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Abstract

In this paper a numerical model for the analysis of multi-body frictional wear contact
problems at finite deformations is presented. Wear phenomena are analysed and the main
wear mechanisms are identified. Archard’s wear law provides an estimate of the amount of
wear volume produced during forming operations. Wear phenomena are incorporated into the
Coulomb frictional model by considering a friction coefficient as a function of an internal variable
to be defined as the frictional dissipation or the slip amount.

Within the context of a displacement-driven formulation of frictional contact problems,
i.e. penalty or augmented Lagrangian methods, and exploiting the computational framework
developed for plasticity, two methods are considered for the time integration of the constrained
frictional evolution problem: the lowest Backward Difference (BD) method, Backward Euler
(BE) algorithm, and an Implicit Runge-Kutta (IRK) method, the generalized Projected Mid-
Point (PMP) algorithm. The constrained frictional algebraic problem arising from the appli-
cation of these time integration algorithms to the constrained frictional evolution problem, is
amenable to exact linearization leading to an assymptotic quadratic rate of convergence when
used within a Newton-Raphson solution scheme.

The numerical model has been implemented into an enhanced version of the computational
finite element program FEAP. Numerical examples and simulation of industrial metal forming
processes show the performance of the numerical model in the analysis of frictional wear contact
problems.

1. Introduction. Motivation and Goals.

Numerical analysis of frictional contact problems has been one of the research topics
of main interest over the last years. Frictional contact problems arises in many applica-
tion fields such as metal forming processes, crashworthiness and projectile impact, among
others. In spite of important progresses achieved in the computational mechanics, the
large scale numerical simulation of these topics continuous to be nowadays a very complex
task due mainly to the highly nonlinear nature of the problem, usually involving nonlin-
ear kinematics, large deformations, large inelastic strains, nonlinear boundary conditions,
frictional contact interaction, wear phenomena, large slips and in many cases coupled
thermomechanical effects. During the last decade, a growing interest on these and related
topics, has been shown by many industrial companies, such as automotive and aeronauti-
cal, motivated by the need to get high quality final products and to reduce manufacturing
costs. The phenomena related to wear have an important impact on the economy of in-
dustrial metal forming processes. Statistical results show that wear is the dominating die
failure mechanism for both bulk and sheet forming operations and has therefore an impor-
tant influence on the production costs of formed products. Methodologies currently used
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are based mainly“on designers intuition and experience, which are not the most adequate
when considering the complexity of the problem. Experts claim that a more quantitative
approach to die design would improve service life considerably, leading to an important
reduction of manufacturing costs for forging and stamping production. To enhance avail-
able decision support systems used in industrial design and optimization practice, taking
into account complex phenomena such as wear effects, is one of the goals to be achieved
in the up-coming years.

The phenomena of wear are extremely complex and an attempt to understand and
quantify the mechanisms involved requires fundamental studies at the micromechanical
level. The aim of these studies has been to develop appropriate micromechanical models
to be able to estimate and to model wear effects in terms of slip amount, slip velocity,
contact pressure, frictional dissipation and temperature for given tribological conditions
such as surface hardness, surface roughness, lubricant film thickness, etc. The computer
implementation of numerical models characterizing wear effects derived from microme-
chanical models and laboratory tests, is necessary to estimate and to model with enhanced
accuracy, complex frictional contact phenomena arising in metal forming operations. An
analysis of wear phenomena, as the dominant die failure mechanism in bulk and sheet
forming operations, is presented in Section 2. Also, the main wear mechanisms for hot
forging and sheet forming processes are identified and Archard’s wear law is considered as
an estimate of, both adhesive and abrasive, wear volume amount produced in the forming
operations. ‘

Mathematically, the numerical analysis of frictional contact problems amounts to find-
ing the solution of an Initial Boundary Value Problem (IBVP) within a constrained solution
space. Consideration of the weak form of momentum balance equations induces limitations
on admissible variations in the tangent solution space, imposed by the physical constraints,
leading to variational inequalities. See, for example, KIKUCHI & ODEN [1988] and Du-
VAUT & LIONs [1972]. A regularization of the frictional contact constraints, using for
instance penalty or augmented Lagrangian methods, allows to bypass the need to find a
solution within a constrained solution space and provides a very convenient displacement-
driven frictional contact formulation. The penalty method has been used by ODEN &
PIRES [1984], CHENG & KikucHI [1985], HALLQUIST, GOUDREAU & BENsON [1985],
SiMo, WRIGGERS & TAYLOR [1985], CURNIER & ALART [1988], WRIGGERS, VU VAN
& STEIN [1990], BELYTSCHKO & NEAL [1991], LAURSEN [1992] and LAURSEN & SIMO
[1992,1993] among others. On the other hand, the augmented Lagrangian method has
been used, for example, by LAURSEN [1992], SIMO & LAURSEN [1992], LAURSEN & SIMO
[1992,1994] and LAURSEN & GOVINDIEE [1994]. Furthermore, the displacement-driven
formulation of frictional contact problems, allows to widely exploit the framework devel-
oped for computational plasticity. See, for example, SIMO & HUGHES [1994] and SIMO
[1994], for an excellent presentation of current topics and last developments in computa-
tional plasticity. In particular, return mapping algorithms developed for plasticity can be
applied to integrate the frictional traction. Frictional return mapping algorithms have been
used by GIANNAKOPOULOS [1989], WRIGGERS, VU VAN & STEIN [1990] and LAURSEN
& Simo [1993,1994], among others. Enhanced Coulomb frictional models, using a non-
constant friction coefficient have been used, for example, by WRIGGERS [1987] and OWEN
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et al. [1995]. Numerical models for coupled thermomechanical frictional contact problems
have been used by WRIGGERS & MIEHE [1992], among others. A fully nonlinear kinemat-
ics formulation of frictionless contact problems, including the derivation of the algorithmic
contact operators, was developed by WRIGGERS & SIMO [1985] for 2D linear surface el-
ements and by PARISH [1989] for 3D linear surface elements. An extension to frictional
contact problems for 2D linear surface elements was provided by WRIGGERS [1987]. A
general fully nonlinear kinematics formulation of multi-body frictional contact problems
at finite strain was first developed on a continuum setting for 3D and 2D contact surfaces,
by LAURSEN & SIMO [1993]. A new frictional time integration algorithm for large slip
multi-body frictional contact problems at finite deformations has been recently proposed
by AGELET DE SARACIBAR [1995].

The remaining of the paper is as follows. Section 3, deals with the numerical anal-
ysis of frictional wear contact problems. The multi-body frictional contact formulation
proposed by LAURSEN & SiMO [1993,1994], fully developed on a continuum setting, has
been extended to accomodate wear phenomena, throughout the introduction of an internal
variable, to be defined as the frictional dissipation or the slip amount. Then the Coulomb
frictional model has been modified to incorporate a friction coefficient as a function of this
internal variable.

In Section 4, the discretization of the initial boundary value problem including fric-
tional wear contact constraints is presented. The focuss has been placed on the time inte-
gration of the constrained frictional evolution problem. Two time integration algorithms
are presented. First, the lower Backward-Difference (BD) method, the Backward-Euler
(BE) algorithm. Second, within the Implicit Runge-Kutta (IRK) methods, the general-
ized Projected Mid-Point (PMP) algorithm. This algorithm was first proposed, within a
J2 plasticity context, by SIMO [1994]. See also AGELET DE SARACIBAR [1995]. Both
algorithms are amenable to exact linearization and the algorithmic frictional wear contact
tangent operators are derived.

The frictional wear contact model has been implemented into an enhanced version of
the computational finite element program FEAP developed by R.L. Taylor and J.C. Simo
and described in ZIENKIEWICZ & TAYLOR [1991]. Numerical examples and metal forming
simulations are provided in Section 5. Finally some concluding remarks are included.

2. Wear Model.

Wear phenomena are the dominanting failure mechanism of dies in both sheet and
bulk metal forming operations. When considering wear in forming process attention should
be focussed on the following items: type of die failure, choice of die material, surface
treatment and lubrication, process parameters such as temperature and forming speed
and predominant wear mechanisms. The life-time of a die, is usually expressed by the
number of parts that can be produced before the dimensions of the parts exceed the given
tolerances or serious damage of the die occur. To be able to estimate, to predict and to
incorporate into a numerical model the complex wear phenomena will improve considerably
the life of dies in metal forming operations.
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(A) Wear mechanisms in hot forging processes. Statistical results show that wear is
up to a 60 — 70%, the dominating failure mechanism for hot forging dies, and has therefore
an important influence on the production costs of forged products. Critical regions in
a forging die are places exposed to a very high pressure, internal corners with a notch
effect, areas that reach a very high temperature and finally regions with large slip amounts
on the die. Statistical investigations of the type of die failure which have the greatest
influence on the scrapping of forging dies, show that the primary reason for scrapping a
die are wear phenomena at external corners or at roundings. In order to describe wear as
the main reason for the scrapping of forging tools it is important to determine which are
the main mechanisms that causes wear. It is generally agreed that the most important
wear mechanism in hot forging is three body abrasive wear caused by hard scale particles
embedded in the surface of the work piece. Experimental results show that the amount
and type of scale, the adhesion of the scale to the surface of the work piece and the
hardness (chemical structure) of the scale are the determining factors for tool wear. Wear
is also found to be proportional to the hardness of the work piece material and inversely
proportional to the hardness of the die material at the maximum temperature reached by
the surface during the forging process.

(B) Wear mechanisms in sheet metal forming processes. In sheet metal forming pro-
cesses, it has been found that 65% of tool failure is caused by adhesive and abrasive wear
in the drawbead and die radius regions. Due to the surface roughness and asperities, when
two surfaces are pressed together, the real contact area will be much smaller that the
apparent one. The pressure on these asperities will be sufficiently high to cause plastic
deformations on the asperities. Also the sliding of the sheet over the tool surface leads to
heating due to frictional dissipation. The high surface pressure combined with the heat
generation due to frictional dissipation leads to welding of the asperities of the tool and
sheet surfaces. The break off of these welded asperities can scratch the tool surface.

(C) Wear model. The two most important mechanisms of wear in forming processes
have been identified as adhesive and abrasive wear.

(C1) Adhesive wear. During relative sliding between two surfaces, the lubricant film
may thin out and break down, allowing the two materials to cold weld at the asperities
contact. Further relative sliding will break either in the cold welded contact or in one of
the materials. This process does not produce any free wear particles but could possibly
transfer a small amount of material from one surface to another. On the other hand, by
continuous sliding a free wear particle can be formed by two mechanisms: (a) Adhesion of
particles takes place under high pressure. Continuous sliding relieves the pressure in the
contact and the particle may break off. (b) Due to chemical changes in the particle when
is transferred from one surface to another, the particle may oxidize and thus adhere poorly
to the new surface. The free wear particles and the accumulation of material formed by
adhesive wear will often cause abrasive wear.

Assuming circular contacting asperities of the same size, ARCHARD [1953] proposed
a model for adhesive wear with the following assumptions: it is proportional to the local
sliding length and to the normal pressure, it is inversely proportional to the local hardness
of the surface (the yield stress of a deformed asperity) and it is dependent of a wear
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constant (to be determined experimentally and ranging from 0 to 1), which indicates the
probability of the formation of a particle in an asperity contact. This constant will depend
on the work piece and die material, the tendency to cold weld, and the interface conditions
(surface films, lubricant film, temperature, etc.). Then Archard’s law for adhesive wear
can be written (in rate form) as

7 = Kaan g $/H) (2.1)

where Z is the (adhesive) wear volume per unit area, g is the local normal pressure, s is
the local sliding length, H is the local hardness of the material, K 45, is the adhesive wear
constant and the superposed dot means material time derivation.

(C2) Abrasive wear. The term abrasive covers the situations of two-body and three-
body abrasive wear. In two-body abrasive wear an asperity from the harder material
ploughs a furrow in the softer material during the relative sliding. In three-body abrasive
wear the furrow is ploughed by a hard particle. In two-body abrasive wear, normally only
the softer surface is subjected to wear and if the harder surface is sufficiently smooth, it is
possible to eliminate the two-body abrasive wear totally. The three-body abrasive wear is
much more difficult to eliminate as it is very difficult to avoid impurities, including hard
particles, between the two surfaces in contact. Hard particles that can cause abrasion are
for instance, dust, wear particles from adhesive wear that are very hard after severe plastic
deformations, particles formed by corrosion of the surface (i.e. scale in hot forging), etc.

