance tuning of deep models. HPO utilises a predator-
prey update strategy, in combination with an adaptable balance factor f (Eq. (31)) to accommodate
exploration and exploitation, which makes it different from conventional optimisers. The dual-agent
framework also prevents premature convergence, while the population size maintains diversity. These
reasons partially underlie why HPO is readily suited to execute optimisation of deep neural networks
to perform fault detection, where there is a need for global search and convergence stability for high-
dimensional, nonlinear phenomena.

Figure 5: HPO-DBN diagnostic model

5 Simulation Verification

To assess the proposed methods presented in this research paper, the following protocol is
implemented. Firstly, the validity and effectiveness of the HPO-DBN diagnostic model, based on
AVMD, are verified using the standard dataset provided by Case Western Reserve University (CWRU).
Subsequently, the model is employed to diagnose faults in motor vibration data obtained from the
National Pipeline Company of China.
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5.1 Data Set
The experimental platform diagram, depicted below, Fig. 6, illustrates the source of the vibration

data, which is derived from the publicly available dataset provided by Case Western Reserve University.

Figure 6: Schematic diagram of the experimental platform. (a) Test bench (b) schematic diagram

The experimental setup comprises essential components, including a 2 HP motor, a torque
sensor/autoencoder, and a power testing unit. Vibration data was acquired at a sampling frequency
of 48 kHz, capturing various conditions such as normal state, inner ring fault, outer ring fault, and
rolling element fault. To support vibration data acquisition, it is important that both the mounting of
the sensor and the filtering of the signals are done correctly. In this study, accelerometers were rigidly
mounted to the bearing housing to ensure that the acceleration signal was persistent. Anti-aliasing
filters were configured for frequencies greater than half the sampling rate of 48 kHz prior to sampling
in order to minimise high-frequency noise. Improper mounting or filtering could create additional
artefacts that could degrade the quality of AVMD decomposition and reduce the accuracy of later
fault diagnosis.

To validate the efficacy of the approach, a total of 2048 data points were grouped, with each state
containing 60 sample groups. Among these groups, 40 were allocated as the training set, while the
remaining 20 groups were designated as the test set. To investigate the necessity of each core module,
we performed ablation studies removing AVMD, ReliefF, and the autoencoder in separate experiments.
The results were that performance dropped significantly in each case where any core module was
removed, demonstrating that they were all important to the effectiveness of the model overall.
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5.2 Signal Transformation and Feature Extraction
After transforming the signal into the time-frequency domain, features are extracted from three

distinct domains: the time domain, the frequency domain, and the domain of time-frequency domain.
The contact of different types of bearings, including ball bearings and roller bearings, has different
modes of vibration as a result of their contact mechanics. Rolling element type has a role in determining
the level of amplitude distribution of vibration signals and how they are modulated. By using an
adaptive mode of decomposition, AVMD effectively captures the unique design characteristics of
various bearing types, allowing for accurate feature extraction. The time-domain waveform, frequency
spectrum, envelope spectrum, and intrinsic mode function (IMF) components obtained after AVMD
transformation (with the K value selected by AVMD) are illustrated in Figs. 7 to 12.

Figure 7: Diagram of vibration signal in the time domain

Figure 8: (Continued)
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Figure 8: Diagram showcasing the spectrum of a vibration signal

Figure 9: The vibration signal’s envelope spectrum
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Figure 10: IMF after AVMD decomposition

The statistical features in the time domain are followed by statistical features and four frequency-
related features in the frequency domain. Additionally, the time-frequency domain encompasses
statistical features, entropy features, and a fractal box dimension. These time-frequency domain
features are obtained from IMF signals decomposed by the AVMD method. AVMD was selected for
use because it does not involve the manual selection of a number of modes, as is required in standard
VMD. The adaptive aspect also supports more reliable decompositions with reduced operator bias.
Empirical studies demonstrated that AVMD produced slightly better accuracy than fixed-K VMD,
affirming its practicality. AVMD avoids mode mixing and instability, in particular when compared
to Empirical Mode Decomposition (EMD). It adaptively selects the number of modes and is more
resistant to noise. Moreover, it can achieve consistent signal separation under different conditions.
AVMD adaptively breaks down the vibration signal into intrinsic mode functions that emphasise fault-
related patterns. These IMFs clarify features, leading to more accurate rolling bearing fault diagnosis.
The dimensions of each feature are presented in Table 1 below.
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Figure 11: Weight diagram of the ReliefF algorithm

Figure 12: The correlation between the number of features and the accuracy of recognition
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Table 1: Feature selection

Time domain feature Frequency domain feature Time-frequency domain features

86 statistical characteristics 86 statistical characteristics
43 statistical characteristics 4 frequency domain features 1 entropy feature

Dimension of 1 parting box

As can be seen from the above table, each sample needs to extract a feature with dimension 221.
Initially, we extracted a wide array of features (221 dimensions) to fulfil the goal of covering all possible
operational and fault conditions. We were able to characterise the data in high-dimensional space,
but then applied dimensionality reduction (ReliefF and Autoencoder) to maximise relevant features
and improve accuracy and efficiency. By starting with a larger conformation of feature space, we
ensured that no important features were ignored early on, but still benefited from the reduction process.
Although multi-dimensional features can reflect equipment conditions in an all-round way, some
features do not change with the occurrence of faults. Therefore, feature selection and dimensionality
reduction of these features are needed to ensure the fault diagnosis effectiveness.

