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Abstract

This paper recovers to the original spirit of the continuous crack approaches,
where displacements jumps across the crack are smeared over the affected ele-
ments and the behaviour is established through a softening stress-(total)strain
law, using standard finite element displacement interpolations and orthotropic
local constitutive models. The paper focusses on the problem of shear locking
observed in the discrete problem when orthotropic models are used. The solution
for this draw-back is found in the form of a mesh corrected crack model where
the structure of the inelastic strain tensor is linked to the geometry of the cracked
element. The model is formulated as a non-associative orthotropic local damage
constitutive model, in which the softening modulus is regularized according to the
material fracture energy and the element size. The resulting formulation is easily
implemented in standard non linear FE codes and suitable for engineering appli-
cations in 2D and 3D. Numerical examples show that the results obtained using
this crack model do not suffer from dependence on the mesh directional alignment,
comparing very favourably with those obtained using related standard isotropic
or orthotropic damage models.
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1 Introduction

Tensile cracking is an essential feature of the behaviour of concrete structures and,
therefore, tensile fracture must be taken into account in predicting their ultimate load
capacity as well as service behavior.

With the advent of digital computers and computational mechanics, two different
formats have evolved to model the phenomenon of tensile cracking in the context of
finite element analysis: the discontinuous and the continuous crack approaches. In
the discontinuous crack models, displacements jumps across the crack are explicitly
considered and the behaviour is established through a softening traction-jump law. In
the continuous crack models, displacements jumps across the crack are smeared over
the affected elements and the behaviour of the crack is established through a softening
stress-(total)strain law.

Nowadays, we live a curious situation. On one hand, most structural engineers
and FE codes for Computational Solid Mechanics are decanted in favor of the second
smeared crack approach. On the other, the observed mesh-size and mesh-bias depen-
dence exhibited by these models make the academic world very suspicious about this
format. Hence, a lot of effort has been spent in the last 30 years to investigate and
remedy the observed drawbacks of this approach.

However, the most promising of the newly proposed methods resign from the
smeared approach and turn back to the discontinuous format. On one hand, Be-
lytschko and coworkers ([1], [2], [3]) have introduced the so-called extended finite
element method (X-FEM), which allows to model the propagation of a crack with-
out remeshing, at the expense of enriching the nodal degrees of freedom with new
ones that represent both the displacement jumps across the crack and the developed
singular field at the tip of the advancing crack. On the other, the so-called strong dis-
continuity approach ([4], [5], [6], [7], [8], [9], [5], [10], [11], [12], [13]) leads to enhanced
formulations for finite elements with embedded displacement discontinuities.

But there is still one option to investigate: the adoption of smeared models which
incorporate the effect of the displacement jumps in the strain field of the elements,
rather than the actual jumps themselves. These could be termed as embedded-smeared
crack models. In such models, all computations would be made at constitutive level
and this would allow the use of standard elements with continuous displacement fields,
making the implementation of these models straight-forward in any nonlinear FE code.
Therefore, these would be the updated versions of the classical orthogonal crack models
as introduced by Rashid in 1968 [14], but introducing the necessary corrections to
avoid mesh-size and mesh-bias dependency. Following this line of thought, we present
in this paper a mesh corrected crack model, formulated with the aim of covering this
gap.

The objectives of this paper are threefold: (i) to formulate, at continuum level, a
non-associative orthotropic Rankine damage model as the basis of the corresponding
discrete crack model, (ii) to propose a mesh corrected crack model as the discrete
version of the orthotropic continuum damage model, and (iii) to assess the performance
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of the proposed crack model by means of selected numerical examples which exhibit
tensile cracking.

The outline of the paper is as follows. In the next Section, we briefly review the
main features of crack models as used in the last decades, both at continuum and dis-
crete levels. Then, a non-associative orthotropic Rankine continuum damage model,
suitable for degradation under tensile straining, is presented. Later, the correspond-
ing implementation of the damage model in a discrete FE framework is discussed.
Finally, selected numerical examples are presented to assess the present formulation
and to show the attained benefits as compared to the “straight” use of the standard
orthotropic and isotropic damage based crack models.

2 Discontinuous and continuous, true and embedded
crack approaches

Since the earliest applications of the FEM to concrete structures, back in the 1960’s,
the modelling of cracks has been a hot topic in the FE literature, both professional
and academic. Many approaches have been suggested and new terminology has been
coined. In this Section we distinguish between the formulation at continuum level and
its discrete counterpart, the FE implementation.

2.1 Continuum level

Consider the body Ω, as shown in Figure 1a, crossed by a discontinuity S, which
represents a crack. Regions Ω+ and Ω− are the parts of the body located “in front”
and “behind” the crack.

The discontinuous continuum crack model is represented in Figure 2a. The top
graph shows the normal displacement along a line normal to the crack, with a dis-

(a) (b)

Figure 1: Modellization of a crack at continuum level: (a) discontinuous approach,
(b) continuous (smeared) approach
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(a) (b)

Figure 2: Continumm and "true" discrete approaches to crack modellization: (a)
discontinuous displacement, (b) continuous (smeared) displacement

continuous jump w, which represents the normal opening of the crack, occurring at
S. The corresponding normal strain component is shown in the bottom graph, with
a singularity occurring at S. The behaviour of the crack must be established through
a softening traction-jump law.

Alternatively, the continuous continuum crack model is represented in Figures 1b
and 2b. Here, S+ and S− are two lines that run parallel to S, at a relative distance
h. In this model, the normal jump w occurring at S is smeared over the distance
h. The top graph in Figure 2b shows the normal displacement along a line normal
to the crack, with the normal jump w smeared continuously between S− and S+.
The corresponding normal strain is shown in the bottom graph, with no discontinuity
occurring at S. The behaviour of the crack can be established through a softening
stress-(total) strain law.