Assuming a number of isolated and uniform asperity contacts, it is possible to derive
a simplified model for abrasive wear, similar to the Archard’s model for adhesive wear.
Here the law for abrasive wear can be written (in rate form) as

7 = Koy [q $/H] (2.2)

where Z is the (abrasive) wear volume per unit area and K3, is the abrasive wear constant.
The abrasive wear law states that (instantaneuous) abrasive wear is proportional to the
local sliding length and normal pressure, inversely proportional to the local hardness of
the surface and depends of an abrasive wear constant (to be determined experimentally
and ranging from 0 to 1), now dependent on the surface topography, the presence of hard
abrasive particles, lubricant, etc.

From (2.1) and (2.2) a unified law for adhesive and abrasive wear can be written (in
rate form) as

Z = Kwea,r [q 'é/H] (23)

where Z is the (adhesive/abrasive) wear volume per unit area and Kyeqr is @ wear constant
to be determined experimentally (ranging from 0 to 1), which for adhesive wear mecha-
nisms will depend mainly on the material combination, interface conditions, lubricant and
temperature, and for abrasive wear mechanisms will depend mainly on surface topology,
hard particles between surfaces and lubricant.

The local hardness of the die surface is a strong function of the local temperature
of the die surface and a fully coupled thermomechanical model would be necessary. The
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sliding length, which is the amount of material passing a specific point on the die surface,
is considered to be the most important parameter in the wear estimation, due to its strong
influence on the heat generation by frictional dissipation.

In the time discrete setting, within a typical time sub-interval [t,,%,41] C [0,T] of the
time interval of interest and using for instance a BE algorithm, time integration of wear
volume rate per unit area given by (2.3), leads to the discrete adhesive and abrasive wear
algorithmic expression

Zn+1 — Zn + Kyear [Qn+1 (3n+1 - Sn)/H'rH—l] (24)

where (+), and (-)n+1 denote the algorithmic approximation to their exact values at times
t, and t,41, respectively.

REMARK 2.1. Under some simplified assumptions, i.e. constant surface material hard-
ness, the wear evolution estimate can be integrated in closed-form leading to an explicit
wear function of the (accumulated) frictional dissipation.

Lets consider, as a simple model problem, a Coulomb frictional model with a friction
coefficient defined as a function of the frictional dissipation rate. Then, the frictional
dissipation evolution equation takes the form:

Dipic 1= 6 := p(a) g 8 (2.5)

Using (2.3) and (2.5) the following expression can be derived

& (2.6)

Lets consider now two simple cases: friction coefficient as a linear function of frictional
dissipation and constant friction coefficient.

i. Linear friction coefficient. Assume a friction coefficient described by a linear func-
tion of the frictional dissipation

per) = po + p1 (2.7)

Substituting (2.7) into (2.6) and integrating leads to the following logarithmic closed-form
expression for the wear estimate

Kyear /L(a)
Z=——:1 2.8
ussr 1og (142 29)

ii. Constant friction coefficient. Assume a constant friction coefficient

u(e) = o (2.9)
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Substituting (2.9) into (2.6) and integrating leads to the following linear closed-form ex-
pression for the wear estimate

Kwear
Z =2 2.10
o 1 (2.10)

3. Formulation of the Multi-Body Frictional Wear Contact Problem.

In this section we present the continuum formulation of the multi-body frictional wear
contact problem.

3.1. Notation.

Let 2 < ngim < 3 be the space dimension and I := [0,7] C IR4 the time interval of
interest. Let the open sets £2(1) ¢ IR™™ and 2(2) c R™ ™ with smooth boundaries 2
and 802(*) and closures 2V := QM Y 902® and 2@ .= @ y 02| be the reference
placement of two continuum bodies B and B(®), with material particles labeled X € 2(1)
and Y € 2(® respectively.

Denote by ¢ : 2() x I — IR™™ the orientation preserving deformation map of the
body B®), with material velocities V(9 := 8,0(9) and deformation gradients F(?) := Dp(9),
For each time ¢ € I, the mapping t € I gogi) := ¢((.,t) represents a one-parameter
family of configurations indexed by time ¢, which maps the reference placement of body
B onto its current placement St(z) ! cpgz)(B(i)) C R™ ™,

We will assume that no contact forces are present between the two bodies at the
reference configuration. Subsequent configurations cause the two bodies to physically
contact and produce interactive forces during some portion of I = [0, 7.

We will denote as the contact surface I') C 82() the part of the boundary of the
body B such that all material points where contact will occur at any time ¢ € I are
included. The current placement of the contact surface I'¥) is given by (9 := gogl)(F(i)).

Attention will be focussed to material points on these surfaces denoted as X € I'¥)
and Y € I'®). Current placement of these particles is given by = = <p$1)(X) e v and
Y= cpgz)(Y) € 7®). See FIGURE 3.1 for an illustration of the notation to be used.

(A) Parametrization of the contact surfaces. Let A(Y) C IR™%™~! be a parent domain
for the contact surface of body B(Y). A parametrization of the contact surface for each
body B is introduced by a family of (orientation preserving) one-parameter mappings
indexed by time, ¢§i) : A c R™Mm 1 [R™m guch that ') = 't/’((,i)(A(i)) and y(9 :=
¢§i)(A(i)). Using the mapping composition rule, it also follows that 't/)gi) = (pgi) 0 '(,b(()i).

In particular, for any material point Y € I'(®) with current placement y € 72, there
exist some point & € A(®) such that Y := 1/1((,2)({) and y := gz)(ﬁ) It will be assumed in
what follows that these parametrizations have the required smoothness conditions. FIGURE
3.2 shows the parametrization map of reference and current placement of a contact surface.
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FIGURE 3.1. Schematic description of two interacting bodies at reference
and current placements. Reference and current placement of contact surfaces.

3.2. Frictional contact constraints

Using a standard notation in contact mechanics we will assign to each pair of contact
surfaces involved in the problem, the roles of slave and master surface. In particular, let
I'D be the slave surface and I'®) be the master surface. Additionally, we will denote
slave particles and master particles to the material points of the slave and master surfaces,
respectively. With this notation in hand, we will require that any slave particle may not
penetrate the master surface, at any time ¢ € I.

Although in the continuum setting the slave-master notation plays no role, in the
discrete setting this choice becomes important.

(A) Closest-point projection of a slave particle onto a master surface. Attention is
focussed to any slave particle X € I')) with current placement @ := gogl)(X) € v and

to the master surface I'*), with particles Y € I"(®) and current placement y := <p$2)(Y) €
(2)
y'%.

Let g(X,t) € ~2) be the closest-point projection of the current position of the slave
particle X onto the current placement of the master surface I'?), defined as

(X, 1) = arg_min {lloe”(X) = ¢i”(¥)]} (3.1)

§(X,1) == oV (7) (3.2)
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FIGURE 3.2. Contact surfaces parametrization. Parametrization map of
reference and current placement of a contact surface.

The definition of the closest-point projection allows us to define the distance between any
slave particle and the master surface at any time ¢ € 1.

Let gn(X,t) be the gap function defined for any slave particle X € I'M and for any
time ¢ € I as (minus) the distance of the current placement of this particle to the current
placement of the master surface ~2) = (pgz)(F(z)). Using the definition of the closest-point
projection stated above, the gap function gn(X,t) may be defined as

an(X,1) == —[e(X) — P (X,1))] - v (3.3)

where v : v(2) — §2 is the unit outward normal field to the current placement of the master
surface particularized at the closest-point projection §(X,t) € ~(2), Here S? denotes the
unit sphere defined as

§%:={v eR™" : |v|=1} (3.4)

(B) Contact pressure. Let P(l)(X,t) be the first Piola-Kirchhoff stress tensor and
N (1)(X ) the unit outward normal to the slave surface I’ (1) in the reference configuration.
The nominal (Piola) frictional contact traction at X € I' (1) is given as

t(Xx,t) = PO(X,t) - NO(X) (3.5)
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Additionally one defines the contact pressure ¢(X,%) as minus the projection of the nom-
inal frictional contact traction () onto the unit outward normal to the current placement
of the slave surface n(1)(X,t). Then we can split the nominal frictional contact as

tM(X,1) = —tn(X,1) n(V(X,t) + P, otV (X, 1) (3.6)

where IP_ 1 t(1) is the projection of t(!) onto the associated tangent plane.
With the required surface smoothness conditions, when the slave particle X comes
into contact with the master surface, the following relation holds

v=n®(Y(X,1),t) = —nV(X,1) (3.7)

Here (1) is the unit outward normal to the slave surface at the point = = gogl)(X) and

v := n(? is the unit outward normal to the the master surface at the point § = <p$2)(Y).

Then an equivalent expression for the nominal frictional contact traction split is given
as

t(X,1) = tn(X,1) v(V(X,1),1) + PtV X, 1) (3.8)

(C) Contact normal constraints. With the preceding definitions for the gap func-
tion gn(X,t) and the contact pressure t5(X,t) we can introduce the normal constraints
induced by the frictionless contact problem.

i. Impenetrability kinematic constraint. The kinematic constraint induced by the
impenetrability requirement can be expressed in terms of the gap function gn(X,?) as

gn(X,t) <0 (3.9)

ii. Non-adhesion constraint. The non-adhesion constraint implies that the contact
pressure must be non-negative. Mathematically, this condition can be expressed as
tN(Xat)ZO if gN(X7t):0

3.10
tn(X,t)=0 if gn(X,t)<0 (3:10)

ili. Contact persistency condition. This condition implies the requirement that the
rate of separation at the contact points must be zero for positive contact pressure. Math-
ematically, this persistency condition takes the form

in(X,t) gn(X,t) =0 (3.11)

The above constraints set of impenetrability, non-adherence and contact persistency, can
be expressed as Kuhn-Tucker complementarity conditions as

(3.12)
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(D) Convected basis on the master surface. Exploiting the geometric structure induced
by the 1mpenetrab1hty constraint through the definition of the gap function gn(X,t), we
introduce an associated convected basis, suitable for definition of the frictional constraints.
The definitions of the convected frames emanate from the differentiation of the contact
surfaces with respect to the convected coordinates. Along with the convected basis, dual
or reciprocal convected basis are defined following a standard procedure. Attention in
what follows will be restricted to ng;m = 3. Particularization for ng4;m = 2 is trivial once
the three-dimensional case has been considered.

Using the parametrization of the contact surfaces introduced above we consider a
point & := (£1,£2) € A® of the parent domain, such that

Y =92(8), yi=vE) (3.13)

Attached to each master particle Y € I'®) we introduce the convected surface basis Eq(£)
and e, (), a = 1,2 on the reference and current configurations, respectively, as

EL (&) :=92(8),  ealt) = 90() (3.14)

where (+) o denotes partial derivative with respect to £*. Using the composition map
(2) = <p52) 1/)32) the following relation holds

eq(£) = FO (9§7(8)) - Ba(£) (3.15)

where F( ). D(,o( ) is the deformation gradient.

Let consider now for any slave particle X € I'D the master particle Y (X ,t) € re
such that satisfies the closest-point projection minimization condition given by (3.1). Then
for some point & := (£',82) € A®) of the parent domain we have

Y(X,8) = 9PEX, 1)),  9(X,1) =P EX,1) (3.16)

Attached to the master particle ¥(X,t) € I'® we define the convected surface basis on
the reference and current configurations, respectively, as

(X, 1) = Ba(§(X,1) ,  Ta(X,1) = ea(€(X,1)) (3.17)

Using the composition map 1/)5 = (sz) o 1/)((,2) the following relation holds

T = FO (P (&) - 72¢7 (3.18)

showing that the surface basis vectors rr¢f and 7, are convected through the deformation
gradient map Ft(z) at the master particle Y (X,1).
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Additionaly, the unit outward normals vref € §2 and v € §? at the master particle
Y (X,t) on the reference and current configurations, respectively, can be defined as

ref Tlref X T;ef T X T 318
T _ref ref ’ Vs | x 7| (3:19)
|7 x| LER S

The vectors 77¢f € T,ves 5% and 7, € T,S%, a = 1,2 span the tangent spaces T res 52 and
T,S? to the S2 unit sphere at ™/ and v, respectively. Here the tangent space to the 52
unit sphere at v € S? is defined as

T,5% := {6v € R™™ : év-v =0} (3.20)

The convected surface basis vectors 77¢f and 7,, @ = 1,2, augmented with the unit
outward normals v™¢f and v, provides local spatial frames at the master particle Y(X,t)
on the reference and current configurations, respectively.

