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Abstract. A stabilized finite point method (FPM) for the meshless analysis
of incompressible fluid flow problems is presented. The stabilization approach
is based in the finite calculus (FIC) procedure. An enhanced fractional step
procedure allowing the semi-implicit numerical solution of incompressible fluids
using the FPM is described. Examples of application of the stabilized FPM to the
solution of incompressible flow problems are presented.
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1 INTRODUCTION

Mesh free techniques have become quite popular in computational mechanics. A
family of mesh free methods is based on smooth particle hydrodynamic procedures
[1,2]. These techniques, also called free lagrangian methods, are typically used for
problems involving large motions of solids and moving free surfaces in fluids. A
second class of mesh free methods derive from generalized finite difference (GFD)
techniques [3,4]. Here the approximation around each point is typically defined in
terms of Taylor series expansions and the discrete equations are found by using
point collocation. Among a third class of mesh free techniques we find the so called
diffuse element (DE) method [5], the element free Galerkin (EFG) method [6,7]
and the reproducing kernel particle (RKP) method [8,9]. These three methods use
local interpolations for defining the approximate field around a point in terms of
values in adjacent points, whereas the discretized system of equations is typically
obtained by integrating the Galerkin variational form over a suitable background
grid.

The finite point method (FPM) proposed in [10–15] is a truly meshless
procedure. The approximation around each point is obtained by using standard
moving least square techniques similarly as in DE and EFG methods. The discrete
system of equations is obtained by sampling the governing differential equations
at each point as in GFD methods.



The basis of the success of the FPM for solid and fluid mechanics applications is
the stabilization of the discrete differential equations. The stable form found by the
finite calculus procedure presented in [16–21] corrects the errors introduced by the
point collocation procedure, mainly next to the boundary segments. In addition,
it introduces the necessary stabilization for treating high convection effects and
it also allows equal order velocity-pressure interpolations in fluid flow problems
[19,21].

The content of the chapter is structured as follows. In the next section the
basis of the FPM approximation is described. The stabilized governing equations
for incompressible flows derived using the finite calculus (FIC) approach are then
presented. Next a three step semi-implicit fractional solution scheme using the
FPM approximation is described in some detail. Finally, examples of the efficiency
and accuracy of the stabilized FPM for numerical solution of incompressible flow
problems are presented, namely the analysis of a driven cavity flow, the solution of
a backwards facing step, the analysis of a submerged cylinder and the aerodynamic
study of a NACA airfoil.

2 INTERPOLATION IN THE FPM

Let Ωi be the interpolation domain (cloud) of a function u(x) and let sj with
j = 1, 2, · · · , n be a collection of n points with coordinates xj ∈ Ωi. The unknown
function u may be approximated within Ωi by

u(x) ∼= û(x) =
m∑

l=1
pl(x)αl = p(x)Tαααααααααααααα (1)

where αααααααααααααα = [α1, α2, · · ·αm]T and vector p(x) contains typically monomials,
hereafter termed “base interpolating functions”, in the space coordinates ensuring
that the basis is complete. For a 2D problem we can specify

p = [1, x, y]T for m = 3 (2)

and
p = [1, x, y, x2, xy, y2]T for m = 6 etc. (3)

Function u(x) can now be sampled at the n points belonging to Ωi giving
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αααααααααααααα = Cαααααααααααααα (4)

where uh
j = u(xj) are the unknown but sought for values of function u at point j,

ûj = û(xj) are the approximate values, and pj = p(xj).
In the FE approximation the number of points is chosen so that m = n. In this

case C is a square matrix. The procedure leads to the standard shape functions
in the FEM [22].



If n > m, C is no longer a square matrix and the approximation can not fit all
the uh

j values. This problem can be simply overcome by determining the û values
by minimizing the sum of the square distances of the error at each point weighted
with a function ϕ(x) as

J =
n∑

j=1
ϕ(xj)(u

h
j − û(xj))

2 =
n∑

j=1
ϕ(xj)(u

h
j − pT

j αααααααααααααα)2 (5)

with respect to the αααααααααααααα parameters. Note that for ϕ(x) = 1 the standard least square
(LSQ) method is reproduced.