2.2 Discrete level

Let us now consider a FE discretization of the body Ω, as shown in Figure 3, crossed
by a discontinuity S. There is the option of discretizing both the discontinuous or the
continuous continuum approaches.

The true discontinuous discrete crack model reproduces the behaviour of Figure
2a. Cracks are modelled by separation of nodal points initially occupying the same
spatial position, with the obvious restriction that cracks can only form along the
element boundaries (Fig. 3a). This was the model adopted in the earliest applications

4



(a) (b)

Figure 3: Modellization of a crack at discrete level: (a) discontinuous approach, (b)
continuous (smeared) approach

of the FEM to concrete structures, back in the 1960’s ([15], [16], [17]) and it is still
widely favored in Computational Fracture Mechanics.

Alternatively, the true continuous discrete crack model reproduces the behaviour
of Figure 2b. In this discrete model, S+ and S− are two lines of nodes that run parallel
to S, at a relative distance h, related to the element size, and the crack crosses the
elements located inside that band (Fig. 3b). This smeared approach was first used by
Rashid in his 1968 historical paper [14] to study prestressed concrete pressure vessels.
As the behaviour of the crack is established through a softening stress-(total) strain
law, this approach can be implemented in any nonlinear FE code by simply writing a
routine for a new material constitutive model. Even today, more than 35 years later,
most of the commercial FE codes use this approach, with little refinement over the
original Rashid’s ideas.

However, this two options, traditional in the FE literature, do not exhaust all the
possibilities for discrete FE crack models. Let us consider two more:

The embedded-discontinuous discrete crack model incorporates discontinuous dis-
placement fields inside the finite elements crossed by the discontinuity in order to
reproduce the displacement and strain behaviour of its continuum parent model, as
shown in Figure 4a. The displacement field inside the affected elements is assumed to
be discontinuous, and the strain field is decomposed into a regular part, outside the
crack, and a singular part at the crack. This is the idea behind the so-called strong
discontinuity approach ([4], [5], [6], [7], [8], [9], [5], [10], [11], [12], [13]). A similar idea
supports the so-called extended finite element method (X-FEM) ([1], [2], [3]), which
is based on enriching the nodal degrees of freedom with new ones that represent the
displacement jumps across the crack.

The main disadvantage of this approach is that it requires special integration
rules inside the affected finite elements to take into account what happens at and
outside the discontinuity. At the discontinuity, the natural option in this embedded-
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(a) (b)

Figure 4: Embedded discrete approaches to crack modellization: (a) discontinuous
displacement, (b) continuous (smeared) displacement

discontinuous approach is to establish the behaviour of the crack through a softening
traction-jump law, although regularizations of the jump have also been used. Outside
the discontinuity, the behaviour is usually assumed to be elastic and driven by the
regular part of the strain in the affected elements.

Alternatively, a new embedded-continuous discrete crack model may be postulated,
on the basis of the behaviour represented in Figure 4b. Here, the displacement field is
continuous in the affected elements but the strain field is decomposed into its elastic
and inelastics part, the latter due to the crack. Once the inelastic part is discounted,
the behaviour is elastic. The contribution of the crack to the displacement field can be
evaluated from the corresponding component of the inelastic part of the strain field.

The advantages of this novel approach are, on one hand, that the treatment of
the crack is formulated at constitutive level in a stress-strain format and standard
integration rules are maintained (as in the smeared approaches) and, on the other, that
the decomposition of the strains into elastic and inelastic parts allows the a posteriori
identification of the displacement jump (as in the discontinuous approaches).

2.3 The discretization error

At first sight, the previous discussion may seem rather scholastic and speculative.
Certainly, the difference between the models in Figures 4a and 4b is subtle. Even the
difference between the models in Figure 4 and their simpler counterparts of Figure 2
may seem of little practical relevance. However, such point of view must be revised,
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as the pertinence of the different models can not be fully apprehended unless their
application in 2D or 3D situations is considered.

In the first place, the application of the true discontinuous discrete crack model of
Figure 2a requires the use of remeshing techniques, and this motivates the apparition
of the embedded-discontinuous discrete crack models of Figure 4a, which still require
the use of non-standard integration techniques. This is a significant drawback for the
practical implementation and dissemination of these models.

Contrariwise, the true continuous discrete crack model of Figure 2b is of straight-
forward implementation and does not require remeshing but, unfortunately, in a multi-
dimensional setting, its original format based on orthotropic models is known to suffer
from serious stress locking. In reference [18], the detailed analysis of the discrete
rotating crack model reveals that it necessarily leads to the development of spurious
shear strains which grow linearly with the crack opening, inducing stress locking. This
evidence led in the 90’s to the progressive neglect of the orthotropic models in favor of
isotropic models, both in damage or plasticity frameworks. Even if smeared isotropic
models largely mitigate the problem of stress locking, they cannot reproduce locally
the directional nature of cracking.

In any case, the analysis of the classical smeared models reveals the key point of
the matter: the problem does not reside in the underlying continuum crack model,
which may be discontinuous or continuous, isotropic or orthotropic, but in the discrete
version of the models, in their FE implementation. In short, the real problem lays in
the limitations and shortcomings of the spatial discretization.

The discretization error is responsible for two separate deficiencies observed in the
crack problem:

• the mesh bias inherent to the determination of the direction of propagation of
the cracks. This issue is not directly addressed by any of the crack models even
if all of them suffer from it. It is not yet generally realized that this is a problem
of the discrete model and not of the continuum model. Tracking algorithms,
formulated outside the constitutive model, are a partial solution, but they are
not robust enough in certain situations, like bending [19], [20].