(E) Surface metric and curvature on the reference and current configurations. The

convected surface basis vectors 77¢f and 7,, o = 1,2, induces a surface metric or first

fundamental form on the reference and current configurations, defined respectively as

Maﬁ = T;ef . Tgef ) map = Ta® T,B (321)

Inverse surface metrics M and m®P are defined in the usual manner. Additionally,
dual surface basis on the reference and current configurations are straightforward defined
respectively as

Tref = Mo‘ﬁ‘rgef , F% 1= m“ﬁrﬂ (3.22)

The variation of the convected surface basis along the convected coordinates, together with
the unit normal, induces the second fundamental form or surface curvature defined, on the
reference and current configurations, as

ko = Eop(8)-v™,  Kap:=eap(é) v (3.23)
5

(F) Relative slip velocity on the convected description. We introduce the relative slip
velocity on the convected (reference) configuration defined as

vref (X, 1) = V(X 1) (3.24)
The relative velocity on the convected description can be expressed in terms of the rate of

the parent coordinates, using the map (3.16)1, the convected surface basis on the reference
configuration given by (3.17); and applying the chain rule derivation, as

vt (X 1) o= Eorle! (3.25)
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As expected, the convected relative slip velocity defined by (3.24) or (3.25) lies in the
tangent plane to the master surface at the master point Y (X,1).

The relative velocity on the current configuration can be defined as the push-forward

of the relative velocity in the convected description with the deformation gradient Ft(z), as
vr(X,1) = FO(E(X 1)) - 05 (X, 1) (3.26)

The one-form associated to the relative velocity in the convected description is defined as

'vgrd(X,t) = E."‘Magrrﬁef (3.27)

while the one-form associated to the relative velocity in the current configuration is defined
as the push-forward of the corresponding one-form in the convected description, as

vh(X 1) i= Ee MoprP (3.28)

REMARK 3.1. The definition of 'v%‘(X,t) is frame indifferent, despite the fact that
the material and spatial velocity fields are not. This crucial property arises because the
definition of vk(X,t) uses the convected basis. []

REMARK 3.2.  We note that the definition of the one-form associated to the relative
velocity involves the metric M g at the point ¥ (X,t) in the reference configuration, and
not the metric mqyg in the current configuration. This is because we define 'vf"p as the push-
forward of the corresponding one-form in the convected description and not as the one-form
associated to the spatial vector v in the current configuration. This last definition leads to
an increase in the computational cost, due to the complexities involved in the linearization

of the frictional integration algorithm. []

(G) Frictional traction. We define the nominal frictional tangent traction t7(X,t) as
(minus) the projection of the nominal frictional contact traction t(1)(X ) onto the unit
normal v, as

Ctp(X, 1) = —TP, (X, 1) = t5(X, 1) Ta (3.29)
Additionally the one-form associated to this object is defined as

t(X,1) i= P, t*D(X ) = i1 (X, 1) 7 (3.30)

(H) Frictional constraints. With the preceding definitions for the relative slip velocity
and frictional traction, the frictional constraints are introduced as follows:

i. Slip function. Admissible traction space. We define a slip function @ : T,,5%? x Ry x
IR} — IR such that the states (t%,tn) € T,5% x IR in the traction space and the internal
variable a € IR are constrained to lie in the closed set of admissible states defined as

IE; := {(th,tn,0) € T, x Ry x Ry : &(th,tn,a) < 0} (3.31)
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In particular, the classical friction Coulomb law can be extended to accomodate wear
effects using a friction coefficient defined as a function of an internal variable o, such as
the frictional dissipation or the slip amount. Then the admissible states space is defined
by the slip function:

Bty v, @) 1= 2]l — p(a)tn (3.32)

where || - || denotes the norm of its argument and p(e) is the Coulomb friction coefficient.

ii. Slip rule and internal evolution equation. The slip rule is defined as follows

vh(X,t):=0 if B(th,tn,a) <0

b o b (3.33)
v(X,t) == pr if &(th,tn,a) =0

where ph, := 3t2‘45(t5~,t1v,a) and v € IR, is the non-negative slip consistency factor. For

the frictional Coulomb law p%w is the normalized one-form frictional traction defined as
Pl i= th/ 1t
Additionally one needs to define an evolution equation for the internal variable a.
As stated above, one may define « as the slip amount leading to the following evolution
equation:
&(X,t):=0 if S(th,tn,a) <0

! (3.34)
a(X,t) =4 if &(tp,tn,a)=0

or, alternatively, one may define a as the frictional dissipation, leading to the following
evolution equation:

&(X,t):=0 if ®(th,tn,a) <0

] L 1 " _ " (3.35)
&(X,t) =ty vy =7 ||ty if &(tp,tn,a)=0
where the last expression in (3.35); comes out using the slip rule (3.33).
These two alternative definitions can be easily accomodated into a single expression
in the form:

&(X,t) =0 if  B(th,tn,a) <0

3.36
WX )=y [(L—w) +wltyll]l i B(th,tv,a) =0 (3:36)

where w € [0,1] is a constant such that, for w = 0 one recovers (3.34) and o is defined as
the slip amount, for w = 1 one recovers (3.35) and «a is defined as the frictional dissipation,
and additionally for w € (0,1) « is defined as a linear combination of slip amount and
frictional dissipation. In what follows, we will use this single expression for the evolution
equation of a, allowing to easily recover both alternative definitions as a particular case.

iii. Slip consistency condition. The slip consistency condition states that the rate of
change of the slip function must be zero for positive values of the slip consistency factor.
Mathematically this condition is expressed as

v $(th,tn,a) =0 (3.37)
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The above expressions lead to a constrained evolution problem defined by the evolution
equations

'v’.bT(X,t) =9 pr

3.38
&(X,1) =7 [(1 - w) +wltzl] (539

subjected to the constraints, expressed as Kuhn-Tucker complementarity conditions as,

(3.39)

3.3. Regulérized frictional contact constraints

As discussed in KIKUCHI & ODEN [1988], for instance, solution of initial boundary
value problems (IBVP) subject to constraints such as (3.12) and (3.39) amounts to finding
a solution within a constrained solution space. Consideration of corresponding weak forms
induces limitations on admissible variations in the tangent solution space, imposed by

the physical constraints, leading to variational inequalities. See, for example, KIKUCHI &
ODEN [1988] or DUVAUT & LIONS [1972].

Different methods have been used to bypass the need to find a solution within a
constrained configuration solution space:

i. Penalization. In the penalty method the configuration solution space turns out to be
unconstrained. The penalty method leads to a very convenient displacement-driven formu-
lation of the frictional contact problem. See, for example, LAURSEN & SIMO [1991-1994],
WRIGGERS & MIEHE [1992] or WRIGGERS, VU VAN & STEIN [1990]. Furthermore, the
constraints induced by the frictional contact problem, can be viewed as constitutive equa-
tions of a constrained evolution problem, exactly as the constitutive equations for plasticity.
Thus, all the well established algorithms developed for the time integration evolution equa-
tions of inelasticity, such as return mapping algorithms, can be applied. See WRIGGERS
[1987], GIANNAKOPOULOS [1989], WRIGGERS, VU VAN & STEIN [1990] and LAURSEN
& SiMo [1991-1994] among others. As a drawback of the penalty method, the constraints
are exactly satisfied for infinite values of the penalty parameters only, leading to an infinite
ill-conditioning of the tangent operator. On the other hand the use of too small values
for the penalty parameters, leads to unacceptable violations of the kinematic constraints.
Then, the choice of an appropiate value for the penalty parameters, must rely in a com-
promise between acceptable violations of the constraints and an enough small condition
number of the tangent operator. The main drawback is the high sensitivity to the choice
of the penalty parameters.

ii. Lagrange Multipliers. In the Lagrange Multipliers method the configuration solu-
tion space turns out to be unconstrained, but a new and constrained solution space, for
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the multipliers, is introduced. This will leads to an increase in the number of equations to
be solved. Furthermore, the resulting tangent operator is indefinite (zero diagonal block
associated to the multipliers) and special care must be taken in the solution procedure.
On the other hand the constraints are satisfied exactly. Lagrange multipliers method has
been used, for example, by BATHE & CHAUDHARY [1985] and GALLEGO & ANZzA [1989].

iii. Perturbed Lagrange Multipliers. The Perturbed Lagrange Multipliers method can
be viewed as a regularization of the classical Lagrange Multipliers, leading to a definite
tangent operator, through the introduction of a perturbation parameter. Within this
approach, both the penalty and classical Lagrange Multipliers can be formulated in an
unified manner. When the perturbation parameter goes to infinity, the classical Lagrange
Multipliers method is recovered. On the other hand, solving for the multipliers the penalty
method can be recovered. A perturbed Lagrange multipliers frictional contact formulation
has been used by SiMO, WRIGGERS & TAYLOR [1985], JU & TAYLOR [1988].

iv. Augmented Lagrangian. In the Augmented Lagrangian method the constraints are
exactly satisfied at finite values of the penalty parameters. This overcomes the main prob-
lems associated with the penalty method: choice of penalty parameters and ill-conditioning
of the tangent operator. Furthermore, used in conjunction with Uzawa’s algorithm, no in-
crease of the number of equations to be solved is produced and the multipliers are simply
updated after each converged equilibrium step (nested Uzawa’s algorithm) or after each
equilibrium iteration (simultaneous Uzawa’s algorithm). In the nested augmentation al-
gorithm an outer extra loop to perform the augmentations is needed, but the quadratic
rate of convergence of Newton-Raphson method is preserved. On the other hand, in the
simultaneous augmentation algorithm no extra loops are needed, but the update of the
multipliers destroys the quadratic rate of convergence typical of Newton-Raphson itera-
tion procedure. Augmented Lagrangian formulations for frictional contact problems have
been used by S1MO & LAURSEN [1992], LAURSEN & SiMO [1992,1994] and LAURSEN &
GOVINDJEE [1994].

Here we will use the penalty method to remove the restrictions associated to the con-
strained solution space and enforce the constraints through the introduction of constituve
equations for the frictional contact traction.

(A) Regularization of normal constraints. The normal constraints induced by the
contact problem are regularized introducing a normal penalty parameter ex and substi-
tuting the Kuhn-Tucker complementarity conditions defined in (3.12) with the following
constitutive-like equation for the contact pressure

tn(X,t) := en(gn(X,1)) (3.40)

where (-) is the Macauley bracket, representing the positive part of its operand. Expres-
sion (3.40) can be viewed as a Yosida regularization of the Kuhn-Tucker complementarity
conditions given by (3.12), providing a constitutive-like equation for the contact pressure
and leading to a convenient displacement-driven formulation.

Comparison of (3.40) with (3.12) reveals that now a (hopefully small) violation of the
constraints (3.12) is allowed, and that the constraints will be exactly satisfied as ey — oo.
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(B) Regularization of frictional constraints. The regularization of the constrained fric-
tional evolution problem defined by (3.38) and (3.39) is performed introducing a tangential
penalty parameter er playing the role of constitutive parameter in the relative slip velocity
evolution equation. Then the regularized constrained frictional evolution problem takes
the form:

1
b b b
vp(X,1) = + —Ly,t
7( ) =17 Pr ep T T (3.41)
&(X,t) =7 [(1 - w) + w|/ty|]
subjected to the following constraints
B(th,tn,a) <0
¥=20
b (3.42)
S(th,tn,a) =0

where L, t% is the Lie derivative of the frictional tangent traction along the flow induced
by the relative slip velocity vr, defined as

Lopthy = tpam® (3.43)

Comparison of (3.41) and (3.42) with (3.38) and (3.39), reveals that the frictional con-
straints are exactly satisfied as e — 0o, in which case the (plastic) slip rate « is equal to
the norm of the relative slip velocity 'v,l}. Otherwise, it is assumed that the relative slip
velocity can be decomposed into an elastic or recoverable part and a plastic or irreversible
part. Introduction of the Lie derivative in the regularized relative slip velocity, maintains

frame indifference of the frictional evolution equations.

