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Abstract 

Traffic congestion is a significant issue in urban areas. Realistic traffic flow models are crucial for understanding and 

mitigating congestion. Congestion occurs at bottlenecks where large changes in density occur. In this paper, a traffic flow 

model is proposed which characterizes traffic at the egress and ingress to bottlenecks. This model is based on driver 

response which includes driver reaction and traffic stimuli. Driver reaction is based on time headway and driver behavior 

which can be classified as sluggish, typical or aggressive. Traffic stimuli are affected by the transition width and changes 

in the equilibrium velocity distribution. The explicit upwind difference scheme is used to evaluate the Lighthill, 

Whitham, and Richards (LWR) and proposed models with a continuous injection of traffic into the system. A stability 

analysis of these models is given and both are evaluated over a road of length 10 km which has a bottleneck. The results 

obtained show that the behavior with the proposed model is more realistic than with the LWR model. This is because the 

LWR model cannot adequately characterize driver behavior during changes in traffic flow. 

Keywords: Macroscopic Traffic Model; Traffic Flow; Transition; LWR Model; Explicit Upwind Difference Scheme; Stability Analysis. 

 

1. Introduction 

Traffic congestion is a critical issue in urban areas around the world [1] and it is getting worse. The Traffic Index 

(TI) is a composite index of the time to journey from home to work [2]. The 2017 TI indicates that congestion levels 

in Mexico City, Bangkok, Jakarta, Istanbul, and Beijing were 66%, 61%, 58%, 49%, and 46%, respectively [3]. 

According to the INRIX report [1], congestion costs in the UK were approximately £8 billion in 2018 which is over 

£1,300 per driver. Further, an average UK road user spent 178 h in congestion in 2018 [4]. Congestion occurs when 

there are traffic bottlenecks due to lane reductions, poor traffic light timing, accidents, and sharp curves. Bottlenecks 

can be recurring or nonrecurring. Recurring bottlenecks appear at the same time of day and day of the week, whereas 

nonrecurring bottlenecks appear randomly and are typically due to conditions such as accidents, precipitation and/or 

poor visibility [5]. In order to mitigate congestion, it is necessary to understand traffic behavior and characterize it 

realistically [6]. Transitions are large changes in density which can occur at the egress or ingress to a road or at lane 

reductions and can cause bottlenecks [7]. A traffic model based on driver response is required which characterizes 

traffic behavior during transitions. This can be employed to mitigate congestion and decrease travel time [6]. 
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Traffic flow can be homogeneous or heterogeneous and equilibrium or non-equilibrium. Homogeneous flow 

corresponds to similar vehicle velocities and densities so that the headway is constant [8]. Time headway is the time 

required for vehicle alignment and is necessary to avoid accidents [9]. The distance headway is between the rear 

bumpers of consecutive vehicles and is covered during the time headway [11]. Driver response is slow for a large time 

headway and interactions between vehicles are low, whereas with a small time headway the interactions are high. In a 

heterogeneous flow, velocities and densities vary so that the headways between vehicles differ [12]. Lane discipline 

exists in a homogeneous flow, but typically not in heterogeneous traffic [13]. Further, a heterogeneous flow is not 

based on the first in first out rule [14]. Equilibrium flow decreases with increasing density, but a non-equilibrium flow 

is often not density dependent [15]. In a non-equilibrium flow, changes in traffic occur due to different driver 

perceptions and reactions [12] which vary with age, ethnicity, memory, location, and experience [7]. 

Traffic flow models can be categorized as microscopic, macroscopic or mesoscopic. Microscopic models 

characterize individual vehicle behavior based on their interactions. They are used to investigate the temporal and 

spatial behavior of vehicles based on interactions within a small area. Macroscopic models consider the aggregate 

behavior of traffic using parameters such as headway, driver response, density, velocity and flow [37-39]. Mesoscopic 

models incorporate characteristics of both  microscopic and macroscopic models [10]. For example, vehicles are 

modeled at an individual level and the general behavior is evaluated. Examples include cluster, headway distribution 

and flow emission models [16]. Macroscopic models have low computational complexity [7, 40] and have been shown 

to provide good performance [12, 37-42], so these models are considered here. 

Lighthill, Witham, and Richards (LWR) developed a macroscopic traffic flow model based on the law of 

conservation. This model considers the relationship between traffic density and flow [17]. It is assumed that small 

changes in traffic occur such that vehicles align their speeds in zero time [15], which can result in sharp changes in 

flow over small distances [18, 19]. The LWR model is commonly employed due to its simplicity [22], but it ignores 

the headway during alignment at transitions [21, 22] which causes unrealistic changes in flow. To improve the LWR 

model, Wong proposed including driver behavior [20] such as the velocity distribution. However, this model assumes 

that faster vehicles overcome slower vehicles during congestion which is typically not possible. Helbing considered 

lane discipline while characterizing changes in traffic [21] but not changes in velocity, so it is inadequate [13]. Newell 

improved the LWR model by incorporating stop and go traffic behavior. While this model includes changes in density, 

it does not consider the distances between vehicles for alignment [7, 41]. Michalopoulos and Kuhne [22] incorporated 

ramps by using source terms with the LWR model, but traffic changes due to transitions are ignored [23]. 