• the inappropriate modelling of the inelastic strain and stress fields associated
to cracking. This issue is directly related to the stress locking observed in the
classical orthotropic crack models and it applies even if the crack path is known
in advance. In this regard, much knowledge has been accumulated in the last
decade through the use of the embedded-discontinuous discrete crack models. In
this work, we intend to transfer this know-how to the formulation of embedded-
continuous discrete crack models.

The situation described is similar to what happens when using incompressible von
Mises type softening models, either in a plasticity or damage format. In those cases,
the discrete problem has to be modified appropriately, or “mesh corrected”, to obtain
mesh independent results [21], [22].
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3 Orthotropic Rankine Damage Model

3.1 Fixed and rotating orthotropic Rankine models

Continuum damage models have been frequently used in the last 20 years to simulate
tensile fracture, although, commonly, isotropic models were used ([19], [20], [23], [24],
[25], [26]). However, anisotropic models have also been formulated [27]. In fact,
the framework of Continuum Damage Mechanics is very similar to the format of the
original smeared crack models [28].

In this Section we define a non-associative orthotropic damage model which de-
pends on the definition of two physical directions aligned with two unit vectors n
and m. Vector n is orthogonal to the damaged plane and vector m determines the
structure of the inelastic strains.

For a classical Rankine model, damage occurs in a plane orthogonal to the major
principal strain/stress and, therefore, this is the direction of vector n. It is also stan-
dard, at continuum level, to consider associative behaviour, so m = n. As it will be
shown below, the need for a non-associative model, with m = n, arises in the discrete
problem, when the behaviour of finite elements is considered.

As a Rankine model induces orthotropic behaviour in an initially isotropic medium,
it has been largely debated if the axes of orthotropy should be kept fixed after the in-
ception of damage or if they should rotate as the principal strains do. The adoption of
a co-rotational associative model avoids the question of shear transfer on the damaged
plane. It has been argued that only fixed models have physical meaning. However, it
was soon observed that, in the discrete problem, fixed models lead to locking caused
by spurious shear strains. This has favored the use of rotating models and, even,
the abandonment of orthotropic models and the adoption of isotropic models. If the
difficulty of spurious shear straining was solved, the possibility of using fixed models
could be considered again.

3.2 Inelastic strains and deformation

Let ε be the total strain tensor, computed as ε =∇su, where u are the displacements,
and letm be a unit vector associated to a physical direction in space. The deformation
vector in this direction is defined as:

δ = ε ·m =M : ε (1)

where M is a third order tensor defined as Mijk =
1
2 (δjkmi + δikmj) from the com-

ponents of vector m. The symbols (·) and (:) denote simple and double contractions,
respectively.

Consider the usual decomposition of the total strain tensor into its elastic and
inelastic components:

ε = εe + εi (2)
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As our aim is to define an orthotropic damage model, let us define the following
structure for the inelastic strain tensor:

εi = (m⊗ e)S =M · e (3)

where m is a unit vector pointing in a physical direction to be defined and e is
an inelastic deformation vector. The symbol (⊗) denotes the tensor product and
(·)S = symm(·). TensorM in Eq. (3) has the same structure as the one in Eq. (1).

3.3 Constitutive Equation

In a strain-based formulation, a continuum damage model is usually based on the
definition of the effective stress, which is introduced in connection with the hypothesis
of strain equivalence [29]: the strain associated with a damaged state under the applied
stress σ is equivalent to the strain associated with its undamaged state under the
effective stress σ̄. In the present work, the effective stresses σ is computed in terms
of the total strain tensor ε as

σ = C : ε (4)

where C is the usual (fourth order) isotropic linear—elastic constitutive tensor.
The constitutive equation for the orthotropic damage model is defined as:

σ = (I4 −D) : σ = (I4 −D) : C : ε (5)

where I4 is a symmetric fourth order unit tensor (I4 : C =C, Iijkl = 1
2 (δikδjl + δilδjk))

and we have introduced D, the fourth order damage tensor, whose definition and
evolution is given below.

Introducing the strain decomposition in Eq. (2), we can write:

σ = σ − σi = C : ε− εi (6)

3.4 Non-Associative Orthotropic Damage

The evolution of the orthotropic damage tensor D will be associated to a physical
direction in space identified by a unit vector n and the plane orthogonal to it. The
traction vector acting on this plane is:

t = σ ·n =N : σ (7)

where N is a third order tensor defined as Nijk = 1
2 (δjkni + δiknj) from the compo-

nents of vector n. Note than tensor N has the same structure asM in Eq. (1).
Using Eqs. (7), (6) and (3), we can write:

t = N : σ (8a)

= N : C : ε− C : εi (8b)

= N : [C : ε− C :M · e] (8c)

= t− [N : C :M] ·e (8d)
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where we have introduced the effective traction vector t = σ ·n =N : σ. Note that
N : C :M = n · C ·m.

To proceed, the traction vs inelastic deformation, t vs e, relationship must be
established. This is the continuum equivalent of a discrete traction-separation law.
We can write, for instance,

t = Γ−1 ·C · e =H · e (9)

where Γ is a second order symmetric traction compliance tensor, which may be either
a function of the traction or the inelastic deformation vector, and C is a second
order symmetric reference stiffness tensor. Substituting law (9) into the equilibrium
condition (8d) leads to:

e = H +N : C :M
−1 · t = A · t (10)

Symmetry arguments lead to the condition that, in local coordinates for which
the first axis is aligned with vector n , the reference stiffness tensor must be diagonal.
Therefore, a natural option is to take C=N : C : N, which relates the reference
stiffness of the crack to the elastic moduli of the undamaged material.

Note that as the traction compliance tensor is defined as a function of the traction,
Γ = Γ (t), or of the inelastic deformation vector, Γ = Γ (e), Eq. (10) is non linear,
and it has to be solved iteratively.