Using the definition of the one-form relative slip velocity given by (3.28) and the Lie
derivative of the frictional tangent traction along the flow induced by the relative slip
velocity given by (3.43), the component form of the frictional tangent traction evolution
equation (3.41);, along with the internal variable evolution equation, takes the form

it = €7 (MoplP —v pry)

3.44)
& =7 [(1—w)+wl|th] (

(C) Frictional operator split. As we have seen above, the regularization of the frictional
constraint problem leads to the following frictional constrained evolution problem

‘Cth?T = €T [v?p — Y’ 6t;ds(t?[v,tN,a)]
‘ &= [(1-w)+w|th]
S(th,tn,a) <0, >0, v &(thtn,a)=0
v $(th,tn,a) =0

(3.45)
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Within the context of the product formula algorithms, a frictional operator split of
the constrained evolution problem can be introduced by means of a trial state, defined by
freezing the irreversible (plastic) slip response, i.e. setting v = 0, as follows

Trial state Return mapping
,CthE_’r = €T 'vr_bp LthI’.;I‘ = =er Y at','_,,fp(t;"tN>a)
&= 0 1= (1= w) + wl] (3.46)
ufigonsirained é(t?l‘atNaa) <0,v20,~ gp(t!."[‘atN)o‘) =0

REMARK 3.3. We point out that here only the regularization of the slip rule has been
performed and (3.41) and (3.42) can be viewed as the governing equations of a rate-
independent constrained frictional evolution problem. On the other hand, a Yosida regu-
larization of the complementary Kuhn-Tucker frictional conditions (3.39), analogously to
the regularization of the complementary Kuhn-Tucker contact normal conditions (3.12),
would lead to a rate-dependent frictional evolution equations. []

3.4. Local form of the IBVP including frictional contact constraints

To formulate the Initial Boundary Value Problem (IBVP) including frictional contact
constraints, we must introduce the local momentum balance equations, boundary condi-
tions and initial conditions. No assumptions will be made on the constitutive equations
and we will assume that the frictional contact tractions are related with corresponding
kinematical fields through constitutive-like equations, within the framework of the penalty
method. Additionally, the equilibrium of forces on the contact interfaces provides the link
between the frictional tractions at the contact surfaces on the interacting bodies.

i. Local form of momentum balance equations. The local material form of the mo-
mentum balance equations for the body B() can be written in conservation form as

(4) o) — (Dyr() _
o T , in 20 xT (3.47)
POV E = DIV(PY)] 4+ BO)

where pgi) : 200 — TR, is the reference density, B() : 2() x T — IR™™ the reference
body forces, DIV[:] the reference divergence operator and P(?) the non-symmetric nominal
or first Piola-Kirchhoff stress tensor.

‘ ii. Boundary conditions. We will assume that the deformation (9 is prescribed on
FS) C 0020 while the nominal traction #(¥) is prescribed on the part of the boundary
th) C 8Q(i), with unit outward normal field N () . Fy) — 52 as

() _ 5 on I
vooe ¢ (3.48)

tA =pO.NO =) on O«
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where @) : Fé,i) x I — IR™ ™ and £(9) : Féi) x I — IR™™ are prescribed deformation and
nominal traction maps. As usual it is assumed that the following conditions hold

Oy rd e — 5o
’ ° (3.49)

IONIO =rdnr®@=rdnr» =9

iil. Initial conditions. Additionally, we will assume the following initial conditions

(). _ =)
P () [t=0 = @4 (*) } 1O

VO, t)imo = V() )

iv. Equilibrium condition on the contact interface. For each material point X € I'")
at any time ¢t € I, we require that the (differential) frictional contact force induced on
body B(?) at the material point Y (X,t) be equal and opposite to that produced on body
B at X. Mathematically, this equilibrium condition takes the form

tM(X,t) dI'®D + t(V(X,1),t) dI'® =0 (3.51)

3.5. Variational formulation. Weak form of the IBVP including frictional
contact constraints

(A) Configuration space. Let the configuration space for the body B be defined as
the set

C = {p ¢ WhP(D)nain . det[Dp®] > 0in 2P and 9| = P} (3.52)

where Wl’P(.Q(i)) is the Sobolev space of order (1,p) for some p such that 2 < p < co.

(B) Admissible variations space. We define the (time independent) set of (material)
admissible variations or trial functions as the fixed linear space

Véi) - {n(()i) . D(z) — R™aim ‘ ,,7(()7:)11_‘&{) — O} (353)

The admissible variations span the tangent space to the configuration manifold at the
reference configuration.

(C) Weak form of the IBVP. Using standard procedures, the weak form of the momen-

tum balance equations can be formally justified by taking the L,—inner product of (3.47)
(

with any noi) € Vo(i) and using the divergence theorem. The result can be written as

(0676, m67) = (o VD, mg”)
(VD5 + (PO, GRAD[)) = (BD, 0"} + (ED,n() o + (¢, 167) res)
(3.54)
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which must hold for any (material) test function 17() € V( ). Here (+,) denotes the
Lz(ﬁ(i))—inner product and with a slight abuse in notation (-, )F(;) and (-,-) @) denotes

the LZ(F(i)) and Ly(I'D)-inner products on the boundaries 'Y and I'®, respectively.
Denoting by G(z) (V(’) ) 2OF n(l)) and G(st) (P, 17( )) the dynamic and quasi-static

weak forms of the momentum balance equations, respectively, excluding frictional contact

contributions, and by G’Ez)(P(‘), n((] ) the frictional contact contribution to the weak form
of the momentum balance equations, respectively defined as

G5 (v, PD;n{) i= (o VD, n{7) + GLL(PD;mp?)
G2 (PO (%) := (PO, GRAD[n{")) — (BD,n{) — (F0,mng”) o (3:55)
¢OPO;n) 1= (0, m")re = —(PD - NO,ni) e

the weak form of the momentum balance equations for body B(? can be expressed in short
hand notation as

(o8 (e — V@), n{Py = 0

| o v n{? e v§) (3.56)
G0, (v, POy + ¢O(PD;n{Y) = 0 } C

For the multi-body dynamics system, we can write the momentum balance equations as

> (66 (60 = V), i) =0
. = Vg € Vg AL
2 foy)n VO, PO;ni?) + 30 GO(PD;m?) = 0
= =1

In particular, for two intertacting bodies B and B(®), the frictional contact contribution
to the weak form of the momentum balance equations, at the material contact points

X € I'D and Y (X,t) € I'®, at any time ¢ € I, takes the form
GID(PD, PO, n) = ¢O(POsn) + GO(PDsmsY)  (3.58)

The weak form of the equilibrium condition at the contact interface given by (3.51), can
be expressed as

ED, 08 ny + (P, 08P ey = 0 (3.59)

Using (3.55), (3.58) and (3.59) the frictional contact contribution to the weak form of the
momentum balance equations, at the material contact points X € I'M and Y(X,t) €

I'®, at any time t € I, takes the form

GHDPD; 0l nf®) = — (10, mg” — 15”) e (3.60)




C. Agelet de Saracibar & M. Chiumenti 21

where the relation t() := P() . N and the arguments in (X, 1), nl(]l)(X) and
2)(Y(]( t)) have been implicitly considered.

3.6. Linearization of the frictional contact kinematics
(A) Directional derivative. Given the configurations (¥ and the admissible variations
( ), for the bodies B(), 7 = 1,2, we define the perturbed configurations cp( 9

(i

o 1= o

+enl? (3.61)

where the € is a scalar perturbation parameter (not to be confused with the penalty pa-
rameters ey and er).

Then, for an arbitrary field A(X,tp(l),go(z)) given for any X € I'D. the linearized
variation §A(X, (1), o)) is defined through the use of the directional derivative, as

SAX, oM, 0?) = | AX, oM, o) (3.62)

€e=0

de

(B) Linearized variation of the gap function gpn. Using the definition of the gap
function gn(X,t) given by (3.3) and exploiting the definition of directional derivative
(3.62), the linearized variation of the gap function gn(X,t) takes the form

Sgn = — [$7(X) — i (¥ (X,1)) — ma(¥ (X, 1), 1) 68%(X,1)] - v

— [PD(X, 1) — pP(F(X,1),1)] - b 3.5%)

Using the relation 7, € T, S? along with (3.3) and the constraint §v € T, 52 the directional
derivative (3.63) can be written as

Sgn = —[ng(X) — P (¥ (X ,1))] - v (3.64)

(C) Linearized variation of the contact parent coordinate £€(X,t). The linearized
variation of the contact parent coordinate £(X,?) can be obtained in the following way.
Using the definition of closest-point projection, the following normality condition holds for
a=1,2

[P D(X, 1) — D (F(X,1),1)] - 70 = 0 (3.65)

The directional derivative of (3.65) leads to the following key expression
AapbE® = V(X)) = 1P (X)) 7o — (X, 1) v - 0U(F(X,8)  (3.66)

where
Aag = Map + gN Kap (367)
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Determination of §6 thus, will requires inversion of a two by two symmetric matrix A =
[Aag], with components A,g defined by (3.67). Denoting by AP the components of the
inverse matrix A~! = [A®P] the linearized variation §6* takes the form

68 = AP {[n{"(X) — ng? (¥ (X,0)] - 75 — gn(X,t) v - mQ(F(X,1))} | (3.68)

When gy = 0 then Ayp = map, AP = m®P and (3.64) simplifies to

58| gy=0 = [n§V(X) — 0P (¥ (X, 1))] - 7° (3.69)

(D) Linearized variation of égp. Following a standard use of the directional derivative
and after a reasonable amount of algebra, the linearization of §gn given by (3.64), leads
to

A(Sgn) = gn (U - 02 + Koy 6E7) m*B(v - AP 1 ks AE)

T (3.70)
v - (68 ApQ) + AE L)) + Kap SE*AEP

(E) Linearized variation of §£%. The linearized variation of §£* must be computed
implicitly, by computing the directional derivative of (3.66). Since the calculation is quite
lengthy we merely state the result, which is:

AapA(8E°) = —(7a - né},+gw n z,ﬂ) AEP
— (T +9NV A<P )5Eﬁ
+ (ng” <2> —6877y) - (DD + eq,p(E) AEP) (3.71)
(Aso“) Ap® — AEYTy) - (0] + ea,p(E) 68°)
— [Ta - ep4(&) + gnv - €a,p(£)]6 A

Particularizing (3.71) for gv = 0, after some algebraic manipulation and using (3.23) and
(3.64), the linearized variation of 66 at gy = 0, takes the form:

mapgA(8E) = —(Ta - 15 AE|gy o + T - ApD 88|, —o
— 6gn (8D v 4 ko AEP|—0)
— Agn(n$) v + KapbE® g =0)
— Ta-€p,4(€ ) 5§—ﬁ|gn=0Af_V|gn=0

(3.72)
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3.7. Frictional contact contribution to the weak form

Starting with the expression for the frictional contact contribution given by (3.60), us-
ing the split of the frictional contact traction (3.8) and (3.30), and the linearized variations
(3.64) and (3.68), the frictional contact contribution to the weak form can be conveniently
expressed as

Ge(0:M0) = (tn, 89N) r @ + (70 68%) piy (3.73)

where a short hand notation has been introduced, denoting as ¢ € C and 19 € Vg the

collection of mappings ¢ € C(?) and n((,i) € Véi), 1 = 1,2, such that the restriction of each

of the maps ¢ and 7 to the domain 2() gives identically (¥ and n((]i), respectively.