In this paper, a new model is proposed to characterize traffic changes at transitions due to bottlenecks. This model 

considers changes in velocity based on driver reaction and traffic stimuli. Driver reaction is introduced as a function of 

time headway to characterize sluggish, typical and quick driver behavior. These reactions are due to traffic stimuli, i.e. 

a decrease in velocity as vehicles move towards a bottleneck or an increase at the egress from a bottleneck. The 

explicit upwind difference scheme is used to approximate the LWR and proposed models with a continuous injection 

of traffic into the system. The performance of these models is evaluated over a road of length 10 km which has a 

bottleneck. 

The remainder of this paper is organized as follows. Section 2 presents the LWR and proposed models and the 

explicit upwind difference scheme is used in Section 3 to approximate these models. A stability analysis of the LWR 

and proposed models is given in Section 4, and their performance is compared in Section 5. Finally, some concluding 

remarks are given in Section 6. 

2. Traffic Flow Models 

The Lighthill, Whitham, and Richards (LWR) model [22] is based on vehicle conservation. It assumes a long 

infinite road with small changes in flow [15, 24]. The LWR model is given by [25]:                                                          

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑣

𝜕𝑥
= 0  (1) 

and Equation 1 can be written as [26]:  

𝜕𝜌

𝜕𝑡
+ 𝑐

𝜕𝜌

𝜕𝑥
= 0  (2) 

With;  

𝑐 =
𝑑𝑥

𝑑𝑡
  (3) 

Which is analogous to 𝑞′(𝜌) [7, 25, 26]. The flow is:   

𝑞(𝜌) = 𝜌𝑣(𝜌) 

so that;  
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𝑞′(𝜌) =
𝜕𝜌𝑣(𝜌)

𝜕𝜌
 

Then Equation 1 can be expressed as:  

𝜕𝜌

𝜕𝑡
+ 𝑞′(𝜌)

𝜕𝜌

𝜕𝑥
= 0  (4) 

The equilibrium velocity distribution 𝑣(𝜌) is a function of density and is the target when a transition occurs [7]. 

The most commonly used distribution is from Greenshields [29] and is given by:  

𝑣(𝜌) = 𝑣𝑚 (1 −
𝜌

𝜌𝑚
)  (5) 

Where 𝑣𝑚 is the maximum velocity and 𝜌𝑚 is the maximum density. According to this model, traffic moves faster at 

lower densities. This distribution is employed here due to its simplicity and extensive use in characterizing traffic 

behavior. Taking the derivative with respect to density gives; 

𝑑𝑣(𝜌)

𝑑𝜌
=

𝑑

𝑑𝜌
(𝑣𝑚 (1 −

𝜌

𝜌𝑚
)) = −

𝑣𝑚

𝜌𝑚
  (6) 

This is the stimulus for a driver and is a function of the maximum velocity. Only the magnitude of the stimulus 

from (6) is required, so we employ: 

|
𝑑𝑣(𝜌)

𝑑𝜌
| = |

𝑣𝑚

𝜌𝑚
|  (7) 

The alignment in velocity Δ𝑣 due to a stimulus occurs during the time headway 𝜏 [7] so that:  

Δ𝑣 = 𝑎𝜏  (8) 

Where 𝑎 is the driver response. Further, Δ𝑣 is the change in velocity to achieve equilibrium which gives: 

Δ𝑣 = 𝑣 − 𝑣(𝜌)  (9) 

Substituting (9) in (8), we have: 

𝑣 − 𝑣(𝜌) = 𝑎𝜏  (10) 

or  

𝑣 = 𝑎𝜏 + 𝑣(𝜌)  (11) 

The transition width 𝛿𝑡 is defined as the difference between preceding and forward densities and characterizes the 

change in traffic density. It is based on the road geometry, i.e. when a lane is reduced the density increases and vice 

versa. For a small 𝛿𝑡, small changes in velocity occur and the flow is smoother while for a large 𝛿𝑡, the changes in 

velocity are large and can become oscillatory. The driver stimulus is given by:  

1

𝛿𝑡

𝑑𝑣(𝜌)

𝑑(𝜌)
  (12) 

Driver reaction to a forward stimulus varies according to age, gender, ethnicity, and experience [7]. The time taken 

by a driver to observe and react is the physiological response [12]. The time to align is based on this response [29] and 

can be characterized by the time headway [29]. A sluggish driver takes longer than a typical driver to align, whereas 

an aggressive driver is quicker. The physiological response can be expressed as:  

𝑏 =
𝜏

𝜏𝑝
  (13) 