Function ϕ(x) is usually built in such a way that it takes a unit value in the
vecinity of the point i typically called “star node” where the function (or its
derivatives) are to be computed and vanishes outside a region Ωi surrounding the
point. The region Ωi can be used to define the number of sampling points n in the
interpolation region. A typical choice for ϕ(x) is the normalized Gaussian function
and this has been chosen in the examples shown in the paper. Of course n ≥ m is
always required in the sampling region and if equality occurs no effect of weighting
is present and the interpolation is the same as in the LSQ scheme.

Standard minimization of eq.(5) with respect to αααααααααααααα gives

αααααααααααααα = C̄−1uh , C̄−1 = A−1B (6)

A =
n∑

j=1
ϕ(xj)p(xj)p

T (xj)

B = [ϕ(x1)p(x1), ϕ(x2)p(x2), ·ϕ(xn)p(xn)]

(7)

The final approximation is obtained by substituting αααααααααααααα from eq.(6) into (1) giving

û(x) = pT C̄−1uh = NTuh =
n∑

j=1
Ni

ju
h
j (8)

where the “shape functions” for the i-th star node are

Ni
j(x) =

m∑
l=1

pl(x)C̄−1
lj = pT (x)C̄−1 (9)

It must be noted that accordingly to the least square character of the
approximation

u(xj) � û(xj) �= uh
j (10)

i.e. the local values of the approximating function do not fit the nodal unknown
values. Indeed û is the true approximation for which we shall seek the satisfaction
of the differential equation and the boundary conditions and uh

j are simply the
unknown parameters sought.



The weighted least square approximation described above depends on a great
extend on the shape and the way to apply the weighting function. The simplest
way is to define a fixed function ϕ(x) for each of the Ωi interpolation domains
[11,12].
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Figure 1. Fixed weighting least square procedure

Let ϕi(x) be a weighting functions satisfying (Figure 1)

ϕi(xi) = 1
ϕi(x) �= 0 x ∈ Ωi

ϕi(x) = 0 x �∈ Ωi

(11)

Then the minimization square distance becomes

Ji =
n∑

j=1
ϕi(xj)(uh

j − û(xj))2 minimum (12)

The expression of matrices A and B coincide with eq.(7) with ϕ(xj) = ϕi(xj).
Note that according to (1), the approximate function û(x) is defined in each

interpolation domain Ωi. In fact, different interpolation domains can yield different
shape functions Ni

j . As a consequence a point belonging to two or more overlapping
interpolation domains has different values of the shape functions which means that
Ni

j �= Nk
j . The interpolation is now multivalued within Ωi and, therefore for any

useful approximation a decision must be taken limiting the choice to a single value.
Indeed, the approximate function û(x) will be typically used to provide the value
of the unknown function u(x) and its derivatives in only specific regions within
each interpolation domain. For instance by using point collocation we may limit
the validity of the interpolation to a single point xi. It is precisely in this context
where we have found this meshless method to be more useful for practical purposes
[10–15].



3 STABILIZED FPM USING A FINITE CALCULUS APPROACH

Finite element solution of the incompressible Navier-Stokes equations with the
classical Galerkin method may suffer from numerical instabilities from two main
sources. The first is due to the advective-diffusive character of the equations which
induces oscillations for high values of the velocity. The second source has to do
with the mixed character of the equations which limits the choice of finite element
interpolations for the velocity and pressure fields.

Solutions of these two problems have been extensively sought in the last
years. Compatible velocity-pressure interpolations satisfying the inf-sup condition
emanating from the second problem above mentioned have been used. In addition,
the advective operator has been modified to include some “upwinding” effects [22–
30]. Recent procedures based on Galerkin Least Square [31,32], Characteristic
Galerkin [33,34], Variational Multiscale [35–37] and Residual Free Bubbles [38–40]
techniques allow equal order interpolation for velocity and pressure by introducing
a Laplacian of pressure term in the mass balance equation, while preserving the
upwinding stabilization of the momentum equations. Most of these methods lack
enough stability in the presence of sharp layers transversal to the velocity. This
defficiency is usually corrected by adding new “shock capturing” stabilization
terms to the already stabilized equations [41–43]. The computation of the
stabilization parameters in all these methods is based in “ad hoc” generalizations
of the parameters for the 1D linear advective-diffusive-reactive problem [44,45].