4. The Discrete Initial Boundary Value Problem Including Frictional Contact
Constraints

The numerical solution of the IBVP including frictional contact constraints at finite
strains involves the transformation of an infinite dimensional dynamical system, governed
by a system of quasi-linear partial differential equations into a sequence of discrete non-
linear algebraic problems by means of the following two steps:

Step 1. The infinite dimensional phase space Z = C x V, is approximated by a finite
dimensional phase space Z" C Z via a Galerkin finite element projection. The projection in
space of the dynamic weak form of the momentum equations leads to a nonlinear coupled
system of ordinary differential equations (ODE’s) which describe the time evolution of
nodal degrees of freedom in the time interval of interest I.

Step 2. The coupled system of nonlinear ordinary differential equations describes
the time evolution in the time interval I of interest, of the nodal degrees of freedom
and the internal variables associated with the finite element Galerkin projection. A time
discretization of this problem involves a partition I = UX_[t,,%n+1] of the time interval I.
Within a typical time subinterval [t,,?,+1], a time marching scheme for the advancement
of the configuration and velocity fields in Z" together with a return mapping algorithm for
the advancement of the internal variables results in a nonlinear algebraic problem which
is solved iteratively.

4.1. Spatial discretization: The Galerkin Projection.

Consider a spatial discretization () = yllem 28 of the reference configuration
() c IR™im  generically refered as the triangularization and denoted by Tk in what
follows, into a disjoint collection of non-overlapping subsets .Q.(gi), 1 =1,2. We will refer to
a typical subset Q,(f) as a finite element and denote by h > 0 the characteristic size of an
element in a given triangularization.

Associated with the triangularization 7(9* one introduces a finite dimensional ap-
proximation C(V* ¢ C(9) to the configuration manifold C(*), defined as

COM o= [ € ) O* ¢ [CO(QD))Mim and PP i) € [PH(QD))™im ], (4.1)
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where Pk(ﬂgi)) denotes the space of complete polynomials of degree k& > 1.

The finite dimensional subspace Véi)h C Véi) of material test functions associated with

C(DP is defined as
i Ok { i F ¢ P
VIR = (g e YD Db € (00 2D)raim  ang 75" g0 € [PRM)mem ). (4.2)
(A) Galerkin projection of the frictional contact contribution to the weak form. The

Galerkin projection of the frictional contact contribution to the weak form, given for the
continuum case by (3.68), can be written as

Gc(soh,"?g) = <t?\'7591}t7>1’(1)" + (tg“a’aé_ah>p(1)" (4'3)

where (-)* denotes the Galerkin projection of (+). In particular, using the short hand
notation introduced in (3.68), ¢" and n} refers to the discrete collection of mappings
@D and ngi)h, i = 1,2, such that the restriction of each of the maps " and 9l to the
domain (V" gives identically ¢()* and ngi)h, respectively.

The projections §gk and §** are given by (3.64) and (3.68), with discrete quantities
replacing their continuous counterparts.

(B) Linearization. The linearization of the frictional contact contribution to the weak
form given by (4.3), yield the following bilinear form

B (15, A¢™) := B (ng, Ap™) + Bt (ng, Ap™) (4.4)

ol

Here Biio(-, :) is the geometric term defined for fixed (nominal) contact pressure th and
t

nominal) frictional tangent traction t%  at given configuration ¢? € C"*, by the bilinear
g To 3V 8 g t
form:

BZ,?O(??(';L,AW) = (t.}fL\l’A(‘Sgl}b))p(l)’L + (tg“mA(‘SEah))p(l)” (4'5)

and BZ}M(', -) is the material term defined for fixed configuration @ € C*, by the bilinear

form:

BZZlat(ngaA‘Ph) V= (At?Va‘Sgl}tI)p<1)h + <Atg“a’6€—ah)1“(l)"‘ (4.6)

4.2. Temporal discretization. Frictional return mapping.

Consider the time interval of interest I = [0,T] discretized into a series of non-
overlapping subintervals I := UN_([t,,t,41]. The incremental solution to the IBVP is
obtained applying a time stepping algorithm to integrate the evolution equations within
a typical time step [t,,%n41], with given nodal and internal variables at time t,, as initial
(%)

conditions at the nodal and quadrature points of a typical element §2¢", respectively.
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Following a standard convention, we shall denote by either (-), or (-),41 the algo-
rithmic approximations at times ¢,, and ¢,4; to the continuum (time dependent) variable

(+):-

(A) Frictional time-stepping algorithms. Most of the usual time-stepping algorithms
will require the evaluation of the weak form and internal variables at some time tntv,
where ¥ € (0,1]. Here, attention will be restricted to the Backward-Euler algorithm, ob-
tained for J = 1. A class of time-stepping algorithms for dynamic plasticity, including
Linear Multistep (LMS) methods and amongst them, the so-called Backward Difference
(BD) methods, and Implicit Runge-Kutta (IRK) methods, are shown in S1MO [1992,1994].
Here, we will focussed on two algorithms for the time integration of the constrained fric-
tional evolution problem defined by (3.38) and (3.39): the lowest order BD method called
Backward-Euler (BE) method and the generalized Projected Mid-Point (PMP) Implicit
Runge-Kutta (IRK) method.

(A1) Backward-Euler (BE) method. Consider the approximation of (3.41) and (3.42)
by the lowest order BD method, the BE scheme, to obtain the algebraic equation

tTn-}—la =1trpe + €T [M (§n+1 f'B) Yn+1 Pn+1a]

(4.7)
Unt1 = an + Ynt1[(1 — w) + wl[tr, ]
subjected to the discrete complementary Kuhn-Tucker conditions
Pryr = ||t?11n+1“ — (@n+41) tNpy1 <0
Yn+1 Z 0 (48)

Fiatl Pagr =10

The solution to the constrained incremental algebraic problem defined by (4.7) and (4.8) is
obtained through the introduction of a t¢rial state, obtained by freezing the irreversible-slip
response, and subsequent return mapping algorithm to enforce the constraints.

Step 1. Trial state. The frictional trial state is obtained by freezing the irreversible-
slip response, i.e. assuming y,4+1 = 0 and that no constraints are present. Then the trial
state is defined as

th = Mg + erMap(Eh,; — E7)

alfial .= o, (4.9)
@tmal b"”ll trial ¢
nt1 = ||t Tot1 (an+1) Noy1

where N, 11 = en(9N,1) is the normal contact pressure at t,;.

Step 2. Return mapping. The return mapping defines the final state as the solution

of the discrete constrained incremental algebraic problem:
tT‘n.-}-la = t.ftl?';:—j'_ll — €T 771'1"1 pT1l.+1a

tria la b (410)

Unt1 = ApiT + Yot (1 —w) +w|ltr, ]



26 Numerical Analysis of Frictional Wear Contact Problems

Bris = [rmpall = ntn) trnss <O
Yng1 > 0 (4.11)

Ynt1 Pnt1 =10
Assuming that @;’i“ll > 0, otherwise yn,4+1 = 0 and the trial state actually is the final
state, the discrete consistency parameter yn41 can be computed by enforcing the discrete
counterpart of the consistency condition @541 = 0.

Introducing pt}uﬂ = tlf’FnH/th || into the intrinsic expression of the frictional trac-

. T1L+1
tion
b _ 4btrial b
tT,,_H = tTnJr1 — €T Yn+1 PT, 4 (4.12)
s . btrial .__ 4btrial btrial .
collecting terms, setting pr " = tr, ALz | and taking norms leads to,

b bir:
an-}—l = qun-}—a;l
b " (4.13)
th, L = 187 ] — e
H T,,_+1 Tu+1 T FYTL+1
Introducing (4.13) into (4.10)-(4.12), the frictional return mapping takes the form:
b Ynt1 btrial
tTﬂ~+1 = (1 = &P tbtrial ) tTn+1
: Izl
1a ria 4.14
s = 0784 g [(1 = w) + w7 — w e Fasa) (414
PERRES Ht'f’zf,,r,i‘tl|| — €7 Ynt1 — #(@n+1) tNny1 =0
or alternatively, using the consistency condition,
t*}nﬂ = p(0nt1) tNny1 P[&Eria;l
ant1 = o588 + vt [(1—w) +w p(ants) tvnga (4.15)
Brr = [t | — e Ynt1 — m(anta) tNngr =0

Computation of the consistency parameter yn+1 will require, in general, to solve the
nonlinear equation $,41 = J(ynt1) = 0, were it is implicitly understood that we are
looking at apy1 as a function apt1 = @nt1(Yn+1), using (4.14), instead of (4.15);. Using
a Newton-Raphson method the linearization of the slip function yields

455321 + Dﬁﬁsﬁﬁl 'A’)’Efgl =0 (4.16)
with
45&21 = ‘ﬁgiall = ep ’)’7(1121 - [u(agﬁl) - /L(a::iull)] tNnt1
D@g:zl = =T = 3a,u(a531) Dagﬁl tNnt1
o = atrial 4 4B [(1—w) 4wl — w er o] (4.17)
Do), = (1 — w) +w|thrial] - 2 w er 15

(k) (k+1) k)
A’)’n+1: n+1 —’)’£L+1
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and with the initial condition 75,21 =10

As it is well known, the BE algorithm is consistent and first order accurate. On the
other hand, as it was shown by SiM0O [1994] within the context of J2 perfect plasticity,
in spite of its restriction to first order accuracy, the BE algorithm inherits the dissipative
and contractive properties of the continuum problem and becomes optimal for a long-term
behavior.

REMARK 4.1. The intrinsic form of the frictional time integration described above can
be written as ) )
b L btrm.l trial
tT11+1 T Tn+1 —€r 771,—*-1 pT1l.+1
btriul L -7 bref trial
T11+1 T Fn+1 ’ tTn-}—l (4.18)
b‘ref trial L n brej —ﬁ _ﬁ a-,-ef
tTu+1 T n+1 ’ tTﬂ + ETMaﬂ(En+1 - £n) Tn+1

where the surface deformation gradient F,; and the surface transport operator A7, ; are
defined as r
F =105

An41

ref (4'19)
A2+1 = 7'1?+1 ® T;if

Here the trial state defined by t%:;r: = t}’:fillar,‘f+l may be interpreted as the result of a

two-step algorithm:

i. Time integration of the trial frictional traction on the reference configuration to
get th ) "
the reference configuration at the last converged time step is transported with the operator
A7, to the current closest-point projection on the reference configuration, followed by the
(trial) slip contribution given by the distance, with respect to the metric Mg, between

the current and last converged closest-point projections on the reference configuration.
btriul

. This time integration consist of two steps. First, the frictional traction in

ii. Push-forward to the current configuration to get t7, .
Once the trial state has been defined the return mapping is performed on the current
configuration, following standard procedures. []

(A2) Generalized Projected Mid-Point (PMP) Implicit Runge-Kutta (IRK) method.
The Generalized Projected Mid-Point IRK method is constructed via a two-stage product
formula algorithm as follows:

Stage I. A BE algorithm is applied to integrate the constrained evolution problem
within a time sub-interval [t,,tnt9] C [tn,tnt+1] Where thyy = (1 — 9)t, + dtpqq and
¥ € (0,1]. Thus, the first stage of the algorithm is identical to the scheme already described
above. Explicitly, the following steps are performed for prescibed initial data {tT::!f} and
given relative (parametrized) slip increment ITry = f_g+0 — &

Step 1. Define the generalized mid-point trial state according to

t?:if,a = tTna + GTMQ,B(EE-F'L? - Eg)
apiy = an (4.20)
. btrial .
Gl = IltT, oIl = p(edlied) t
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Step 2. The return mapping defines the final state at the generalized mid-point
configuration C,yy as the solution of the discrete constrained incremental algebraic

problem:

trial
tTﬂ+"a = tTn+da — €T Tn+9 pT"‘i"’Ol (4 21)

ria b
Qnty = a:wrﬁl + Ynto [(1 - w) + w”tTn—}-ﬂH]

b
Py = ”tTn—l—ﬁ” - :“‘(an-i-?’) INntw <0
Yn+9 2 0 (422)
Ynt9 Pnts =0

Stage I1A. Since the trial values tf};f“f, . and the converged values tr, , . are available

from Stage I and within the context of a product formula algorithm, the initial data iy,
and o}, , for the second stage are defined using the linear extrapolation:

n+9 o T ,19 n+d o 19 n+9 o
4.23
* 1 1—a trial ( )
Qpry = 5an+19 - r Aty

Within a finite deformation framework, all the objects involved in the linear extrapolation
given by (4.23) should be viewed as objects lying in the same generalized mid-point con-
figuration Cpy9. Thus, for the friction Coulomb model this extrapolation is performed on
the plane ¢ty = tn, 9 of the tractions space.