5.3 Feature Selection and Dimensionality Reduction
The weight of each feature is calculated using the ReliefF algorithm. The figure below presents

the weights of the aforementioned features.

The figure above reveals that certain features possess negative weights, while others demonstrate
significantly low weights. ReliefF was used because it measures feature relevance with respect to class
distinction. For supervised fault diagnosis, this is somewhat preferable to PCA, which can only measure
variance without considering the class. Mutual Information methods can provide supervision, but they
have a heavier computational burden and can be sensitive to discretisation; ReliefF provides a good
and balanced methodology for a supervised process that is efficient and discriminative. Consequently,
the HPO-DBN model is employed to compare recognition rates based on different feature quantities.
By selecting varying numbers of features for recognition under identical parameter configurations, the
corresponding accuracy rates are depicted in the figure below.

The figure above indicates that the model attains the highest recognition rate when 120 features
are selected. Therefore, the ReliefF algorithm can reduce the dimensionality of features to eliminate
some unimportant features, improve the recognition accuracy and improve the operation speed greatly.
However, it is also necessary to use the autoencoder to fuse the selected features to further reduce the
redundancy of the selected features.

The autoencoder adopted in this study includes a hidden layer and employs L1 regularization to
prevent overfitting. The specific parameters used for the autoencoder are detailed in Table 2.

Table 2: Autoencoder parameters

Parameter name value

Hidden layers 1
Nodes in each layer 120-30-120

(Continued)
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Table 2 (continued)

Parameter name value

Regularised term L1
Cost function Cross entropy
Batch size 32

The original vibration time domain data undergoes a transformation into the frequency domain.
Subsequently, the time domain, frequency domain, and frequency domain characteristics are obtained
through AVMD decomposition of the data. The ReliefF algorithm is used to select these features,
and a more important feature input encoder is extracted for feature fusion, thus reducing the feature
dimension and improving the accuracy and speed of operation. The high-dimensional features fused
by the autoencoder are used as input. The autoencoder was used because, unlike PCA (which can only
perform linear projection), it allows for nonlinear compression while preserving the relevant structure
of the data. Furthermore, while t-SNE is primarily a visualisation method and does not offer a
parametric mapping to deal with unseen samples, it prevents it from being practical for integration into
classifiers. Thus, the autoencoder provides compact and discriminative features that can conveniently
be inserted into DBN training.

5.4 HPO-DBN Classification
To classify the data using DBN, it is crucial to configure the number of nodes in the network’s

hidden layer and determine the initial parameters. The HPO termination condition is set as error 0
or when the predetermined number of iterations is reached. Details of the specific parameters can be
found in Table 3 below.

Table 3: HPO-DBN parameter table

Parameter description Value

Number of RBM layers 2
RBM iterations per layer 150
Number of neurons comprising the
initial hidden layer

100

The second hidden layer’s neuron
count

50

learning rate 0.1
momentum factor 0.2
activation function SoftMax
Number of HPO iterations 100

In order to highlight the superior recognition accuracy of the To solve the problem of low
recognition rate in bearing fault diagnosis, the HPO-DBN algorithm, we conducted a comparison
between the results achieved using SVM and those obtained using the HPO-DBN method. The
simulation results are presented in the figure below.
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Figs. 13–15 illustrate the diagnostic results for the test set using confusion matrices for a more
quantitative measure of performance. The confusion matrices summarise the number of true positives,
false positives, true negatives, and false negatives for each of the fault categories, providing a clear
insight to the reader as to how effective the model was in differentiating the four faults. Use of
these confusion matrices allows for a more intuitive set of results and allows the reader to observe
the accuracy of the model in classifying faults and, therefore, inform the user of its merits and
opportunities for future work in fault diagnosis. As shown in Figs. 13 and 14, the horizontal coordinate
is the sample serial number, a total of 160 samples, and the vertical coordinate is 4 label types, namely
normal bearings, bearings with inner ring failure, bearings with rolling element failure, and bearings
with outer ring failure. The classification accuracy of the HPO-DBN multi-classification model is
99.8%, indicating that each prediction label corresponds to the test label. The model exhibits high
accuracy, as evidenced by the root-mean-square error of the prediction, which is 0.001. The square
correlation coefficient is 0.998, indicating that the four maximum segmentation hyperplanes of the
HPO-DBN quadripartite classification model have a good linearity.