This paper presents a different point view for deriving stabilized a finite point
method for incompressible flow problems. The starting point are the stabilized
form of the governing differential equations derived via a finite calculus (FIC)
procedure. This technique first presented in [16,17] is based on writting the
different balance equations over a domain of finite size and retaining higher order
terms. These terms incorporate the ingredients for the necessary stabilization
of any transient and steady state numerical solution already at the differential
equations level. Application of the MLS interpolation and point collocation to the
consistently modified differential equations for the fluid flow problem leads to a
stabilized system of discretized equations which overcomes the two problems above
mentioned, i.e. the advective type instability and that due to lack of compatibility
between the velocity and pressure fields.

For the sake of preciseness the basic ideas of the FIC method are given next.

3.1 Basic concept of the finite increment calculus (FIC) method

Let us consider a sourceless transient problem over a one dimensional domain
AB of length L (Figure 2). The balance of flux q over a domain of finite size
belonging to L can be written as

qA − qB = 0 (13)

where A and B are the end points of the finite size domain of length h. As usual
qA and qB represent the values of the flux q at points A and B, respectively.

For instance, in an 1D advective-diffusive problem the flux q = −cuφ + kdφ
dx ,

where φ is the transported variable (i.e. the temperature in a thermal problem),
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Figure 2. Equilibrium of fluxes in a finite balance domain

u is the advective velocity and c and k are the advective and diffusive material
parameters, respectively.

The flux qA can be expressed in terms of the values at point B by the following
Taylor series expansion

qA = qB − h
∂q

∂x
|B +

h2

2
d2q

dx2 |B + Oh3 (14)

Substituting (14) into (13) gives after simplification and neglecting cubic terms
in h

dq

dx
− h

2
dq

dx
= 0 (15)

where all terms are evaluated at the arbitrary point B.
Eq. (15) is the finite form of the balance equation over the domain AB. The

underlined term in eq.(15) introduces the necessary stabilization for the discrete
solution of eq.(15) using any numerical technique. Distance h is the characteristic
length of the discrete problem and its value depends on the parameters of
discretization method chosen (such as the grid size). Note that for h → 0 the
standard infinitesimal form of the balance equation

(
dq
dx = 0

)
is recovered.

Above process can be extended to derive the stabilized balance differencial
equations for any problem in mechanics as

rd − hj

2
∂ri

∂xj
= 0 (16)

where ri is the standard form of the ith differential equation for the infinitesimal
problem, hj are the dimensions of the domain where balance of fluxes, forces, etc.
is enforced, and j = 1, 2, 3 for 3D problems. Details of the derivation of eq.(16)
for steady-state and transient advective-diffusive and fluid flow problems can be
found in [16]. Applications of the FIC approach to the Galerkin finite element
solution of these problems are reported in [16–21].

The underlined stabilization terms in eqs.(15) and (16) are a consequence of
accepting that the infinitesimal form of the balance equations is an unreachable
limit within the framework of a discrete numerical solution. Indeed eqs.(3) or
(4) are not longer valid for obtaining an analytical solution following traditional
integration methods from infinitesimal calculus theory. The meaning of the new



stabilized equations makes only sense in the context of a discrete numerical method
yielding approximate values of the solution at a finite set of points within the
analysis domain. Convergence to the exact analytical value at the points will occur
only for the limit case of zero grid size (except for some simple 1D problems [16])
which also implies naturally a zero value of the characteristic length parameters.

The FIC formulation presented below for incompressible flows can be considered
an extension of that recently developed in [21] for finite element analysis of
incompressible Navier-Stokes flows. The set of stabilized governing equations is
first discretized in time using a semi-implicit fractional step procedure and then
solved in space using the FPM. The stabilized formulation allows the use of an
equal order interpolation for the velocities and pressure variables.