Where 𝜏𝑝 is the time headway for a typical driver. Driver behavior is aggressive when 𝑏 < 1, typical when 𝑏 = 1, and 

sluggish for 𝑏 > 1. The driver response [29] is the product of stimuli and reaction, so from (12) and (13) we have:  

𝑎 =
1

𝛿𝑡
|

𝑑𝑣(𝜌)

𝑑𝜌
|

𝜏

𝜏𝑝
  (14) 

Substituting Equation 14 in Equation 11 gives:  

𝑣 = 𝑣(𝜌) +
1

𝛿𝑡
|

𝑑𝑣(𝜌)

𝑑(𝜌)
| 𝑏𝜏  (15) 

Congestion is mitigated when this velocity is greater than 𝑣(𝜌), i.e. when there is egress from a bottleneck. The 

velocity is less than 𝑣(𝜌) if there is ingress to a bottleneck so  

𝑣 = 𝑣(𝜌) ±
1

𝛿𝑡
|

𝑑𝑣(𝜌)

𝑑(𝜌)
| 𝑏𝜏  (16) 

Substituting Equation 16 in the LWR model Equation 4, the proposed model for egress from a bottleneck is:  
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𝜕𝜌

𝜕𝑡
+ (𝜌  𝑣(𝜌) + 𝜌

1

𝛿𝑡
|

𝑑𝑣(𝜌)

𝑑(𝜌)
| 𝑏𝜏)

′ 𝜕𝜌

𝜕𝑥
= 0  (17) 

and for ingress is:  

𝜕𝜌

𝜕𝑡
+ (𝜌  𝑣(𝜌) − 𝜌

1

𝛿𝑡
|

𝑑𝑣(𝜌)

𝑑(𝜌)
| 𝑏𝜏)

′ 𝜕𝜌

𝜕𝑥
= 0  (18) 

This model characterizes traffic changes based on velocity and forward conditions. It reduces to the LWR model 

when there is no change in traffic conditions ahead such that: 

𝑑𝑣(𝜌)

𝑑(𝜌)
= 0 

3. Model Evaluation 

The explicit upwind difference scheme is employed to approximate the proposed and LWR models. This scheme 

has lower complexity than the Godunov and FORCE schemes [30, 31]. It employs the forward difference in time and 

the backward difference in space [32]. A road is considered with 𝑀 equidistant road segments and 𝑁 equal duration 

time steps. The total length of the road is 𝑥𝑚 and the total time duration is 𝑡𝑚, so that Δ𝑡 = 𝑡𝑚/𝑁 and Δ𝑥 = 𝑥𝑚/𝑀. 

The traffic density at the 𝑛-th time step in the 𝑖-th road segment is:  

𝜕𝜌

𝜕𝑡
=

𝜌𝑖
𝑛+1−𝜌𝑖

𝑛

𝑡𝑛+1−𝑡𝑛
  (19) 

and the corresponding traffic flow is:  

𝜕𝑞

𝜕𝑥
=

𝑞𝑖
𝑛−𝑞𝑖−1

𝑛

𝑥𝑖−𝑥𝑖−1
  (20) 

Substituting 𝑞 = 𝜌𝑣 gives:  

𝜕𝑞

𝜕𝑥
=

(𝜌𝑣)𝑖
𝑛−(𝜌𝑣)𝑖−1

𝑛

𝑥𝑖−𝑥𝑖−1
  (21) 

The LWR model can be discretized as:  

𝜌𝑖
𝑛+1−𝜌𝑖

𝑛

𝑡𝑛+1−𝑡𝑛
+

(𝜌𝑣)𝑖
𝑛−(𝜌𝑣)𝑖−1

𝑛

𝑥𝑖−𝑥𝑖−1
= 0  (22) 

and substituting Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 and Δ𝑥 = 𝑥𝑖+1 − 𝑥𝑖 gives:  

𝜌𝑖
𝑛+1 =   𝜌𝑖

𝑛 +
Δ𝑡

Δ𝑥
((𝜌𝑣)𝑖−1

𝑛 − (𝜌𝑣)𝑖
𝑛)  (23) 

The density update in segment 𝑖 for time step 𝑛 + 1 is:  

𝜌𝑖
𝑛+1 =   𝜌𝑖

𝑛 + 𝑞′(𝜌𝑖
𝑛)

Δ𝑡

Δ𝑥
[(𝜌)𝑖−1

𝑛 − (𝜌)𝑖
𝑛]  (24) 

The corresponding density update for the proposed model is:  

𝜌𝑖
𝑛+1 =   𝜌𝑖

𝑛 + (𝜌𝑖
𝑛𝑣(𝜌𝑖

𝑛) ± 𝜌𝑖
𝑛 |

𝜕𝑣(𝜌𝑖
𝑛)

𝜕𝜌𝑖
𝑛 |

𝑏𝜏

𝛿𝑡
)

′
Δ𝑡

Δ𝑥
[(𝜌)𝑖−1

𝑛 − (𝜌)𝑖
𝑛] (25) 