Once the inelastic deformation vector is known, Eq. (3) defines the inelastic strain
tensor as

εi =M · e =M ·A · t = M ·A ·N : σ = M ·A ·N : C : ε (11)

and the inelastic stress tensor is then

σi = C : εi = C : M ·A ·N : C : ε (12)

Relating Eq. (12) to its definition in (5), the damage tensor is finally obtained as

D = C : M ·A ·N (13)

Note that the damage tensor D is symmetric only if the direction m that de-
fines the structure of the inelastic strains coincides with the direction n that defines
the tractions, so that M =N. For that particular case, we can define the model as
associative. Otherwise, the model is non-associative.

3.5 The traction compliance and damage tensors

It is clear from the previous Section that the essence of the orthotropic damage model
lays in the definition of the traction compliance tensor, as this defines the relation
between the inelastic deformation and the traction acting on the plane orthogonal
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to vector n. In the context of a damage model, it is natural to define this relation
in terms of damage rather than compliance. The traction compliance tensor can be
related to a corresponding traction damage tensor defined as

D = I+ Γ−1
−1

(14)

so that
Γ−1 = D−1 − I (15)

For the definition of these tensors, it is convenient to work in an orthonormal basis
in which the first direction coincides with n. We will refer to this basis as natural
basis in the following.

In the natural basis, the simplest traction damage and compliance tensors take
the diagonal forms

D = d I , Γ =
d

1− d I (16)

where d, the damage index, is a scalar internal-like variable whose definition and
evolution is discussed below.

This simple definition of D implies that the normal and tangential components of
the traction degrade in the same way. The model may be refined by adopting a still
diagonal form for D, but with different damage indices, dn and dt, for the normal and
tangential components, respectively. The tangential damage index can be a explicit
function of the normal damage index, dt = dt(dn).

Using Eq. (16) and C=N : C : N, tensor A= 1
dC+N : C : (M−N) −1 and

the damage tensor is

D = C : M · 1
d
C+N : C : (M−N)

−1
·N (17)

Note that ifM =N,

D = d C : N ·C−1 ·N (18)

This can be recognized as a standard definition of an orthogonal damage model.

3.6 Isotropic damage model

It is convenient to recall that the orthotropic nature of the proposed model resides in
the structure of the inelastic component of the strains, Eq. (3). The structure of the
model changes by changing this. For instance, the standard isotropic damage model
is recovered by postulating that the inelastic strain tensor is proportional to the total
strain:

εi = dε (19)

which corresponds to a diagonal damage tensor D = d I4.
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3.7 The damage index

In order to define a damage model sensitive only to tensile stresses, we define the
equivalent stress in the form:

τ = σn = n · σ · n (20)

where σn is the normal stress acting on the plane orthogonal to direction n. The
symbols · are the Macaulay brackets ( x = x, if x ≥ 0, x = 0, if x < 0).

With this definition for the equivalent stress, the damage criterion, Φ, is introduced
as:

Φ (τ , q) = τ − q(r) ≤ 0 (21)

where the function q = q(r) is the stress-like softening function. It is clear that
the definition in Eq. (21) corresponds to the Rankine criterion. Figure 5a shows a
schematic representation of the defined damage criterion in the stress space.

Variable r is an internal stress-like variable representing the current damage thresh-
old, as its value controls the size of the damage surface. The initial value of the damage
threshold is ro = σo, where σo is the initial uniaxial damage stress.

In this work, we will use following softening laws q = q(r):

• Linear softening:

q(r) =
ro −HS(r − ro) ro ≤ r ≤ ru

0 r ≥ ru (22)

• Exponential softening:

q(r) = ro exp −2HS r − ro
ro

ro ≤ r (23)

(a) (b)

Figure 5: Rankine damage model: (a) damage surface, (b) softening functions
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where HS ≥ 0 is a constant. Figure 5b shows a schematic representation of both these
functions.

The damage index d = d(r) is explicitly defined in terms of the corresponding
current value of the damage threshold

d(r) = 1− q(r)
r

ro ≤ r (24)

so that it is a monotonically increasing function such that 0 ≤ d ≤ 1.
The evolution of the damage bounding surface for loading, unloading and reloading

conditions is controlled by the Kuhn-Tucker relations and the damage consistency
condition, which are

ṙ ≥ 0 Φ (τ , r) ≤ 0 ṙΦ (τ , r) = 0 (25a)

if Φ (τ , r) = 0 then ṙ Φ̇ (τ , r) = 0 (25b)

Because the value of the normal stress in (21) depends on the damage tensor and
this, in turn, depends on the damage index, these equations must be solved iteratively
at the same time as the equilibrium equation (10).

3.8 Mechanical dissipation

For the associative orthotropic damage model, the mechanical free energy is defined
in the form:

W =
1

2
ε : (I4−D) : C : ε ≥ 0 (26)

where the damage tensor D is symmetric. The condition W ≥ 0 must be verified for
any given structure of tensor D. The condition is verified if D is positive definite and
D ≤ 1. From Eq. (13), takingM =N, it is

D = C : N·A ·N (27)

so, the necessary conditions will verify if A is positive definite and A ≤ 1. From
Eqs. (9) and (10), and taking C=N : C : N, it is

A = D−1·C −1
= C−1·D (28)

so, D must be positive definite and D ≤ 1.
From expression (26), the constitutive equation is obtained, applying Coleman’s

method, as
σ = (I4−D) : C : ε (29)

Also, by the same procedure, the rate of mechanical dissipation is obtained as

Ḋ =
1

2
ε : Ḋ : C : ε ≥ 0 (30)
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The condition Ḋ ≥ 0 will be verified provided that the rate of the damage tensor Ḋ
is positive definite. In view of Eqs. (27) and (28), this reduces to the condition that

the rate of the traction damage tensor ˙D must be positive definite.