3.2 FIC formulation of viscous flow equations

We consider the motion around a body of a viscous incompressible fluid.
The stabilized FIC form of the governing differential equations for the three

dimensional (3D) problem can be written as

Momentum

rmi −
1
2
hmj

∂rmi

∂xj
− 1

2
δ
∂rmi

∂t
= 0 on Ω i, j = 1, 2, 3 (17)

Mass balance

rd +
1
2
hdj

∂rd

∂xj
= 0 on Ω j = 1, 2, 3 (18)

where

rmi =ρ

[
∂ui

∂t
+

∂

∂xj
(uiuj)

]
+

∂p

∂xi
− ∂τij

∂xj
− bi (19)

rd =
∂ui

∂xi
i = 1, 2, 3 (20)

In above ui is the velocity along the i-th global reference axis, ρ is the (constant)
density of the fluid, p is the pressure, bi are the body forces acting in the fluid and
τij are the viscous stresses related to the viscosity µ by the standard expression

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− δij

2
3

∂uk

∂xk

)
(21)

The boundary conditions for the stabilized problem are written as

njτij + ti +
1
2
hmjnjrmi = 0 on Γt (22)

uj − u
p
j = 0 on Γu (23)



where nj are the components of the unit normal vector to the boundary and ti
and u

p
j are prescribed tractions and displacements on the boundaries Γt and Γu,

respectively.
The underlined terms in eqs.(17)–(22) introduce the necessary stabilization for

the approximated numerical solution.
The characteristic length distances hmj and hdj represent the dimensions of

the finite domain where balance of momentum and mass. The signs before
the stabilization terms in eqs.(17), (19) and (22) ensure a positive value of the
characteristic length distances. The parameter δ in eq.(17) has dimensions of
time. Details of the derivation of eqs. (17)–(23) can be found in [16,19,21].

Eqs.(17–23) are the starting point for deriving a variety of stabilized numerical
methods for solving the incompressible Navier-Stokes equations. It can be shown
that a number of standard stabilized finite element methods allowing equal order
interpolations for the velocity and pressure fields can be recovered from the
modified form of the momentum and mass balance equations given above [16,19].

Alternative form of the mass balance equation

Taking the first derivative of eq.(21) gives (assuming the viscosity µ to be
constant)

∂τij
∂xj

= µ∆ui +
µ

3
∂rd

∂xi
(24)

where ∆ = ∂2

∂xi∂xi
is the Laplacian operator. Substituting eq.(24) into (17) gives

after small algebra

∂rd

∂xi
=
(

µ

3
+

ρuihmi

2

)−1 [
r̄mi −

hmk

2
∂rmi

∂xk
+

ρuihmi

2
∂rd

∂xi
− δ

2
∂rmi

∂t

]
no sum in i

(25)
where

r̄mi = rmi +
µ

3
∂rd

∂xi
(26)

and rmi is given by eq.(19).
Inserting eq.(25) into eq.(18) gives

rd + ci

(
r̄mi −

hmk

2
∂rmi

∂xk
+

ρuihmi

2
∂rd

∂xi
− δ

2
∂rmi

∂t

)
= 0 no sum in i (27)

with

ci =
(

2µ

3hdi

+
ρuihmi

hdi

)−1
no sum in i (28)

Eq.(27) can be rewritten as

rd − gii
∂2p

∂xi∂xi
+ rp = 0 (29)



where

rp = cir̄mi − gij
∂

∂xj

(
rmi − δij

∂p

∂xi

)
+

ρuihmi

2
∂rd

∂xi
− δ

2
∂rmi

∂t
no sum in i (30)

and

gij =
(

4µ

3hdi
hmj

+
2ρuihmi

hdi
hmj

)−1
no sum in i (31)

Note that for hmi = hmj = h where h is a typical grid dimension (i.e. the
average size of a cloud of points), the value of gii is simply

gii =
( 4µ

3h2 +
2ρui

h

)−1
(32)

The stabilization parameter gii has now the form traditionally used in the
Galerkin Least Square formulation for the viscous (Stokes) limit (ui = 0) and
the inviscid (Euler) limit (µ = 0) and deduced from ad-hoc extensions of the
1D advective-diffusive problem [25–46]. Note, however, that the general form of
the stabilization parameter gii is deduced here from the general FIC formulation
without further extrinsic assumptions.