4. Stability Analysis 

A finite difference scheme is consistent if the discretization error tends to zero, in which case the numerical 

solution is stable and convergent [33]. This requires that the Courant-Friedrichs-Lewy (CFL) condition is satisfied 

[15]. The error at the (𝑛 + 1)-th time step should be less than the error at the 𝑛-th time step for segment 𝑖 so that:  

|𝛾𝑖
𝑛+1| < |𝛾𝑖

𝑛|  (26) 

and since there are a finite number of vehicles:  

|𝜌𝑖
𝑛+1| < |𝜌𝑖

𝑛|  (27) 

The density 𝜌𝑖
𝑛 can be expressed as [33]:  

𝜌𝑖
𝑛 = ∑  ∞

𝑘=−∞ 𝑒𝑘
𝛼𝑛𝑒𝑗𝑘𝑥𝑖   (28) 

Where 𝑗 = √−1, 𝑒𝑘
𝛼𝑛 is the 𝑘-th Fourier component, and 𝑒𝑗𝑘𝑥𝑖 = cos𝑘𝑥𝑖 + 𝑗sin𝑘𝑥𝑖 . Substituting this in Equation 27 

gives:  

|𝑒𝑘
𝑛+1𝑒𝑗𝑘𝑥𝑖| < |𝑒𝑘

𝑛𝑒𝑗𝑘𝑥𝑖|  (29) 
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Or:  

𝐵 = |
𝑒𝑘

𝑛+1

𝑒𝑘
𝑛 | < 1  (30) 

Where 𝐵 is the density factor. Substituting 𝜌𝑖
𝑛 from Equation 28 in 24 gives:  

∑  ∞
𝑘=−∞ 𝑒𝛼(𝑛+𝑖)𝑒𝑗𝑘𝑚𝑥 = ∑  ∞

𝑘=−∞ 𝑒𝛼𝑛𝑒𝑗𝑘𝑚𝑥 − 𝑞′(𝜌)
Δ𝑡

Δ𝑥
[∑  ∞

𝑘=−∞ 𝑒𝛼𝑛𝑒𝑗𝑘𝑚𝑥 − ∑  ∞
𝑘=−∞ 𝑒𝛼𝑛𝑒𝑗𝑘𝑚(𝑥−𝑖)] (31) 

and considering the 𝑘-th term:  

𝑒𝛼(𝑛+𝑖)𝑒𝑗𝑘𝑚𝑥 = 𝑒𝛼𝑛𝑒𝑗𝑘𝑚𝑥 − 𝑞′(𝜌)
Δ𝑡

Δ𝑥
[𝑒𝛼𝑛𝑒𝑗𝑘𝑚𝑥 − 𝑒𝛼𝑛𝑒𝑗𝑘𝑚(𝑥−𝑖)] (32) 

For simplicity, let: 

𝐶 = 𝑞′(𝜌)
Δ𝑡

Δ𝑥
  (33) 

and dividing both sides by 𝑒𝑘
𝛼𝑛𝑒𝑗𝑘𝑥𝑖 gives:  

𝐵 = 𝑒𝛼Δ𝑡 = 1 − 𝐶[1 − 𝑒−𝑗𝑘Δ𝑥]  (34) 

Using 𝑒−𝑗𝑘Δ𝑥 = cos𝑘Δ𝑥 − 𝑗sin𝑘Δ𝑥, this becomes:  

𝐵 = 1 − 𝐶[1 − cos(𝑘Δ𝑥)] − 𝑗𝐶sin(𝑘Δ𝑥)  (35) 

The numerical scheme is stable if the magnitude of 𝐵 is less than 1. We have that;  

𝐵2 = (1 − 𝐶[1 − cos(𝑘Δ𝑥)])2 + 𝐶2sin2(𝑘Δ𝑥),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 𝐶2[1 − cos(𝑘Δ𝑥)]2 + 𝐶2sin2(𝑘Δ𝑥),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 𝐶2[1 − 2cos(𝑘Δ𝑥) + cos2(𝑘Δ𝑥)] + 𝐶2sin2(𝑘Δ𝑥),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 𝐶2 − 2𝐶2cos(𝑘Δ𝑥) + 𝐶2cos2(𝑘Δ𝑥) + 𝐶2sin2(𝑘Δ𝑥),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 𝐶2 − 2𝐶2cos(𝑘Δ𝑥) + 𝐶2[cos2(𝑘Δ𝑥) + sin2(𝑘Δ𝑥)],

 (36) 

and substituting cos2(𝑘Δ𝑥) + sin2(𝑘Δ𝑥) = 1, this becomes;  

𝐵2 = 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 𝐶2 − 2𝐶2cos(𝑘Δ𝑥) + 𝐶2,

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 2𝐶2 − 2𝐶2cos(𝑘Δ𝑥),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)] + 2𝐶2[1 − cos(𝑘Δ𝑥)],

= 1 + [1 − cos(𝑘Δ𝑥)](−2𝐶 + 2𝐶2),

= 1 − 2𝐶[1 − cos(𝑘Δ𝑥)](1 − 𝐶).