The necessary conditions onD and ˙D depend on the actual definition ofD. For the

simple case D = dI, it is ˙D = ḋI and, therefore, the conditions reduce to 0 ≤ d ≤ 1
and ḋ ≥ 0.

For the non-associative orthotropic damage model, D is not symmetric, so the
constitutive relationship (29) cannot be derived from a potential like in the associative
case. However, by analogy, we will define the rate of mechanical dissipation in the same
form as in Eq. (30). Now, the extra condition m · n ≥ 0, together with the already
stated conditions that D must be positive definite and D ≤ 1, it is sufficient to

ensure that Ḋ ≥ 0.

3.9 Strain-softening and fracture energy release

In order to relate the specific dissipated energy D, defined per unit volume, to the
mode I fracture energy of the material Gf , defined per unit area of damaged material,
let us introduce a characteristic length h, such that

Dh = Gf (31)

This makes the softening modulusHS , which defines the softening response, dependent
on this length.

Let us now consider an uniaxial tensile experiment in which the tensile strain
increasesmonotonically and quasi-statically from an initial unstressed state to another
in which full degradation takes place. The specific energy dissipated in the process is:

D =
t=∞

t=0
Ḋdt = 1

E

r=∞

r=ro
q dr (32)

where E is the Young’s modulus. Using Eqs. (22) and (23), it can be shown that both
for the linear and exponential softening cases, it results

D = 1 +
1

HS

σ2o
2E

(33)

and equating D = Gf /h, we have

HS =
HS h

1−HS h
≥ 0 (34)

where HS = σ2o/ (2EGf ) depends only on the material properties. Defining the
material length lS = 1/HS , Eq. (34) can be rewritten as

HS =
h

lS − h
h

lS
(35)
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where the approximation holds for lS h.
It must be remarked that the above computation of the total specific dissipation

has been obtained for an uniaxial stress state. In a more general case, the total
dissipated energy may be larger than that in expression (33). In the associative case
and a rotating model, the principal directions of strains and stress coincide and there
is no additional dissipation due to shear on the damaged plane, even if these directions
vary during the loading process. For the cases of fixed or non-associative models, there
would be additional dissipation due to shear.

4 The Mesh Corrected Crack Model.
Finite element formulation

In this Section we describe the implementation of the continuum orthogonal Rankine
damage model described above in a FE framework. We will refer to the resulting
discrete model as the mesh corrected crack model. Let us recall that in the orthotropic
Rankine damage model vector n defines the direction for which the tractions (t and
t) and the deformation vector e are defined, while vector m defines the structure of
the inelastic strains εi.

For simplicity, we will restrict our discussion to the 3-noded linear triangle (CST).
Let us consider the CST shown in Figure 6. Let us assume that the triangle is crossed
by a crack (discontinuity) with a unit vector nh pointing in the direction normal to
the crack. Let mh be another unit vector which is selected as the normal to the three
element sides that maximizes the value of the product |nh·mh| . Let us call i− and
j− to the nodes that define this side, and k+ to the remaining node. We will assume
that the crack does not intersect the side i−− j− and that it separates this side from
node k+ (solitary node). We direct vector nh so that it points to k+ and vector mh

so that nh·mh>0.

Figure 6: Implementation of the Mesh Corrected Crack Model in a CST triangle
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In the FE implementation of the embedded-continuous damage model we will take
the width of the localization band, h, as the distance from the solitary node k+ to
the opposite side i−− j− . This allows to identify the contribution of the crack to the
displacement field inside the element as w =he. Note that this “displacement jump”
is not co-axial with vector n, nor with vectorm. The appropriate selection of length h
is very important in the FE implementation of a smeared model, as it determines the
discrete softening parameter, HS in Eq. (35). In an orthotropic model, where damage
is associated to a specific direction of stress/strain, h must be selected according
to this. In an isotropic model, it is usual to select length h related to the element
diameter. However, in this work, the same determination of h as for the orthotropic
model will be used for comparison.

With these definitions we can define three different crack models as the discrete
versions of different orthotropic Rankine damage models:

• Take n = nh andm = nh. This model is statically consistent and symmetric and
it is often referred to as SOS (statically optimal symmetric) in the literature of
embedded-discontinuous models [7]. It is totally equivalent to the classical fixed
or rotating crack models and, therefore, it can be shown to lock due to spurious
shear (see [18]).

• Take n = mh and m =mh. This model is kinematically consistent with the
spatial discretization and symmetric and it is often referred to as KOS (kinemat-
ically optimal symmetric) in the literature of embedded-discontinuous models.
It does not lock, but it does not satisfy the consistency condition for the stresses
on the surface of the discontinuity.

• Take n = nh andm =mh. This model is statically and kinematically consistent
but it is non-symmetric and it is often referred to as SKON (statically and kine-
matically optimal non-symmetric) in the literature of embedded-discontinuous
models. It does not lock and it satisfies the consistency condition for the stresses
on the surface of the discontinuity. We will refer to this model asMesh Corrected
Crack Model.

Using the standard matrix notation, we can write the internal force vector for the
element Ωe as:

f int =
Ωe
BTσ dΩe = B

Tσ Ae (36)

where B is the usual displacements-strain matrix, σ is the stress vector and Ae is
the element area. For the CST, B and σ are constant over the element. Using the
constitutive relationship

σ = Csec ε = CsecBd (37)

where Csec = (I−D)C , ε is the strain vector and d is the vector of nodal displace-
ments. C is the elastic constitutive matrix and D is the damage matrix. Therefore:

f int = BTCsecB Ae d (38)
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This can also be written as

f int = BTCB Ae d with B = (I−C−1DC )B (39)

which sets the present discrete model inside the framework of the enhanced assumed
strain (EAS) or B-bar methods.