Indeed, the precise computation of the characteristic length values is crucial for
the practical applications of above stabilized expressions. This topic is dealt with
on Section 7.

4 FRACTIONAL STEP APPROACH

The momentum equations (17) are first discretized in time using the following
scheme

un+1
i = un

i − ∆t

ρ

[
ρ
∂(uiuj)n

∂xj
+

∂pn+1

∂xi
− ∂τn

ij

∂xj
− bni − hn

mk

2
∂rn

mi

∂xk
− δn

2
∂rn

mi

∂t

]
(33)

Eq.(33) is now split into the two following equations

u∗i =un
i − ∆t

ρ

[
ρ
∂(uiuj)

∂xj
− ∂τij

∂xj
− bi −

hmk

2
∂rmi

∂xk
− δ

2
∂rmi

∂t

]n
(34)

un+1
i =u∗i −

∆t

ρ

∂pn+1

∂xi
(35)

Note that the sum of eqs.(34) and (35) gives the original form of eq.(33).
Substituting eq.(35) into the stabilized mass balance equation (29) gives the

standard Laplacian of pressure form
(

∆t

ρ
+ gn

ii

)
∂2pn+1

∂xi∂xi
= r∗d + rn

p (36a)



where

r∗d =
∂u∗i
∂xi

(36b)

Standard fractional step procedures neglect the contribution from the terms
involving gii in eq. (36a). These terms have an additional stabilization effect which
improves the numerical solution when the values of ∆t are small. Note that for
∆t → 0 the term gii introduces the necessary stability in the laplacian equation,
thereby overcoming the Babuska-Brezzi conditions and allowing for equal order
interpolation of the velocities and pressure variables [22].

A typical solution in time includes the following steps.

Step 1. Solve explicitely for the so called fractional velocities u∗i using eq. (33).

Step 2. Solve for the pressure field pn+1 solving the laplacian equation (36a).

Step 3. Compute the velocity field un+1
i for each mesh node using eq.(35)

5 NUMERICAL SOLUTION USING THE FPM

The implementation of the three step scheme described in previous section in the
context of the FPM is straight forward. Eq. (8) is used to define the approximation
of velocities and pressures within each cloud of point Ωi as

ûm =
n∑

j=1
Ni

ju
h
mj

; m = 1, 2, 3 for 3D (39)

p̂ =
n∑

j=1
Ni

jp
h
j (40)

where (̂·) denotes approximate values and the shape functions Ni
j were defined in

eq.(9).
Direct substitution of eqs.(39) and (40) into the stabilized governing equations

described in previous section gives the following numerical scheme for computation
of the point parameters uh

mj
and ph

j .

Step 1. Computation of fractional velocities

Compute explicitely the fractional velocities at each point k in the domain as

(û∗i )k = (f̂n
i )k; k = 1, . . . , N ; i = 1, 2, 3 (41)

in which N is the total number of points in the domain and

(f̂n
i )k =

{
ûn

i − ∆t

ρ

[
ρ
∂(ûiûj)

∂xj
− ∂τ̂ij

∂xj
− bi −

hmj

2
∂r̂mi

∂xj
− δ

2
∂r̂mi

∂t

]n}
k

(42)

where (̂·) denotes approximate values.



Once the values of û∗i have been obtained, the parameters uh
mj

can be computed
at each point by solving the following system of equations

(û∗m)k =
n∑

j=1
Nk

j uh
mj

, k = 1, . . . , N (43)

Eq.(43) is a system of N equations with N unknowns from where the parameters
uh

mj
, j = 1, . . . , N can be found. These parameters are needed to compute the

derivatives of the velocity field in steps 2 and 3. Indeed the solution of eq.(43)
must be repeated for every component of the velocity vector (i.e. m = 1, 2, 3 for
3D problems).