 (37) 

The technique is stable if 𝐵2 < 1 which gives;  

1 − 2𝐶[1 − cos(𝑘Δ𝑥)](1 − 𝐶) < 1  (38) 

Or:  

−2𝐶[1 − cos(𝑘Δ𝑥)](1 − 𝐶) < 0  (39) 

Since:  

−1 ≤ cos(𝑘Δ𝑥) ≤ 1  (40) 

it is sufficient to find 𝐶 such that:  

1 − 𝐶 > 0 

or: 

𝐶 < 1 

Thus, the finite upwind difference scheme is stable if:  

𝐶 < 1  (41) 

in which case the maximum distance covered in a time step Δ𝑡 is less than the segment length Δ𝑥. 

For the LWR model:  

𝐶 = 𝑣𝑚
Δ𝑡

Δ𝑥
  (42) 

If 𝐶 < 1, the numerical scheme is stable and small changes in velocity will not cause large changes in traffic behavior 

[33, 34]. For the performance evaluation in the next section, the maximum velocity for both the proposed and LWR 
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models is 𝑣𝑚 = 20 km/h. Choosing Δ𝑡=0.0005 h and Δ𝑥=0.1 km gives: 

𝐶 = 20 ×
0.0005

0.1
= 0.10 < 1  (43) 

so the numerical solutions for the LWR model are stable. 

For the proposed model: 

𝑞′(𝜌) = (𝑣(𝜌) ±
1

𝛿𝑡
|
𝜕𝑣(𝜌)

𝜕(𝜌)
| 𝑏𝜏) 

and using (33) and (41), the stability condition is: 

(𝑣(𝜌) ±
1

𝛿𝑡
|

𝜕𝑣(𝜌)

𝜕(𝜌)
| 𝑏𝜏)

Δ𝑡

Δ𝑥
< 1  (44) 

This is satisfied when the distance covered during Δ𝑡 is less than Δ𝑥 . The maximum of 𝑣(𝜌) is 𝑣𝑚  and using 

Equation 7 gives:  

(𝑣𝑚 ±
1

𝛿𝑡
|

𝑣𝑚

𝜌𝑚
| 𝑏𝜏)

Δ𝑡

Δ𝑥
< 1  (45) 

For the performance evaluation 𝜌𝑚 = 1, 𝛿𝑡 = 0.028 for smooth changes in density, 𝑏 = 0.5, and 𝜏 = 3 s (0.0008 

h). Choosing Δ𝑡 = 0.0005 h and Δ𝑥 = 0.1 km results in:  

(20 ±
1

0.028
|

20

1
| 0.5 × 0.0008)

0.0005

0.1
= 0.1014,0.0985 < 1                                       (46) 

and considering 𝛿𝑡 = 0.02 for sudden changes in density gives:  

(20 ±
1

0.02
|

20

1
| 0.5 × 0.0008)

0.0005

0.1
= 0.102,0.098 < 1                                            (47) 

so the numerical solutions for the proposed model are stable. 

Table  1. Simulation Parameters 

  Name Parameter Value 

Space step Δ𝑥 0.1 km 

Equilibrium velocity distribution 𝑣(𝜌) Greenshields distribution 

Time step Δ𝑡 0.0005 h 

Maximum velocity 𝑣𝑚 20 km/h 

Length of road 𝑥𝑚 10 km 

CFL condition for the LWR model 𝑞(𝜌)′
Δ𝑡

Δ𝑥
 0.10 

CFL conditions for the proposed model at the 
ingress to a bottleneck 

 

𝑞′(𝜌)
Δ𝑡

Δ𝑥
 

0.1002 

CFL conditions for the proposed model at the 
egress from a bottleneck 

 

𝑞′(𝜌)
Δ𝑡

Δ𝑥
 

0.0998 

Initial density 𝜌(𝑥, 𝑡 = 0) 2.3sin(𝑥) + 30 veh/km 

Maximum density 𝜌𝑚 1 

Transition width for smooth changes 𝛿𝑡 0.028 

Transition width for sudden changes 𝛿𝑡 0.02 

Driver behavior 𝑏 0.5 

Time headway 𝜏 0.0008 h 

5. Performance Results 

The performance of the proposed and LWR models is evaluated in this section for a traffic bottleneck. A traffic 

bottleneck occurs when the capacity of a road changes suddenly [35]. In the first scenario, vehicles enter a ramp from 

the highway which is the ingress to a bottleneck, while in the second scenario, vehicles enter the highway from a ramp 

which is the egress from a bottleneck. The LWR model is the same for both scenarios as this model cannot 

characterize bottleneck behavior. 