Stage IIB. The second part of Stage II is identical to Stage I, where now the initial

prescribed data becomes t}n+ and the given (parametrized) relative slip increment is

9 A

97, ., = £, — &3, - The steps involved in the update are the following:

Step 1. Define the trial state according to

trial B B
t£:+1a T t}n‘l""a + 6TMaﬁ(§n+1 - £n+19)

airiall = Qg -
. ptrial ial
SF:LT—T—ail = HtT1|.+1 - H(a:tr-:-al) tN"+1

Step 2. Perform the return mapping to get the final state at the configuration Cp41
as the solution of the discrete constrained incremental algebraic problem:

— ttrzal

tTn-{-la T-n_+1a — €T 7n+1 pT1l-+1a

o _ . trial 1 tb (425)
n+l = Opiq T Yntl (1 - w) + w| Tn+1||]

Bri1 = |t ]l — p(ansr) tnngr <0
Ynt+1 2> 0 (4.26)

Yrtl Pug1 =0
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A rigorous stability and accuracy analysis of the two-stage, implicit, PMP algorithm,
within the context of J2 plasticity, was provided by SiMo [1994]. The accuracy and
stability analysis show that the generalized PMP algorithm is obviously consistent, second
order accurate for the PMP algorithm (¢ = 0.5), B-stable for ¥ > 0.5 and ensures that
the final stage is on the admissible domain. Remarkably, in sharp contrast with others
second order accurate algorithms, i.e. mid-point rule, second order accuracy is achieved
performing a radial return mapping in each of the Stages and thus a solution will be always
guaranteed to exist for arbitrarily large time-steps. However, the long-term behaviour of
this scheme is not optimal when compared with that exhibited by the, less accurate, BE
algorithm. In contrast, this scheme becomes optimal for short-term behavior.

(B) Linearization of the frictional time-stepping algorithm. The frictional time-step-
ping algorithms presented above are amenable to exact linearization, leading to the corre-
sponding terms of the consistent or algorithmic tangent operator. In order to accomodate
the linearization of the BE and PMP return mapping algorithms into a single expression,
we will derive the linearization of the frictional traction at time ¢,,4, at the generic con-
figuration C,, 49, where ¥ = 1 for the BE algorithm and ¢ € (0,1] for the PMP algorithm.
We point out that the implementation of the PMP IRK algorithm actually requires only
the linearization of the Stage I, while Stage II can be viewed as an update procedure to
provide the initial conditions for the next time step, after convergence has been achieved.

Using the directional derivative, the linearization of the frictional time integration
algorithm leads to the following expressions.

Step 1. Trial state. The linearization of the trial state takes the form

AtT o AttT"Lal

149 o T11.+15a (4 27)
_ trial ’
Aonty = Aayiy =0

Step 2. Return mapping. The linearization of the return mapping takes the form

trial trial

AtT,H_,,a = ,LL(a'n.-l-'ﬂ) Ath+19 PTois, + #(an+ﬂ) INntw APT,L.I_,,Q

trial

+ aa/*l‘(an+1.9) Aan+“9 th+19 pT11+19a

Acnyy = Dynys [(1 —w) +w p(@nts) tNppy — W €T Ynto] (4.28)

btriul

+7n+‘l9 w AHtTﬂ_l..,j

= AYnyo [(1 —w) + w p(ant9) tNntol
+ Ynto W [Oap(Cnts) tNnry Donts + plants) Atn, .,

with
AtN1L+1’ = GNH(gNn-}-ﬂ) AgN1l_+'|’
AgNn+19 = —19 [A(p(l)h _ A(p(z)h o ,‘/)(()2)(5'_"’_*_19)] ‘v (4.290')

trial = 7B
Atgie = Z.5 AT,
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tmal
ria u+19 btr:ul 2Yh , = - =
APF o, 1= (0 = ) e i 47 Py, [0 AR (E) + epry (8) ALY )
Tu-{-ﬂ
pErial rial ria rial o ybt7ie! F Zl
A”tT-n.+19 tj‘n-{»i’ A in-}-f’ - ;tTn-I—f’ t%‘u+19 [19 A(P(Z)h(g) + e ﬁ (£) Aég'*"&] (4.29b)

AEE = 9AP (AP — Ap®ME, 1 5)] - 15 — gN, o v - [ARS " (Enta)]}

btriu.l

1 1
AYniy = ;[A“tTn_HH — p(@nt0) Atn, 4] — aaaﬂ(anw) ENupo Doy

where,

—
-
—

op i= €1 (Map + Moy, 97)
97 = £n+,9 &n (4.30)
B

trial trial B
T"+"’a an+,9

with the, in general, non-symmetric operator =, evaluated at t,,y. Here, ApM*P and
AP refers to the incremental displacements in the whole step, i.e. from ¢, to t,41, and
it is implicitly assumed that all the objects involved in the expressions are evaluated at
time t,49.

Introducing A,y into the expression of Aca, 4y and collecting terms, leads to

Tial

Ao = P1 Al | = B2 planyo) Atn, ., (4.31)
with
B, = 0a/0Y|nt9 + W €T Ynto
1 7=
er + 00/ 07|n+9 Oap(antv) N,y (4.32)
,82 e aa/87|n+19 .
er + 0a/07|nt9 Oap(cnts) tN, 4o
where
0a/07|nt9 := (1 —w) + 0 p(An4s) tNnts — W €T Ynto (4.33)

REMARK 4.2.  As it is clear from (4.30) the lack of symmetry of =5 arises from the
variation of the surface metric in the reference configuration as the closest-point projection
varies. As it was pointed out by LAURSEN & SiMo [1993,1994], a simple procedure to
remove this non-symmetry is to use the metric at the center of the master element rather
than at the reference placement of the current closest-point projection. []

4.3. FE-implementation. Matrix form of the residual and tangent operator.

In what follows, attention will be restricted to the finite element discretization of the
contact surfaces, leading to the matrix form of the frictional contact residual and tangent
operators.

Let ngere and nmere the total number of slave and master elements, nsnod and Nmnod
the total number of slave and master nodes in a triangularization of the slave and master

contact surfaces, respectively, and n¢__, and n¢ _, the number of nodes in a generic slave

sno mmno
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and master surface elements I'X"" and I''>"* | labeled as {X e R™™ :a=1,...,n% .}
and {Yf € R"™ :a=1,...,n¢ .}, respectively.

This local numbering system is related to the global numbering system via the follow-
ing standard convention:

Xa=X; with A= IDgl)(e,a), B=
Yo=Y, with A= IDEZ)(e,a), g =

yeeoyNgeles Azl,---,nsnod
(4.34)

ye ooy Nmeley A= 1,...,nmnod

g array ID.(ql)( -) and the nmeie X ¢
i)h

where the ngeie X 1, ¢ mod AITAY ID§2)(-, -) are defined
by the geometry of the triangularization 7 A rather convenient formulation of the
Galerkin projection is achieved by writing the local polynomial basis as {N%({)}, where
¢ =((1y--+5Cnuim—1) are normalized coordinates with domain the unit square] |in IR™* ™~
and introducing the isoparametric map:

an.ol

¢edm Xt i=piM(¢) Z Ne($)Xe eI
(4.35)

MNmnod

¢edm Yhi= () Z Ne(Q)Y,f e I'D

where the local polynomial basis functions N® : []J — IR are referred to as the local
element shape functions and satisfy the completeness condition N*((3) = 63, where ¢, =
(¢1 ay-+->Cnuim—1 o) are the vertices of the bi-unit square.

The Galerkin projection of the frictional contact contribution to the weak form given
by (4.3) and to the bilinear form given by (4.4)-(4.6), can be written as the assembly of
integrals over the ng.j. slave surface elements of I Dk as:

Msele

Ge(emnt) = | Geet ne)
e=1

(4.36)

Msele

B (ng, Ap™) i= | Bip(ng, Ae™)

e=1
where G¢(p",n¢) and B?, (770 , Ap") represent the frictional contact contribution to the

weak form and bilinear form, over a typical slave element surface I’e(l)h c ' given by
(4.3) and (4.4)-(4.6) with Ly-inner products over the element domain.

Numerical integration of these element frictional contact contributions leads to the
following expressions:

Gk mb,) = ZWJ ¢:) 682" - R
i (4.37)
Beh(nO,Acp = Y Wij(&) 680" K- APL
=1
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where nj,; is the number of integration points to be used in the quadrature rule over the
domain Fe(l)h, W; is the weight of the quadrature point {;, (&) = [| X 1(&) x X 2(6)]),
where X o = dX /d(*, a = 1,2, is the jacobian of the isoparametric map at the quadrature
point ¢;, §¥S* and AP’ are vectors of involved nodal variations corresponding to the
quadrature point 7 of element e, and RS* and K¢ are the frictional contact local element
residual vector and tangent matrix corresponding to the quadrature point %, respectively.

REMARK 4.3. As it is evident from (4.37), the element residual and tangent finite
element operators have been organized by (slave) quadrature point rather than by (slave)
element. This scheme proves to be more convenient, taking into account that each (slave)
quadrature point may involve degrees-of-freedom of (master) nodes of different (master)
elements. Finite element operators associated to a typical (slave) quadrature point in a
typical (slave) element, will involve the dof’s of the (slave) nodes of its (slave) element
and the dof’s of the (master) nodes of the (master) element containing the contact point.
On the other hand, finite element operators associated to a typical (slave) element, will
involve the dof’s of the (slave) nodes of its (slave) element and the dof’s of the (master)
nodes of the, possibly different, (master) elements containing each one of the contact points
associated to each (slave) quadrature point.

REMARK 4.4. Associated to each (slave) quadrature point we define a contact element
involving degrees-of-freedom of the slave and master surface elements. When nodal quadra-
ture points are used, the contact element will involves the degrees-of-freedom of the slave
node and the degrees-of-freedom of the master element surface containing the closest-point
projection. When a different quadrature rule is used, the contact element will involves all
the degrees-of-freedom of the slave and master surface elements. O

(A) Application: Residual and tangent operator for a n-node 3D surface element
discretization. In this section we will present the finite element implementation of the fric-
tional contact model, assuming an arbitrary n-node finite element 3D spatial discretization
of contact (master) surfaces. Furthermore, we will assume that nodal quadrature is used

to define (4.37).

In what foliows, we will restrict our attention to a typical slave quadrature point,
i.e. a slave node using nodal quadrature, with current placement denoted as & and to the
n-node master element surface containing its projection ¥ € v denoted as 7§Z)h. It

is assumed that the projection point 7 lies in the interior domain of the surface element
(2)h
Ye -

We will denote as contact element the set of nodes consisting of the slave node
(playing the role of quadrature point) and the n-master nodes defining the surface element
7£2)h. Associated to each contact element we define the vectors of nodal variations §®.

and AP, containing the variation of the slave (quadrature) node, denoted as éd, and

Ad, respectively, and those of the n-master nodes in 722)h, denoted as éd, and Ad,,
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a=1,...,n, respectively, as
od, Ad,
5d1 Adl
6P, = . , Ad, = . (4.38)
éd, Ad,

Furthermore we introduce the following operators

v Ta 0 ~
—N1(§) v —N1(§) 7o —N1,a () v
N = . , To= ' , Ny = . , (4.39)
_Nn(g) v _Nn(E) To _Nn,cx (E) v
where o = 1,2, and N,, a = 1,...,n are the standard isoparametric shape functions of

the arbitrary n-node element. Using the operators introduced above, we also define:

D* := A*’(Tp + gnNp)

Na s Na . KaﬁD'B (4.40)

where the indices o and 3 ranges from 1 to 2 and the summatory on repeated indices is
assumed. Here, AP are the components of the inverse of matrix A defined in (3.67).