Step 2. Computation of pressures at time n + 1

Compute the pressure field at time n + 1 by solving eq.(36a). Substituting eqs.
(40) and (43) into (36a) and sampling this equation at each point in the domain
gives

Kn(ph)n+1 = r̂∗d + r̂n
p (44)

where (for 2D problems)

Kn
kj = (

∆t

ρ
+ ĝn

ii)

⎛
⎝∂2Nk

j

∂x2
1

+
∂2Nk

j

∂x2
2

⎞
⎠ (45)

r̂∗dk
=ĉiˆ̄rmi − ĝij

∂

∂xj

(
r̂mi − δij

∂p̂

∂xi

)
+

ρûihmi

2
∂r̂d

∂xi
− δ

2
∂r̂mi

∂t
no sum in i

r̂∗pk
=
[
∂û∗i
∂xi

] (46)

Eq.(46) provides a system of equations from which the pressure parameters
(ph

k)n+1 can be found at each point k.

Step 3. Computation of velocities at time n + 1

The final step is the explicit computation of the velocities in each point at time
n + 1. Substituting the known values of ûi and p̂n+1 at each point into eq.(35)
gives

(ûn+1
i ) =

[
û∗i −

∆t

ρ

∂p̂n+1

∂xi

]
k

; k = 1, . . . , N (47)

Note that the derivatives of the approximate functions ûi and p̂ are computed
by direct differentiation of the expressions (39) and (40), i.e.

∂ûm

∂xl
=

n∑
j=1

∂Ni
j

∂xl
uh

mj

∂p̂

∂xl
=

n∑
j=1

∂Ni
j

∂xl
ph
j

(48)



The steps 1–3 described above are repeated for every new time increment.
A local time step size for each point in the domain can be used to speed

up the search of the steady state solution. The local time step is defined as
∆ti = di

2|ui| , where di is the minimum distance from a star point to any of its
neighbourghs in the cloud. Note however that the full transient solution requires
invariably the use of a global time step ∆tg equal for all nodes and defined as
∆tg = min(∆ti), i = 1, . . . , N .

6 BOUNDARY CONDITIONS

Prescribed tractions on the Neumann boundary Γt, (eq.(22)) or prescribed
velocities at the Dirichlet boundary Γu (eq.(23)) may be imposed.

During the fractional step solution, the first explicit step is solved without
imposing any boundary conditions. During the second step, two kinds of boundary
conditions may be imposed: on boundaries where the normal velocity is imposed
to the value u

p
n, eq.(23) reads using (35)

up
n = u∗i ni −

∆t

ρ

∂pn+1

∂xi
ni (49)

Eq.(49) is a Neumann boundary condition for the pressure equation (36a). This
equation is imposed in the FPM during the pressure computation (step 2) as a
new equation for all points k belonging to the part of the boundary Γu where the
normal velocity is prescribed.

On outflow boundaries with njσij = 0 the pressure is imposed to a constant
value, i.e. p = 0. In the FPM, essential boundary conditions such as p = 0 are
imposed using the definition of the function itself via eq.(40) as

p̂i =
n∑

j=1
Ni

jp
h
j = 0 (50)

Equation (50) is sampled at the points located at a boundary where p = 0.
During the third step the velocities are computed at all points using eq.(47) at

all points within the analysis domain. In points where a velocity is imposed as an
essential boundary condition, the imposed velocity value is asigned directly to the
point. Next, the nodal velocity parameters uh

mj
are computed by solving the same

system of equations described by eq.(43). For points over Neumann boundaries, in
particular on boundaries where the tractions are prescribed to zero, the discretized
form of eq.(22), i.e.

njτ̂ij +
1
2
hmjnjr̂mi = 0 (51)

is used for computing the velocities at the boundary points.



7 COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial issues
in stabilized methods. Most of existing methods use expressions which are direct
extensions of the values obtained for the simplest 1D case. It is also usual to
accept the so called “streamline upwind” assumption. It can be shown that this is
equivalent to admit that vector hm has the direction of the velocity field [16,19].
This unnecessary restriction leads to instabilities when sharp layers transversal to
the velocity direction are present. This additional defficiency is usually corrected
by adding a shock capturing or crosswind stabilization term [41–43]. In the FIC
approach the crosswind stabilization is naturally introduced into the discretized
equations through the general form of the characteristic length vector.

Let us first assume for simplicity that the stabilization parameters for the mass
balance equations are the same than those for the momentum equations. This
implies

hm = hd = h (52)

The problem remains now finding the value of the characteristic length vectors
h. Indeed, the components of h introduce the necessary stabilization along the
streamline and transversal directions to the flow.