5 Numerical examples

The formulation presented in the preceding sections is illustrated below by solving two
different benchmark problems. Performance of the standard continuous displacement
finite elements is tested considering 2D plane-stress 3-noded linear triangular meshes.
As the study of the problem of crack propagation is out of the scope of this work, we
will consider that the path of cracking is known in advance; due to the symmetry of
the test cases considered, this is not difficult.

The discrete problem is solved incrementally, in a (pseudo)time step-by-step man-
ner. In all cases 100 equal time steps are performed to complete the analyses. Within
each step, a modified Newton-Raphson method, together with a line search proce-
dure, is used to solve the corresponding non-linear system of equations. Convergence
of a time step is attained when the ratio between the norm of the iterative and the
incremental norm of the computed displacements is lower than 10−5.

Calculations are performed with an enhanced version of the finite element program
COMET [30], developed by the authors at the International Center for Numerical
Methods in Engineering (CIMNE). Pre and post-processing is done with GiD, also
developed at CIMNE [31].

5.1 Rectangular strip under tension

The first example is a plane-stress rectangular strip subjected to axial vertical straining
imposed at both ends. Dimensions of the strip are 100 × 200 mm × mm (width ×
height) and the thickness of the strip is 10 mm. The following material properties are
assumed: Young’s modulus E = 2 GPa, Poisson’s ratio ν = 0.3, tensile strength σo =
1 MPa and mode I fracture energy Gf = 250 J/m2.

The computational domain is discretized in two different structured meshes with
different preferential alignments. Mesh A (Fig. 7a.1) consists of rectangular triangles
with predominant directions at −45o, 0o and +90o with the horizontal axis. As the
strip cracks along an horizontal line, the elements in this mesh have one of their sides
parallel to the opening crack. On the other hand, mesh B (Fig. 7b.1) consists mostly
of equilateral triangles with predominant directions at −30o, +30o and +90o with the
horizontal axis. Therefore, the elements in this mesh do not have any of their sides
parallel to the opening crack. Both meshes consists of about 900 nodes and 1,800
elements, although the results obtained are independent from mesh refinement.

This example is selected because it represents a sort of patch test for pure mode
I fracture, as the stress field is uniform before cracking and it should remain so after
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cracking. On the other hand, the uniform strain field before cracking bifurcates into
two uniform but different strain fields inside and outside the localization band after
cracking. The example is used to assess the ability of the isotropic (ISO), associative
orthotropic (ORT) and mesh corrected orthotropic (MCO) damage models to repro-
duce these ideal conditions. Because the direction of applied straining does not change
during the loading process, we will use the fixed versions of the orthotropic models,
with the directions of orthotropy determined and fixed at the onset of cracking.

The expected and computed deformed shapes of the strip using meshes A and B
are shown in Figures 7a.2 and 7b.2, respectively ( (half)-imposed vertical displacement
δ = 0.05 mm, with a displacement amplification factor of 50; the other half-imposed
displacement is applied at the opposite end of the strip). As shown, the opening crack
in both analyses follows exactly the horizontal axis of symmetry of the strip, and the
deformation mode obtained is globally correct for the three models used and both
meshes. However, subtle and not so subtle differences are revealed when a detailed
analysis of the results is undertaken.

Figure 8 shows the results obtained with the three constitutive models using the
well-aligned mesh A. The top plot shows the load vs displacement curve, identical for
the three models and coincident with the analytical response. The middle plot shows
the strains developed inside an element inside the crack trajectory; as expected, the
three models coincide with the analytical solution: (a) the longitudinal strain grows
linearly before bifurcation and faster and almost linearly after bifurcation, (b) the
transverse strain grows linearly before bifurcation due to Poisson’s effect and decreases
afterwards due to elastic unloading and (c) the shear strain remains always null. The
bottom curve shows the corresponding stresses: the longitudinal stress grows linearly
before bifurcation and decreases exponentially after cracking, while the transverse and
shear stresses remain null.

(a.1) (a.2) (b.1) (b.2)

Figure 7: Meshes A and B and deformed shapes for the rectangular strip under tension
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Figure 8: Results for rectangular strip using mesh A
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(ISO-A.a) (ISO-A.b) (ISO-A.c) (ISO-A.d) (ISO-A.e)

(ISO-B.a) (ISO-B.b) (ISO-B.c) (ISO-B.d) (ISO-B.e)

Figure 9: Results for rectangular strip using the isotropic model (top: mesh A, bot-
tom: mesh B). Contours of: (a) vertical displacement, (b) horizontal displacement (c)
vertical normal stress, (d) horizontal normal stress and (e) shear stress

In fact, the performance of both the associative and mesh corrected orthotropic
models is identical and exact as, for this mesh, the crack is parallel to one of the element
sides. The behaviour of the isotropic damage model is almost perfect, apart from
one subtle aspect: it is unable to reproduce correctly Poisson’s effect after cracking.
To visualize this, Figure 9 (top) shows different contours for this analysis when the
(half)-imposed vertical displacement is δ = 0.05 mm. Figure 9.ISO-A.a shows contours
for the vertical displacement; all variation is contained inside the localization band.
Figure 9.ISO-A.b shows contours for the horizontal displacement; here, a small amount
of “necking” can be observed. It is due to the fact that, on one hand, the isotropic
model preserves the value of the Poisson’s ratio, while on the other, the longitudinal
strain is different inside the localization band than outside. The effect of this necking
is clear in the contours of the longitudinal stress (Figs. ISO-A.c), the transverse stress
(Fig. ISO-A.d) and the shear stress (Fig. ISO-A.e). Particularly, Fig. ISO-A.d shows
how the central band is under transverse tension as it is pulled out by the unloading
elastic part of the strip. The values of the longitudinal stress are globally correct,
but instead of being uniform they present oscillations of about 10 % (Fig. ISO-A.c).
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Figure 10: Results for rectangular strip using mesh B
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Figure 11: Results for rectangular strip using the orthotropic models in mesh B (top:
associative, bottom: mesh corrected). Contours of: (a) vertical displacement, (b)
horizontal displacement (c) vertical normal stress, (d) horizontal normal stress and
(e) shear stress

The values of the transverse and shear stress, which should be exactly null, oscillate
between ±25 % of the correct value of the longitudinal stress (Figs. ISO-A.d and
ISO-A.e).