The maximum density is 𝜌𝑚 = 1 which indicates that 100% of the road is occupied with vehicles. For smooth 

changes in density, the bottleneck has transition width 𝛿𝑡 = 0.028 and for sudden changes in density, the bottleneck 

has transition width 𝛿𝑡 = 0.02. The boundary conditions are nonperiodic so that traffic enters the road at 0 km and 
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leaves at 10 km. The total simulation time is 𝑡𝑚 = 60 s, the time headway is 𝜏 = 3 s [36], and 𝑏 = 0.5 which denotes 

aggressive behavior. The maximum velocity is 𝑣𝑚 = 20 km/h and traffic adjusts to the Greenshields equilibrium 

distribution (5) when a change occurs [34]. The initial density distribution is a periodic function [32]:  

𝜌 = 2.3sin(𝑥) + 30  (48) 

  

 

Figure 1. The proposed model density behavior at the ingress to a ramp from a highway at 𝟏 s. 

 

Figure 2. The proposed model density behavior at the egress from a ramp to a highway at 𝟏 s. 

Figure 1 shows the normalized traffic density behavior with the proposed model at the ingress to a ramp from a 

highway at 1 s. The density is 0.176 veh/km at 0.1 km, increases to 0.190 veh/km at 1.5 km, and then decreases to 

0.163 veh/km at 4.6 km. At 7.8 km, the density is 0.190 veh/km and decreases to 0.169 veh/km at 10 km. Figure 2 

shows the corresponding behavior at the egress from a ramp to a highway at 1 s. The density is 0.081veh/km at 0.1 

km, increases to 0.086 veh/km at 1.5 km, and then decreases to 0.074 veh/km at 4.6 km. At 7.8 km, the density is 

0.086 veh/km and decreases to 0.076 veh/km at 10 km.  

Figure 3 shows the normalized density behavior with the proposed model at the ingress to a ramp from a highway 

at 10 s. The density is 0.163 veh/km at 0.1 km, increases to 0.189 veh/km at 1.5 km, and then decreases to 0.163 

veh/km at 4.6 km. At 7.8 km the density is 0.190 veh/km and decreases to 0.169 veh/km at 10 km. Figure 4 shows 

the corresponding behavior at the egress from a ramp to a highway at 10 s. At 0 km, the density is 0.092 veh/km, 

decreases to 0.086 veh/km at 0.5 km, and then increases to 0.087 veh/km at 1.5 km. The density is 0.073 veh/km at 

4.7 km and increases to 0.086 veh/km at 7.9 km. At 10 km, the density is 0.077 veh/km. Figure 5 shows the density 

behavior with the LWR model at the egress or ingress from a highway at 10 s. At 0 km, the density is 0.036 veh/km, 

increases to 0.038 veh/km at 1.5 km, and then decreases to 0.033 veh/km at 4.7 km. The density is 0.038 veh/km at 

7.8 km and decreases to 0.034 veh/km at 10 km.  
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Figure 3. The proposed model density behavior at the ingress to a ramp from a highway at 𝟏𝟎 s. 

 

Figure 4. The proposed model density behavior at the egress from a ramp to a highway at 𝟏𝟎 s. 

 

Figure 5. The density behavior at 𝟏𝟎 s with the LWR model at the egress or ingress from a highway. 
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Figure 6. The proposed model density behavior at the ingress to a ramp from a highway at 𝟐𝟎 s. 

Figure 6 shows the normalized density behavior of the proposed model at the ingress to a ramp from a highway at 

20 s. The normalized density is 0.135 veh/km at 0.1 km, and increases to 0.187 veh/km at 1.5 km. The density then 

decreases to 0.165 veh/km at 4.6 km. At 7.8 km the density is 0.190 veh/km and decreases to 0.170 veh/km at 10 

km. Figure 7 presents the corresponding behavior at the egress from a ramp to a highway at 20 s. At 0 km, the density 

is 0.140 veh/km. The density decreases to 0.095 veh/km at 0.5 km, and then to 0.073 veh/km at 4.7 km. It increases 

to 0.086 veh/km at 7.9 km and decreases to 0.078 veh/km at 10 km. Figure 8 shows the normalized density behavior 

of the LWR model at the ingress or egress from a highway at 50 s. At 0 km the normalized density is 0.071 veh/km, 

increases to 0.076 veh/km at 1.5 km, and then decreases to 0.065 veh/km at 4.7 km. The density increases to 0.076 

veh/km at 7.8 km and then decreases to 0.068 veh/km at 10 km. 

 

Figure 7. The proposed model density behavior at the egress from a ramp to a highway at 𝟐𝟎 s. 

 

Figure 8. The density behavior at 𝟐𝟎 s with the LWR model at the ingress or egress from a highway. 
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Figure 9. The proposed model density behavior at the ingress to a ramp from a highway at 𝟓𝟎 s. 

Figure 9 shows the normalized density behavior of the proposed model at 50 s at the ingress to a ramp from a 

highway. At 0.1 km, the density is 0.010 veh/km which increases to 0.178 veh/km at 1.8 km. The density decreases 

to 0.160 veh/km at 4.6 km, increases to 0.182 veh/km at 7.9 km, and then decreases to 0.163 veh/km at 10 km. 