Excellent results have been obtained in all examples by using the same value of
the characteristic length vector for each momentum equation defined by

h = hs
u
|u| + hc

∇∇∇∇∇∇∇∇∇∇∇∇∇∇u

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| (53)

where u = |u| and hs and hc are the “streamline” and “cross wind” length
parameters given by

hs =max(lTj u)/|u| (54)

hc =max(lTj ∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)/|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| , j = 1, 2, · · ·n (55)

where lj are the vectors linking each node in the cloud with the star node.
Note that the cross-wind terms in eq.(53) account for the effect of the gradient of

the velocity field in the stabilization parameters. This is an standard assumption
in most “shock-capturing” stabilization procedures [41–43].

Regarding the time stabilization parameter δ and in eq.(17) the value δ = ∆t
has been taken for the solution of the examples presented in the paper.

8 NUMERICAL EXAMPLES

The following examples have been solved with the FPM presented in previous
section using a Gaussian weighting function in the WLS approximation and
quadratic interpolation (m = 6) for the both the velocities and the pressure.
Typically each cloud contains nine points (n = 9) which are chosen using a
quadrant search scheme (i.e. the star node plus the two closest points within
each quadrant are selected) [11-13].



8.1 Driven cavity flow at Re = 1000

This is a classical test problem to evaluate the behaviour of any fluid dynamic
algorithm. A viscous flow is confined in a square cavity while one of its edges slides
tangentially. The boundary conditions are u = v = 0 in 3 edges and u = 1, v = 0
on the upper edge. The problem is solved with the FPM using the distribution of
3,329 points shown in Figure 3. Initially, except at the edge, the velocity is set to
zero everywhere including at the nodes located at the left and right top corners
(ramp condition).

Figure 3. Driven cavity flow. Distribution of 3,329 points. Boundary conditions
u = 0 at edges AC, CD and BD and points A and B. u = 1 and v = 0
over the interior of line AB

Numerical results are shown in Figures 4, 5 and 6 for Re = 1000. Figures 4
and 5 show the velocity and pressure contours, respectively. The FPM results
are compared with experimental results obtained by Ghia et al. [46] showing the
velocity x computed along a vertical central cut (Figure 6). The comparison is
satisfactory.

8.2 Backwards facing step at Re = 389

In this example, the flow is contrained to move in a 2D domain which presents
a backwards step. The domain dimensions are presented in Figure 7. The step is
one half the width of the inflow.

At the inflow a constant velocity profile is fixed while at the outflow the pressure
is prescribed, being the velocity free. The non-slip condition is used at the walls,
except for the two inflow points, where the constant inflow velocity is imposed.
No volume forces are present.



Figure 4. Driven cavity flow. Velocity contours for Re = 1000

Figure 5. Driven cavity flow. Pressure contours for Re = 1000

The distribution of 8,462 points used near the step is represented on Figure 8.
In the rest of the domain a regular distribution of points is used.

Once the stationary state is reached, the solution shows horizontal velocities
represented on Figures 9 and 10 for two planes located at x = 2.55 S and x = 6.11 S
from the step. The FPM results are compared with experimental results presented
on ref.[47] showing an excellent agreement.
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Figure 6. Driven cavity flow. Horizontal velocity distribution over the center
line
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Figure 7. Backwards facing step. Geometry and boundary conditions

Figure 8. Backwards facing step. Distribution of 8,462 points
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Figure 9. Backwards facing step. Horizontal velocity distribution along a
vertical line at x = 2.55 S
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Figure 10. Backwards facing step. Horizontal velocity along a vertical line at
x = 6.11 S

8.3 2D viscous flow around a cylinder

Figure 11 shows the geometry of the analysis domain and the boundary con-
ditions. The problem was solved for Re = 100 assuming laminar flow conditions.
An arbitrary grid of 9418 points was chosen for the analysis (Figure 12). The



transient analysis was run for 10000 time steps. The steady state solution was
found after 18000 time steps. Note that a full period in the solution requires just
321 time steps.

n

n

u =0

u =0

t =0i

u=1
v=0

u=v=0

Figure 11. 2D flow around a cylinder. Analysis domain and boundary
conditions. Re = 100. Boundary tractions (ti) are assumed to be
zero at the exit boundary