With the preceding notation in hand, and using the key discrete relations,

Sgh = —IN . 6&,

- 4.41
§E%h .= D* . §&. (4.41)

the frictional contact residual R, takes the expression,
R. =ty N —tp, D"~ (4.42)

where a = 1,2.

The frictional contact tangent operator can be split into the normal and tangent
contributions.

K. =K., + K., (4.43)

Additionally, from the material and geometric terms in the bilinear form (4.4), the normal
contact and frictional tangent operators, can be split as

K = Kmat + ngo

o (4.0

K. =K "+ K]

where K%** and K{5° are the material and geometric contributions to the normal con-

tact tangent operator, respectively, and K2** and KJ2° are the material and geometric
contributions to the frictional tangent operator, respectively.
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Using the operators defined above, the normal contact tangent operators can be writ-
ten as

K::LVM = GNH(gN) N®N

eo afd N N a & & ,3 (445)
K¢ :=1tN [gn m*P Ny ® Ng — (D ® Ny + No ® D%) + koD @ D]

To define the frictional tangent operators, we introduce first the following operators:

Top := [OT’ —N1,ﬁ(£_) 1’3, ) _Nn,ﬁ(g) 7'3 T
Nogs =07, =Ny ,op(é)vT, ..., —=Npop(&)vT)T (4.46)
P, = [OT’ _Nl.a(g) p%l’T7 ) _Nn,a(g) p?I’T T

where a,8 = 1,2, and the shape functions are evaluated at £. Based on the definitions
(4.34),(4.35) and (4.41), we introduce the additional operators

Top = Tap — (ep,4(€) - Ta) D"

=P, —(eq~(&)- b YD

) ( ,7(5) PT) (4.47)
Top :=Top + gNnNap

D® := D* — m*PT}

;U|

where o, =1,2
With the preceding definitions in hand, using (4.37) and the key expressions

(6()0(1)h - 6()0(2)h) *Ta = Ta . 645c

&pfi)h v = —N,- 6P,

@b . (4.48)
5(p,a T3 : Tﬁa 5¢c
502 v i= —Nap - 6.

the geometric part of the frictional tangent operator can be written as

K2 = tr, AP KT
K9 :=Top ® DP + DP ® Tap
+DP g Tso + Tpo ® D* (4.49)
~(N® Ny + N, ®N)

- (eﬂﬂ’(g) *Ta + 9N ea,ﬂ'y(g) : V) D'B ® D"

The material part of the frictional tangent operator will depend of the slip/stick frictional
state. Using the above definitions, the stick material frictional tangent operator, denoted
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as Kg,“t"’tiCk and the slip material frictional tangent operator, denoted as K;’;M’SHP, can
be written as

K;rr;a.t,stick = Fap D° ® DP

K7ewl? = (1 By) p(a) eny H(gn) pr. D*® N
t -
B n,(:b:?‘,.,” (62 —2) + B1 73] Eyp D*® D” (4.50)

/81 a )
- [/L(a) tN || btriu.lll] Wg D ® Pﬁ

where 3 := 81 Oap(a) ty and Ba := B2 Oup(c) tn and B; and B, are given in (4.32).

REMARK 4.5. Bi-linear surface elements. Note that for the particular case of 4-node
bi-linear surface finite elements, Nog = 0 for a = 8, eq 3 = 0 for a = 3, eqpy = 0 for
any a,f3,7, Eqp = 0 for @ =  and the components of the non-symmetric operator Z,p
(4.30); take the form:

E11 = ep (M1 + )\lgT)

E12 = ep (M2 + 2)\19'_11 + Azggr) (4.51)
a1 i= er (Ma1 + Aigh + 2)203) '
Hag 1= e (Maz + A297)

where the short hand notation A\, := Ej »(€)-77¢f and g% := €n+19 —£2 has been introduced.
In the above expressions, greek mdlces a, 3,7 varies from 1 to 2. []

(B) Application: Residual and tangent operator for a n-node 2D surface element
discretization. Here we will present the finite element implementation of the frictional
contact model, assuming an arbitrary n-node finite element 2D spatial discretization of
contact (master) surfaces. Furthermore, we will assume that nodal quadrature is used to

define (4.37).

In what follows, we will restrict our attention to a typical slave quadrature point,
i.e. a slave node using nodal quadrature, with current placement denoted as « and to the
n-node master element surface containing its projection § € y(**, denoted as 7(2)h. It

is assumed that the projection point ¥ lies in the interior domain of the surface element
(2)h
Ye -

We will denote as contact element the set of nodes consisting of the slave node
(playing the role of quadrature point) and the n-master nodes defining the surface element

h
4P

and AP, containing the variation of the slave (quadrature) node, denoted as éd, and

. Associated to each contact element we define the vectors of nodal variations §®.

Ad; respectively, and those of the n-master nodes in 7( M , denoted as éd, and Ad,,
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a=1,...,n, respectively, as
éd, Ad,
od, Ad,
§b, = . , AD, = . (4.52)
éd, Ad,

Furthermore we introduce the following operators

1 24 T1 0
~N:i(&) v —N:(§) —N1,1 (&) v
N= - , T = - . N = - , (4.53)

—N,(&) v —Nn(€) 7 —Npy1 (§) v

where N,, a = 1,...,n, are the standard isoparametric shape functions of the arbitrary
n-node element. Using the operators introduced above, we also define:

D! = All(Tl + gnIV1)

_ 4.54
N1 = N1 —I‘&llDl ( )
were, Al is the inverse of 4173 = my11 + gN K11-
With the preceding notation in hand, and using the key discrete relations,
§gh == —IN . §&,
- ) (4.55)
8" =D - 6P,
the frictional contact residual R, takes the expression,
R.:=ty N —tr, D! (4.56)

The frictional contact tangent operator can be split into the normal and tangent
contributions.

K.=K., +K., (4.57)

Additionally, from the material and geometric terms in the bilinear form (4.4), the normal
contact and frictional tangent operators, can be split as

R mat eo
Koy i= Koy + Koy (4.58)
K. = KI*+ KZ°

where K%** and KJ¢° are the material and geometric contributions to the normal con-
tact tangent operator, respectively, and Kc";‘” and KJ:° are the material and geometric
contributions to the frictional tangent operator, respectively.
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Using the operators defined above, the normal contact tangent operators can be writ-
ten as

K:;Vat :=evH(gn) N® N

11 19 N 1 1 3 i (4.59)
K2 =ty [gnm"'"N1®@ N1 —(D'® N1 + N1 ® D*) + kD" ® D]

To define the frictional tangent operators, we introduce first the following operators:

Tiy :=[07, —N11(8) 7, ..., —Naa(&) 7']"
1(€)VT’ vy _Nn,ll(g)VT]T (460)
JPl = [OT) _NI,I(E) p?l‘T) oo iy _Nn,l(E) p!_,TT o

where the shape functions are evaluated at £. Based on the definitions (4.34),(4.35) and
(4.55), we introduce the additional operators

Tll =T — (61,1(5_) : 7'1)D1
P =P - (61,1(5_) 'P?I‘)Dl

& (4.61)
Ty :=T11 + gnNu1
D! := D' —m"'Ty
With the preceding notation in hand, and using the key discrete relations,
(6(,0(1)}" = (5(,0(2)}7') c Ty = T1 . 6@0
5<p(12)h v = —N; 6P,
Ez)h (4.62)
5(,0,1 Ty = —T11 . 5§c
5 v = —Nyy - 6%,
the geometric part of the frictional tangent operator can be written as
ngo o tT Allngo
cr * 1 cT1q
Ki° =T, ® D' + D' @ T1
+ D! ® Tll =+ T11 ® D! (4.63)

—(N®N; + Ny @ N)
- (61,1(5_) 11+ gn e1,11(€) - v) D' ® D!

The material part of the frictional tangent operator will depend of the slip/stick frictional
state. Using the above definitions, the stick material frictional tangent operator, denoted
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as K;’;,“t"t“k and the slip material frictional tangent operator, denoted as Kf;,“t”lip, can
be written as

K:;,‘at,stick = =11 D1 ® _D1
K5 = —(1-f) p(e) en H(gn) pry D'® N
+4 5, D' @D (4.64)
B 5
= [w(@) tv ~ ] D'® P
[tz |l

where f1 := 81 Oxp() ty and By := By Oap(e) ty and By and B, are given in (4.32).

REMARK 4.6. Linear surface elements. Note that for the particular case of 2-node linear
surface finite elements, Ny; =0, e11 =0, k11 = 0, e1,11 = 0, By 1 = 0, A = mll
Ei=er M. [

and

5. Numerical Simulations.

The formulation presented in the preceding sections is illustrated below in a num-
ber of numerical simulations. The goals are to provide a practical accuracy assessment
of the frictional wear model and to demonstrate the robustness of the overall frictional
contact formulation in different numerical simulations and particularly in metal forming
operations. The calculations are performed with an enhanced version of the finite element
program FEAP developed by R.L. Taylor and J.C. Simo and documented in ZIENKIEWICZ
& TAYLOR [1991].

(A) Draw Bead Simulator. This example is concerned with the simulation of a draw
bead in a deep drawing sheet metal forming process. An initially flat Galvannealed (GA)
sheet metal strip will be draw through a set of rollers. The material properties for the GA

sheet metal strip were taken as bulk modulus K = 171.6 GPa, shear modulus G = 79.2
GPa and a power hardening law given by the Swift equation

oy = 536.0 (0.0033 + &7)°2! MPa (5.1)

The rollers were considered as rigid surfaces. Frictional wear phenomena at the interfaces,
between the GA metal sheet and the rigid rollers, was modeled using a frictional softening
curve defined in terms of the frictional dissipation o as

p=0.078 —0.666 - 102 « (5.2)

where « is measured in KN/cm. The strip was 1 mm thick and measured 70 mm length.
The three main rollers and the two guide rollers were of radius 5 and 2 mm, respectively.
The separation between the three main rollers was 11 mm and the upper main roller was
positioned at a distance of 20 mm from the right edge of the strip. The distance between
the upper main roller and the two guide rollers was 14 and 24 mm, respectively. FIGURE
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5.1 shows the initial geometry of the test. Plane strain conditions have been assumed
and only a half part of each roller has been discretized. The loading process consist of
two phases. In the first phase, the main upper roller goes down up to a distance of 6.35
mm while the right edge of the strip is kept fixed, creating a situation of three point
bending load. This first phase simulates the clamping of the sheet by the blankholder at
the beginning of a deep drawing process. In the second phase, the rollers are kept fixed
and the strip is pulled out from the right edge up to a final distance of 15 mm.

The geometry of the problem was modeled with 140 continuum elements being utilized
for the discretization of the strip, using 2 elements accros the thickness, and 20 elements
being used for the discretization of each of the rollers. A mixed Q1/P0 finite element
formulation at finite strains was used for the discretization of the strip. Frictional contact
constraints were regularized by means of penalty method and the normal and tangential
penalty parameters were taken as ey = 5-10! N/m3 and e = 1-10%° N/mg, respectively.
The loading process was achieved in 170 time steps, 20 steps for the first phase and 150
time steps for the second phase, through displacement control of the upper main roller
and the right edge of the strip. The Newton-Raphson method, combined with a line
search optimization procedure, was used to solve the nonlinear system of equations arising
form the spatial and temporal discretization of the weak form of the momentum balance
equation. Convergence of the incremental iterative solution procedure was monitored by
requiring a tolerance of 10718 in the energy norm.

The analysis was performed in a Silicon Graphics Power Challenge L. Workstation
and it was accomplished in 34 min CPU time. Table V.1 shows the Euclidean norm of the
residual at four typical time steps.

Table V.1. Draw bead simulator. Euclidean norm of the residual for four typical time steps.