Figure 10 presents the corresponding behavior at the egress from a ramp to a highway at 50 s. At 0 km, the density is 

0.150 veh/km, decreases to 0.094 veh/km at 1.5 km, and then decreases to 0.075 veh/km at 4.7 km. The density 

increases to 0.087 veh/km at 7.9 km and then decreases to 0.078 veh/km at 10 km. Figure 11 shows the normalized 

density behavior of the LWR model at the ingress or egress from a highway at 50 s. At 0.1 km, the density is 0.176 

veh/km and then increases to 0.187 veh/km at 1.5 km. It decreases to 0.162 veh/km at 4.7 km, increases to 0.188 

veh/km at 7.8 km, and then decreases to 0.168 veh/km at 10 km. 

 

Figure 10. The proposed model density behavior at the egress from a ramp to a highway at 𝟓𝟎 s. 

 

Figure 11. The density behavior at 𝟓𝟎 s with the LWR model at the ingress or egress from a highway. 
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Figure 12. The proposed model density behavior at the ingress to a ramp from a highway at 𝟔𝟎 s. 

Figure 12 shows the normalized density behavior of the proposed model at the ingress to a ramp from a highway at 

60 s. At 0.1 km, the density is 0.010 veh/km, increases to 0.178 veh/km at 1.8 km, and then decreases to 0.158 

veh/km at 4.6 km. The density increases to 0.182 veh/km at 7.9 km/ and decreases to 0.165 veh/km at 10 km. Figure 

13 presents the corresponding behavior at the egress from a ramp to a highway at 60 s. At 0 km, the density is 0.152 

veh/km and decreases to 0.093 veh/km at 1.5 km. It then decreases to 0.074 veh/km at 4.7 km, increases to 0.088 

veh/km at 7.9 km, and then decreases to 0.079 veh/km at 10 km. Figure 14 shows the density behavior with the LWR 

model at the ingress or egress from a highway at 60 s. At 0.1 km, the normalized density is 0.177 veh/km and 

increases to 0.190 veh/km at 1.5 km. The density decreases to 0.163 veh/km at 4.7 km. The density increases to 

0.190 veh/km at 7.8 km and decreases to 0.170 veh/km at 10 km. 

 

Figure 13. The proposed model density behavior at the egress from a ramp to a highway at 𝟔𝟎 s. 

 

Figure 14. The density behavior at 𝟔𝟎 s with the LWR model at the ingress or egress from a highway. 
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5.1. Traffic Behavior with a 20% Change in Density at 5 km 

To further compare the performance of the proposed and LWR models, a situation is considered in which the 

density is suddenly increased or decreased by 20% at 5 km. Figure 15 shows the proposed model density behavior 

with a 20% increase in density at 5 km. The density at 0 km is 0.010 veh/km and increases to 0.210 veh/km at 3.5 

km. It then decreases to 0.190 at 10 km. Figure 16 shows the LWR model density behavior with a 20% increase in 

density at 5 km. The density at 0 km is 0.055 veh/km and increases to 0.059 veh/km at 1.5 km. It then decreases to 

0.051 veh/km at 5 km. There is a sudden increase in density to 0.061 veh/km at 5 km and it is 0.071 veh/km at 7.9 

km. The density then decreases to 0.063 veh/km at 10 km. Figure 17 presents the density behavior with a 20% 

decrease in density at 5 km. At 0 km, the density is 0.120 veh/km and decreases to 0.076 veh/km at 1 km. It then 

decreases to 0.059 veh/km at 4.7 km, increases to 0.070 veh/km at 7.9 km, and then decreases to 0.061 veh/km at 10 

km. Figure 18 shows LWR model density behavior with a 20% decrease in density at 5 km. The density at 0 km is 

0.054 veh/km and increases to 0.059 veh/km at 1.5 km. It then decreases to 0.051 at 5 km and to 0.041 veh/km at 5 

km. The density then increases to 0.047 veh/km at 7.9 km and decreases to 0.042 veh/km at 10 km. 

 

Figure 15. Density behavior of the proposed model with a 𝟐𝟎% increase in density at 𝟓 km. 

 

Figure 16. Density behavior of the LWR model with a 𝟐𝟎% increase in density at 𝟓 km. 

 

Figure 17. Density behavior of the proposed model with a 𝟐𝟎% decrease in density at 𝟓 km. 
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Figure 18. Density behavior of the LWR model with a 𝟐𝟎% decrease in density at 𝟓 km. 

 

Figure 19. The proposed model traffic flow behavior with a 𝟐𝟎% decrease in density at 𝟒𝟎 s. 

 

Figure 20. The traffic flow behavior at 𝟒𝟎 s with the LWR model with a 𝟐𝟎% decrease in density at 𝟓 km. 
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Figure 21. The proposed model traffic flow behavior with a 𝟐𝟎% increase in density at 𝟒𝟎 s. 