Figure 12. Grid of 9418 points used for analysis of the 2D flow around a cylinder



Figure 13 shows the velocity contour lines at four different times. Note the
oscilatory character of the solution. The time evolution of the lift force is shown
in Figure 14. The oscillation period deduced from the computation is 6.01 sec.
This value compares well with the experimental result of 5.98 sec. (� 0.5% error)
reported by Roshko [48].

t=100.03s t=100.57s

t=101.01s t=101.55s

Figure 13. 2D flow around a cylinder (Re = 100). Velocity streamlines at
different times

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

100 110 120 130 140 150 160

L
if

t f
or

ce

Time [s]

Figure 14. 2D flow around a cylinder. Time evolution of lift force



8.4 2D viscous flow around a Naca airfoil

The viscous flow around a NACA 0012 airfoil for an angle of attack of zero
degrees and Re = 10000 was analyzed. Laminar flow conditions were again
assumed.

Figure 15 shows the geometry of the domain and the boundary conditions. The
grid of 14249 points chosen is shown on Figure 16. A finer layer of 972 points was
used around the airfoil to capture viscous effects as shown in the figure.

u=1
v=0

u =0n

p=0
u=v=0

u =0n

Figure 15. 2D flow around a NACA airfoil. α = 0◦, Re = 10000. Analysis
domain and boundary conditions

Figure 16. Distribution of 14249 points for analysis of a NACA airfoil. Detail
of boundary layer of 972 point to capture viscous effects



Figure 17 shows some numerical results of the velocity streamlines for the steady
state situation. Note the well developed wake at the back of the airfoil. A close
up of the streamlines next to the airfoil showing the boundary layer developed is
also presented.

a)

b)

Figure 17. 2D analysis of a NACA airfoil. Velocity streamlines at steady state
for α = 0◦ and Re = 10000

9 FINAL CONCLUSSIONS

The stabilized equations for a viscous incompressible fluid using the finite
calculus procedure are the basis for deriving a stabilized finite point method for the
meshless solution of incompressible flows. The three step semi-implicit fractional



scheme provides a simple and accurate procedure for both transient and steady
state solutions using equal order interpolation for the velocities and the pressure.
The stabilized FPM is a promising technique for the practical meshless solution
of industrial flow problems.
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[21] E. Oñate and J. Garćıa, “A finite element method for fluid-structure interaction
with surface waves using a finite calculus formulation”, Submitted to Comp.
Meth. Appl. Mech. Engng.

[22] O.C. Zienkiewicz and R.L. Taylor, “The finite element method.”, 5th Edition,
Arnold, (2000).

[23] A.Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulation
for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations”, Comput. Meth. Appl. Mech. Engng , 32, 199–259,
1982.

[24] T.J.R. Hughes and M. Mallet, “A new finite element formulations for
computational fluid dynamics: III. The generalized streamline operator for
multidimensional advective-diffusive systems”, Comp. Meth. Appl. Mech.
Engng., 58, pp. 305–328, 1986.

[25] P. Hansbo and a. Szepessy, “A velocity-pressure streamline diffusion finite
element method for the incompressible Navier-Stokes equations”, Comp. Meth.
Appl. Mech. Engng., 84, 175–192, 1990.

[26] T.J.R. Hughes, L.P. Franca and M. Balestra, “A new finite element formulation
for computational fluid dynamics. V Circumventing the Babuska-Brezzi
condition: A stable Petrov-Galerkin formulation of the Stokes problem
accomodating equal order interpolations”, Comp. Meth. Appl. Mech. Engng.,
59, 85–89, 1986.

[27] L.P. Franca and S.L. Frey, “Stabilized finite element methods: II. The
incompressible Navier-Stokes equations”, Comput. Meth. Appl. Mech. Engn,
Vol. 99, pp. 209–233, 1992.

[28] T.J.R. Hughes, G. Hauke and K. Jansen, “Stabilized finite element methods
in fluids: Inspirations, origins, status and recent developments”, in: Recent
Developments in Finite Element Analysis . A Book Dedicated to Robert L.
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