Step 20

Step 70

Step 120

Step 170

1.86289E4-07

1.88299E+07

1.88303E4-07

1.88302E+07

2.75317E4-05

2.27117E+05

2.26716E4-05

2.26222E+05

5.26603E+04

1.18516E+-04

4.50492E+-04

4.29461E4-04

3.24054E4-04

2.99176E+403

2.21042E+-04

1.07448E+04

2.23963E4-03

2.33671E4-01

1.70857E+-03

1.09379E+03

8.16929E4-02

2.15757E-04

2.32598E4-02

9.72306E4-00

3.16493E4-02 1.21763E+02 9.63659E-04
1.18062E4-02 1.97021E-01

4.87770E-01 4.51680E-06

1.00563E-05

FIGURE 5.1 shows the initial geometry and deformed shapes of the strip at different
stages of the process, corresponding to the end of the first phase, for a vertical displacement
of 6.35 mm of the upper main roller, and to different prescribed displacements of 5, 10 and
15 of the right edge of the strip, during the second phase.
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FIGURE 5.1. Draw Bead Simulator. Initial configuration and deformed
shapes of the strip at five different stages of the process, corresponding to a
displacement of the upper main roller of 6.350 mm, at the end of the first
phase, and to prescribed displacements of 5, 10 and 15 mm of the right edge
of the strip, during the second phase, respectively.

FIGURE 5.2 shows the evolution of the horizontal displacement of the left edge of the
strip and the horizontal reaction at the right edge of the strip, during the loading process.
FIGURE 5.3 shows the wear profiles on the main rollers at the same selected stages of the
analysis of FIGURE 5.1.
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FIGURE 5.2. Draw Bead Simulator. Evolution of the horizontal displacement
at the left edge of the strip and the horizontal reaction at the right edge of
the strip, during the loading process.
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FIGURE 5.3. Draw Bead Simulator. Wear profiles on the main rollers at
different stages of the analysis. éa) At the end of the first phase for an upper
main roller displacement of 6.350 mm. (b) For a right edge prescribed hori-
zontal displacement of 5 mm, (c) 10 mm and (c¢) 15 mm, during the second
phase.

(B) Flat Sheet Sliding tests. This example is taken from DE SOUZA NETO et al
[1995] and is concerned with the numerical simulation of flat sheet sliding tests. The
experimental tests are as follows. A steel flat sheet is clamped to the sliding table. A
precribed normal force is then applied to the tip of the tool material (SKD-11). The tip
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is kept fixed during the experiment to avoid rotation and ensure high precision in the
measurement of the friction coefficient. Once the normal force has been applied, the table
slides 300 mm driven by a hydraulic cylinder. After sliding, the normal force is released
and the table returns to its initial position. The normal force is then reapplied and the
cycle is repeated a number of times.

Two zinc coated sheet metals, typically employed in the manufacture of automotive
body shells, have been considered: Galvannealed (GA) and Electrogalvanised (EG) steel
sheets. The mechanical properties for the GA and EG steel sheets are shown in Table V.2,
where K is the bulk modulus, G is the shear modulus, Y P is the initial yield stress, T'S is
the maximum tensile strength, EL is the elongation at rupture and n is the exponent of

the power law hardening for plasticity. FIGURE 5.4 shows the hardening power law curves
for the GA and EG steel sheets:

oy = 374.0-(0.054 + 5p)0'216 MPa for the GA steel

0.243 (5:3)
oy = 367.6-(0.041 4 7)™ MPa for the EG steel
Table V.2. Flat Sheet Sliding tests.
Mechanical properties for the GA and EG steel sheets.

Material | K (GPa) | G (GPa) | YP (MPa) | T'S (MPa) | EL (%) n
GA 171.6 79.2 199.1 319.3 42.7 0.216
EG 171.6 79.2 169.2 310.0 45.4 0.243

-------------------- gt B ]
P L g
L1 1 : 7 -
N

FIGURE 5.4. Flat Sheet Sliding tests. (a) Hardening plasticity laws for the
GA and EG steel materials. (b) Frictional hardening laws for the GA and EG

steel materials.
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Frictional behavior was modeled as a polynomial function of the frictional dissipation
« given by
p(a):ao—l-ala+a2a2+...—+—apap (5.4)

The presence of a hard surface coating, difficult to remove, in the GA steel sheet leads to
a progressive softening of the frictional behavior. In contrast with this behavior, the EG
steel sheet experiences an initial softening, due to flattening of microasperities, followed
by a substantial increase of the friction coefficient, due to the removal of its relatively soft
zinc coat. The coeflicients of the frictional hardening law, for a frictional dissipation o
measured in KN/mm, for the GA and EG steel sheets are shown in Table V.3. Frictional
hardening behavior for the GA and EG steel sheets is shown in FIGURE 5.4.

Table V.3. Flat Sheet Sliding tests.
Frictional hardening law for the GA and EG steel sheets.
Coefficients of the polynomial function for frictional dissipation measured in KN/cm.

Material | aq ay as as a4 as
GA 0.178 |—0.666 - 1072
EG 0.157 |—0.315-10"! [0.104-10" |—0.821-10"% |0.289-10~* |—0.410-10"¢

The sheet initially measured 400 mm long, 100 mm wide and 0.8 mm thick. The tip
of the tool measured 10 mm long and 10 mm wide, with an inner radius of 2.5 mm at the
bottom corner of the right edge. Then the tested surface at the experiment measured 300
mm long and 10 mm wide.

For simplicity, only 30 mm of the sheet length has been considered in the numerical
simulation and a plane strain state has been assumed. The sliding cycle has been repeated
20 times for different compressive constant normal forces of 3.92, 2.94, 1.96 and 0.98 KN
applieds to the tip of the tool.

A mesh of 111 four noded quadrilateral elements has been used for the discretization
of the tool. The sheet has been discretized by two layers of 60 continuum elements and the
nodes of its left edge have been considered as constrained. A mixed Q1/PO0 finite element
formulation at finite strain has been used. The table has been considered as rigid.

At the beginning of a sliding cycle, the tip lies at 2.5 mm from the left edge of the
sheet. Starting from this initial configuration and after the normal force has been applied,
a relative sliding of 20 mm between the table and the tip is incrementally imposed. This
ensures an approximately 10 mm long evenly worn region on the sheet surface (between
12.5 mm and 22.5 mm from the left edge). Then the normal force is released, the tip is
lifted up and returned to its initial position, thereby closing a cycle. Note that a steady
state frictional force will occur when the entire surface of the tip contacts the evenly worn
region of the sheet. The finite element mesh as well as the description of a sliding cycle is
shown in FIGURE 5.5.

Frictional contact constraints were regularized by means of penalty method and the
normal and tangential penalty parameters were taken as ey = 5 - 10! N/m3 and e =
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FIGURE 5.5. Flat Sheet Sliding tests. Finite element mesh and sliding
cycle. (a) Initial configuration and application of normal force; (b) Sliding;
c) Release normal force, and (d) Return to initial configuration.

1-101° N/ma, respectively. A typical loading cycle was achieved in 30 time steps: 5 steps
to applied the normal force, 20 steps for sliding and 5 steps to remove the normal force.

The Newton-Raphson method, combined with a line search optimization procedure,
was used to solve the nonlinear system of equations arising form the spatial and temporal
discretization of the weak form of the momentum balance equation. Convergence of the
incremental iterative solution procedure was monitored by requiring a tolerance of 108
in the energy norm.

The analysis was performed in a Silicon Graphics Power Challenge L. Workstation and
a typical case, GA steel sheet using a normal force of 0.98 KN, was accomplished in 23 min
CPU time. Table V.4 shows the Euclidean norm of the residual at four typical time steps,
using a GA steel and a normal force of 0.98 KN. A typical intermediate step at different
passes has been selected.

FIGURES 5.6 and 5.7 show the tangential forces obtained in the numerical analysis
of the sliding tests, using GA steel and EG steel sheets, respectively, at different constant
normal forces. In order to compare the results obtained in this work with the (average)
experimental and numerical results given by DE SOUZA NETO et al. [1995], it is important
to observe that one must consider only an average value within the central part of the sheet
for each pass, in the evenly worn region, disregarding the values at the beginning and at
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Table V.4. Flat Sheet Sliding tests.

Euclidean norm of the residual for four typical time steps.

GA steel sheet. Normal force of 0.98 KN.

Pass 1 Pass 5 Pass 10 Pass 15
1.23075E409 1.23075E+09 1.23075E+09 1.23075E4-09
4.70945E+04 4.70696E+04 4.70458 E+04 4.70230E+04
1.23677E+04 1.23583E+04 1.23494E+04 1.23408E+04
8.04745E+02 8.01015E4-02 7.97387E+02 7.93858E+402
1.21043E+02 1.22529E4-02 1.23987E+02 1.25417E+02
2.20370E+00 2.26997E4-00 2.33562E+00 2.40061E+400
7.13569E-06 6.83974E-06 6.70814E-06 8.21763E-06
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FIGURE 5.6. Flat Sheet Sliding tests. Tangential force versus number of
passes during the sliding tests using a GA steel sheet at different constant
normal forces: (a) Normal force = 3.92 KN; (b) Normal force = 2.94 KN; (c)
Normal force = 1.96 KN; (d) Normal force = 0.98 KN.
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FIGURE 5.7. Flat Sheet Sliding tests. Tangential force versus number of
passes during the sliding tests using a EG steel sheet at different constant
normal forces: (a) Normal force = 3.92 KN; (b) Normal force = 2.94 KN; (c)
Normal force = 1.96 KN; (d) Normal force = 0.98 KN.

the end of each pass, where the distribution of the friction coefficient is not uniform. A
detail of the wear profile in the sheet is depicted in FIGURE 5.8, for the GA steel and for
a normal force of 0.98 KN. The figure clearly shows an evenly worn region in the central
part of the sheet, between 12.5 and 22.5 mm from the left edge, while the wear at the
edges is not uniform.

In FIGURES 5.6 and 5.7, it is clearly evident the different wear evolution experimented
by the GA and EG steel sheets. For the GA steel, due to the softening of the friction co-
efficient law, the tangential force presents a local minimum within a pass at the central
part of the sheet, in the evenly worn region. In contrast, for the EG steel, particularly for
high normal pressures, the tangential force at the central part of the sheet moves from a
local minimum towards a local maximum within a pass, according to the frictional soft-
ening/hardening behavior. Remarkably, a significant hardening is observed for the EG
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FIGURE 5.8. Flat Sheet Sliding tests. Wear profiles at the GA steel sheet
for a normal force of 0.98 KN.

steel at high normal pressures, while a slight softening appears at low normal pressures.
These results clearly show that a classical frictional Coulomb law, using a constant fric-
tion coeflicient, would not be able to capture this behavior, leading to useless inaccurate
predictions.

The tangential forces predicted by the numerical analyses, for both GA and EG steel
sheets and for all levels of constant normal force, agree well with the experimental and
numerical (average) results given by DE SoUzA NETO et al. [1995].

6. Concluding Remarks.

Wear related phenomena have an important impact on the economy of industrial
metal forming processes. Wear is the dominant die failure mechanism for both bulk and
sheet forming operations. The inclusion of wear phenomena model into available decision
support systems used in industrial design and optimization practice, would improve die
design and service life’ considerably, leading to an important reduction of manufacturing

costs.

Adhesive and abrasive wear have been identified as the main wear mechanisms. Ar-
chard’s wear law provides an estimate of both wear mechanisms arising in metal forming
operations.

Clearly, wear affects the frictional conditions between contact surfaces. A frictional
wear contact model has been proposed, taking the frictional coefficient as a function of a
wear related internal variable, to be chosen as the frictional dissipation or the slip amount.
This frictional wear model has been incorporated to a continuum-based multi-body fric-
tional contact formulation at finite strains.
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Within the context of the displacement-driven formulation of frictional contact prob-
lems, exploiting the computational framework developed for plasticity, two frictional return
mapping algorithms have been considered: the BE and the implicit PMP rules. An exact
linearization of the algorithms allows to derive the consistent frictional contact tangent
operator.

Numerical simulations shown the suitability of the proposed model to predict wear
phenomena in large scale computations. A good agreement has been observed between
the numerical results and the experimental ones obtained for the sliding tests. These
results, allows to suggest that the adoption of the frictional dissipation as the internal
variable associated to the frictional behavior has captured the essential features of the
wear phenomena.
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