5.2. Traffic Flow Comparison 

In this section, traffic flow with the proposed and LWR models for a 20% change in density at 5 km is compared. 

Figure 19 shows the normalized traffic flow behavior of the proposed model with a 20% decrease in density at 40 s. 

At 0.1 km, the flow is 2.76 veh/s and decreases to 1.60 veh/s at 0.75 km. It further decreases to 1.34 veh/s at 4.7 km, 

increases to 1.46 veh/s at 7.8 km, and then decreases to 1.33 veh/s at 10 km.  Figure 20 shows the LWR model traffic 

flow behavior at 40 s with a 20% decrease in density at 5 km. The flow at 0 km is 0.90 veh/s, which increases to 1.00 

veh/s at 1.5 km. It then decreases to 0.89 veh/s at 4.9 km, which then decreases to 0.70 veh/s at 5 km. The flow 

increases to 0.81 veh/s at 7.9 km and then decreases to 0.74  veh/s at 10 km.  Figure 21 shows the traffic flow 

behavior of the proposed model with a 20% increase in density at 40 s. At 0.1 km, the flow is 0.100 veh/s and then 

increases to 1.46 veh/s at 1.5 km. It decreases to 1.29 veh/s at 4.7 km, increases to 1.47 veh/s at 7.8 km, and then 

decreases to 1.32 veh/s at 10 km. 

Figure 1 gives the proposed model density behavior at 1 s for traffic entering a ramp from the highway and Figure 

2 provides the corresponding behavior for traffic moving from the ramp towards the highway. For the proposed 

model, Figures 3, 6, 9 and 12 show the traffic density ingress behavior to a bottleneck when exiting from a highway to 

a ramp and Figures 4, 7, 10 and 13 show the density egress behavior from a bottleneck at a ramp to a highway. Figures 

5, 8, 11 and 14 show the corresponding traffic density behavior with the LWR model. In Figures 1 and 2, there is a 

slight initial change in density but it is similar for traffic moving towards and away from the ramp. After 10 s the 

proposed model shows a difference in density profile, but the LWR model shows no difference in traffic behavior. At 

20, 50 and 60 s, the traffic density varies over the 10 km road with the proposed model, but not with the LWR model. 

This indicates that the proposed model can characterize bottleneck behavior better than the LWR model, and this is 

due to the use of traffic parameters. The proposed model behavior varies according to whether the traffic is entering 

the ramp from a highway as shown in Figures 1, 3, 6, 9 and 12 or enters the highway from a ramp as shown in Figures 

2, 4, 7, 10 and 13. Conversely, the density with the LWR model shown in Figures 5, 8, 11 and 14 is the same 

regardless of the situation. Thus, the LWR model is unable to characterize changes in traffic density. This is further 

illustrated in Figures 15, 16, 17 and 18. Figures 15 and 17 show that the proposed model can characterize traffic when 

there is a sudden change in density. However, the LWR model results in Figures 16 and 17 show an abrupt change in 

density in both cases which is not realistic. The corresponding traffic flow with the proposed model is shown in 

Figures 19 and 21. These results indicate that the flow prediction (characterization) with the proposed model is smooth 

throughout the transition while the LWR model results have abrupt changes in flow as shown in Figure 20. This is 

because it does not employ parameters such as transition width and driver behavior which are included in the proposed 

model. 

6. Conclusion 

In this paper, a new model was proposed to characterize traffic flow behavior at the ingress to or egress from 

bottlenecks. This model is based on driver reaction and traffic stimuli. Driver reaction is a function of time headway 

and can be sluggish, typical or aggressive. Traffic stimuli is a function of the transition width and equilibrium velocity 

and so can be used to characterize traffic behavior due to changes in density. The proposed model reduces to the LWR 

model when there is no stimulus. The explicit upwind difference scheme was used to evaluate the Lighthill, Whitham, 

and Richards (LWR) and proposed models with a continuous injection of traffic into the system. Further, a stability 

analysis of these models was given. 
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The proposed and LWR models were evaluated over a road of length 10 km which has a bottleneck. Two scenarios 

were considered, namely traffic from a highway to a ramp (ingress) and from a ramp to a highway (egress). The traffic 

density was shown to increase at the ingress to a bottleneck and decrease at the egress from a bottleneck. It was shown 

that the proposed model provides more accurate results in both scenarios because the LWR model cannot characterize 

traffic adequately when transitions occur. Moreover, sudden changes in traffic with the LWR model produce 

unrealistic results whereas the results with the proposed model are smooth. Thus, the proposed model is more accurate 

in both scenarios. The traffic flow profile with this model had no abrupt changes, while the corresponding results with 

the LWR model were not smooth. The results presented in this paper indicate that the proposed model can be 

employed at bottlenecks to realistically predict traffic for long and short term planning and in intelligent transportation 

systems. The LWR model is unsuitable for these purposes.   
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