Figure 10 shows the results obtained with the same three constitutive models
using miss-aligned mesh B. The top plot shows the load vs displacement curve, where
the orthotropic mesh corrected model provides the exact solution, identical to the
one obtained with mesh A, while the other two models give a slightly overestimated
response, with coincident curves for both of them. The explanation for this is found
in the other two plots below. The middle plot shows the strains developed inside an
element inside the crack trajectory: (a) the longitudinal strain is very similar, although
not identical, for the three models, and it behaves like in mesh A, (b) the transverse
strain is also very similar (not identical) for the three models and to what happens in
mesh A, but (c) the shear strain is not null and it grows linearly with the increasing
longitudinal strain. This is the crucial point which relates to the miss-alignment of
the mesh and causes the deficient response of the isotropic and associative orthotropic
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models. The bottom curve shows the corresponding stresses: (a) the longitudinal
stress is only exactly correct for the MCO model, while the other two do not soften
exactly as expected, (b) the transverse stress is only null in the MCO model, and not
in the other two (for the ORT model it increases monotonically after cracking) and
(c) the shear stress is only null for the MCO model, while reaching significant values
in the other two.

Let us consider in detail the behaviour of the three models. Figure 9 (bottom)
shows different contours for the analysis using the isotropic model and mesh B, when
the (half)-imposed vertical displacement is δ = 0.05 mm. Figure 9.ISO-B.a shows
contours for the vertical displacement; all variation is contained inside the zig-zagging
localization band. Figure 9.ISO-B.b shows contours for the horizontal displacement;
a small amount of “necking” can be observed, more pronounced in the top half of the
strip than in the bottom half. The effect of this necking is also clear in the contours of
the longitudinal stress (Figs. ISO-B.c), the transverse stress (Fig. ISO-B.d) and the
shear stress (Fig. ISO-B.e). The values of the longitudinal stress are overestimated by
40 % with respect to the correct uniform value, with oscillations of 35 % (Fig. ISO-
B.c). The values of the transverse and shear stress, which should be null, oscillate
between ±30 % of the value correct longitudinal stress (Figs. ISO-B.d and ISO-B.e).

Figure 11 shows the corresponding contours for the analyses using the orthotropic
models and mesh B, also when the (half)-imposed vertical displacement is δ = 0.05
mm. The top contours correspond to the associative model (ORT) and the bottom
pictures to the mesh corrected model (MCO). Figures 11.ORT.a and MCO.a show con-
tours for the vertical displacement, both correct and identical to the results obtained
with the isotropic model; all variation is contained inside the zig-zagging localization
band. Figure 11.ORT.b shows contours for the horizontal displacement; here, a small
amount of transverse “stretching” can be observed in the localization band, spurious
and completely dependent on the orientation of the mesh. The effect of this stretching
is also clear in the contours of the longitudinal stress (Fig. ORT.c), the transverse
stress (Fig. ORT.d) and the shear stress (Fig. ORT.e). The values of the longitudi-
nal stress are overestimated by 40 % with respect to the correct uniform value, with
oscillations of 10 % (Fig. ORT.c). The values of the transverse and shear stress,
which should be null, oscillate between ±15 % of the value correct longitudinal stress
(Figs. ORT.d and ORT.e). On the other hand, Figure 11.MCO.b shows exact con-
tours for the horizontal displacement obtained with the mesh corrected model. The
corresponding contours for the longitudinal stress (Fig. MCO.c), the transverse stress
(Fig. MCO.d) and the shear stress (Fig. MCO.e) are also correct, almost completely
uniform, the only deviations from the analytical values being due to the tolerance
used in the non-linear solution procedure.

5.2 Notched slab

The second example is a plane-stress notched slab subjected to mode I stretching.
Figure 12 depicts the geometry of the problem; dimensions of the slab are 300 ×
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360 mm × mm (width × height), the length and width of the notch are 167 mm
and 3 mm, respectively, and the thickness of the slab is 10 mm. The load is applied
at two bottom (rigid) pins (at 86.5 mm from the center of the beam) by imposing
horizontal displacements of opposite sign at the left and right pins. The following
material properties are assumed for the slab: Young’s modulus E = 2 GPa, Poisson’s
ratio ν = 0.2, tensile strength σo = 2 MPa and mode I fracture energy Gf = 75 J/m2.
The pins are elastic with: Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3.

This example is selected because it represents a typical situation of propagating
mode I fracture, as the initial notch extends upwards along the vertical central axis
of the slab. On one hand, symmetry conditions allow to determine the path of crack
propagation. On the other hand, the strain and stress fields are complex before and
after cracking; therefore, substantial redistribution of stress is expected as cracking
progresses. Also, this test case highlights the shortcomings of the spatial discretization
used. The example is used to assess the ability of the isotropic (ISO), associative or-
thotropic (ORT) and mesh corrected orthotropic (MCO) damage models to reproduce
these complex conditions. Because of the previous reasons, we will use both the fixed
and rotating versions of the orthotropic models, with the directions of orthotropy fixed
at the onset of cracking or updated at each time step to be aligned with the directions
of principal effective stress (and strain).

The computational domain is discretized in an unstructured mesh with average
mesh size of he = 5 mm (4,983 nodes, 9,633 elements). The mesh is shown in Fig. 13a.