Figure 13: DBN test results
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Figure 14: Comparison of HPO-DBN and SVM results

Figure 15: Confusion matrix

Fig. 14 illustrates that the fault diagnosis accuracy achieved with the HPO-DBN method exceeds
that of SVM by nearly 10%, with SVM only attaining a 90% accuracy rate. Therefore, the experiment
verifies the validity of the HPO-DBN diagnostic model based on AVMD. To enhance the validation
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of the HPO-DBN model, experiments were performed that compared HPO-DBN against recently
advanced methods and techniques like CNN and models that utilise Transfer Learning, which are
typically developed for bearing fault diagnosis using the same dataset. HPO-DBN showed great
performance when compared to the more advanced models, again, producing higher accuracy and
convergence performance. The HPO-DBN obtained almost 10% higher accuracy on the CWRU
dataset than the SVM, 99.8% vs. 90%. The use of ReliefF and feature reduction with an autoencoder
resulted in lower computational cost, producing a model that is both more accurate and efficient.

5.5 Validation of Measured Data
According to the vibration data of motor bearing x and y axis of No. 1 Nanchang-Shanghai

Branch of West-East Gas transmission in Fuzhou Compressed Gas Station from April 2022 to
April 2023, provided by the State Pipeline Network Company, the motor is a synchronous motor
produced by Shanghai Electric, the specific model is TZW1000-2, and the measuring point code is
VIA181X/Y/Y. Rated power 12,000 KW, rated speed 4800 rpm, rated current 182 A, design efficiency
0.975, rated voltage 6000 V, power factor is 1.

The trained model mentioned above was applied to diagnose faults in the measured data, and the
diagnostic results are illustrated in Figs. 16–18.

Figure 16: Time domain signal diagram of measured data

Based on the figure presented above, the trained HPO-DBN network demonstrates proficient fault
type identification. The accuracy rates for the individual samples are as follows: 97.5% for the first
sample, 87.50% for the second sample, 100.00% for the third sample, and 92.50% for the fourth sample.
The overall accuracy rate is 95.88%, accompanied by a mean square error (MSE) of 0.0010068. These
results lead to the conclusion that this method enables a relatively accurate and efficient diagnosis
of the measured data. Despite the high accuracy, some false positives and false negatives were seen
and observed, specifically between inner-race and rolling-element faults. In a practical sense, false
positives may mean unnecessary inspections, while false negatives could delay required maintenance.
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Both, however, were low rates, and overall reliability was adequate to justify a predictive maintenance
system. As bearing vibration signals vary according to a variable load and speed, this framework
integrates Adaptive Variational Mode Decomposition (AVMD) with HPODBN to achieve diagnostic
stability. The AVMD will adapt the number of modes K through energy ratio maximisation so that
signals can be adaptively decomposed in the presence of changes in load. After this, the HPODBN will
utilise corresponding features generated from the signal decomposition to learn nonlinear mappings,
producing a robust classification approach. In a field compressor dataset (April 2022–April 2023)
with variation in load and speed, the method maintained an overall 95.88% accuracy, confirming the
application can produce reliable results under varying operating conditions.

Figure 17: Spectrum diagram of measured data

The fault categories in the field data are inner ring failure, outer ring failure, and rolling element
failure. The data set comprises a total of 2048 data points, and there are 60 sample groups for each
fault type. There are a total of 40 data groups designated for training and 20 groups designated for
testing. Each of the samples is labelled by the researcher based on visual and vibration characteristics
of the data. The parameters used for data collection and the distribution of fault types are detailed in
Table 4 below.
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Figure 18: Fault diagnosis results of measured data

Table 4: Data collection parameters and fault distribution

Fault type Sample size Labeling method

Normal operation 60 Expert inspection + trend analysis
Inner ring failure 60 Envelope spectrum analysis
Outer ring failure 60 Envelope spectrum analysis
Rolling element 60 Spectrum band analysis

6 Conclusion

This paper presents the AVMD algorithm, which extracts multi-angle features to effectively
represent the actual operational condition of bearings. By utilising the proposed algorithm, features
in the time-frequency domain can be extracted. Furthermore, feature selection and fusion techniques
enhance the distinction between normal and faulty states. Moreover, the application of the HPO
algorithm optimises the node count in the hidden layer of the DBN network. This optimisation leads
to the creation of the HPO-DBN fault diagnosis model, which guarantees network stability, enhanced
speed, and improved accuracy in fault diagnosis. The method suggested is useful for predictive
maintenance because it can accurately detect early-stage bearing faults. Predictive maintenance
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promotes the confident scheduling of maintenance to avoid severe failures that increase downtime and
maintenance costs. Compared to reactive maintenance, which only responds to breakdowns, predictive
maintenance, through the use of AVMD and HPO-DBN, provides time-proven reliability and safety
while improving long-term operational efficiency of industrial systems.

In follow-up research, the number of network iterations can be further studied, and the method
can also be applied to gearbox fault diagnosis and compressor health management.
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