Figure 12: Geometry and loading of notched slab
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(a) (b)

Figure 13: Mesh and deformed shape of notched slab

The computed deformed shape of the slab (using the mesh corrected model) is shown
in Figure 13b (imposed horizontal displacement δ = 0.4 mm, with a displacement
amplification factor of 50). As shown, at this stage the computed crack has progressed
vertically about 125 mm.

Figure 14 shows the results obtained with the three constitutive models. The top
plot shows the load vs displacement curves, both for the fixed and rotating versions
of the orthotropic models. It can be seen that the fixed orthotropic models lock al-
most completely, failing to show any trace of softening global response. This is the
reason why fixed orthotropic models were abandoned in the past. On the other hand,
the rotating mesh corrected orthotropic model displays the correct global behaviour:
although non-linear behaviour starts very early, the global response shows positive
stiffness until the crack is propagates about 10 mm; after the peak load, global soft-
ening is observed. The isotropic model shows a similar response, but the peak load
and the post-peak behaviour are over-estimated because of excessive dissipation. The
standard rotating associative orthotropic model, as expected, fails to properly release
the load after the peak; this is due to stress locking.

The middle plot illustrates the performance of the rotating mesh corrected or-
thotropic model, as it shows the stresses developed at the element located just at the
tip of the initial notch, the first one to crack. Note how the horizontal normal stress,
orthogonal to the crack, reaches the peak stress and immediately starts to soften. The
vertical normal stress, parallel to the crack, continues to grow, and the shear stress
starts to develop at the onset of cracking. For approximately δ = 0.1 mm, stress re-
distribution due to the cracking of the upper elements forces the release of the parallel
stress and the reversal and eventual release of the shear stress. The sudden rotation
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Figure 14: Results for notched slab
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(a) (b)

(c) (d)

Figure 15: Results for the notched slab using the mesh corrected orthotropic model.
Contours of: (a) damage index, (b) horizontal normal stress, (c) vertical normal stress
and (d) shear stress

of the principal strain directions in the element of attention is of about 50o and this
suffices to change the solitary node and, therefore, the structure of the inelastic strains
from that point on. This accommodation of the inelastic strains is not possible if the
axes of orthotropy are kept fixed. This is shown in the bottom plot, which shows
corresponding results using the fixed mesh corrected orthotropic model. Note how in
this case the parallel stress does not undergo any softening and how the shear stress
does not reverse sign.

Let us now consider the global behaviour of three of the models. Figure 15 shows
different contours for the analysis using the rotating mesh corrected orthotropic model,
when the imposed horizontal displacement is δ = 0.4 mm. Figure 15.a shows contours
for the damage index; all damage contained inside the zig-zagging vertical localization
band. The crack has progressed upwards 125 mm from the notch tip. Figure 15.b
shows contours for the horizontal normal stress; concentration of tensile stress marks
the stress field at the tip of the propagating crack. This concentration is also clear in
the contours of the vertical normal stress (Fig. 15c), and, faintly, in the shear stress
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(a) (b)

(c) (d)

Figure 16: Results for the notched slab using the associative orthotropic model. Con-
tours of: (a) damage index, (b) horizontal normal stress, (c) vertical normal stress
and (d) shear stress

(Fig. 15d). The overall behavior is as expected and no oscillations or stress locking is
evident anywhere.

The situation is very different in Figure 16, where the corresponding contours for
the analysis using the rotating associative orthotropic model are shown. Even if the
imposed horizontal displacement is also δ = 0.04 mm, Figure 16.a shows that the crack
has progressed insufficiently, about half as much as with the MCO model. Figures
16.b, 16.c and 16.d show that this is caused by substantial stress locking along the
crack path.

Finally, Figure 17 shows contours for the isotropic model. Here, the crack has
progressed upwards 110 mm (10 % less than with the MCO model). The reason can
be found in Figures 17.b, 17.c and 17.d, which show that the stress locking caused by
the spatial discretization is mitigated to a large extend, but not completely, by the
isotropic nature of damage.
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(a) (b)

(c) (d)

Figure 17: Results for the notched slab using the isotropic model. Contours of: (a)
damage index, (b) horizontal normal stress, (c) vertical normal stress and (d) shear
stress

6 Conclusions

This paper returns to the original spirit of the continuous crack approaches, where
displacements jumps across the crack are smeared over the affected elements and
the behaviour of the crack is established through a softening stress-(total)strain law,
using standard finite elements, such as linear triangles, and local constitutive models,
such as orthotropic continuum damage models. This option, proposed by Rashid in
1968 and still very popular among users of non linear FE codes, had been abandoned
in academic circles due to observed stress locking effects and spurious mesh bias.
Orthotropic models were first over-ruled by a step back to isotropic plasticity and
damage models which do not show such evident locking effects. Later, the whole
smeared approach was displaced in favor of discontinuous displacement approaches.
Finally, even the local nature of the constitutive models has been questioned.

In this paper, the interest is focussed on the problem of locking in orthotropic
constitutive models. First, a framework for non-associative orthotropic continuum
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damage models is provided. Next, a solution for the shear locking observed in the
discrete problem is proposed in the form of a mesh corrected crack model where the
structure of the inelastic strain tensor is linked to the geometry of the cracked element.
The underlying idea is borrowed from the so-called strong discontinuity approach. The
resulting formulation is easily implemented in standard non linear FE codes and is
suitable for engineering applications in 2D and 3D.

Numerical examples show, on one hand, that the use of the proposed mesh cor-
rected crack model notoriously avoids the dependence of the computed structural
response on the mesh directional alignment; on the other, that relating the softening
parameter of the constitutive model to the fracture energy of the material and to the
size of the finite elements in the localization band enables to control the dissipated
energy during the localization (fracture) process, yielding a correct structural response
in the softening regime.

Finally, computed solutions indicate that continuous displacement interpolations
can reproduce problems involving crack propagation as satisfactorily as the discontin-
uous approaches.
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